futex.c 91.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
68
#include <linux/bootmem.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227 228
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
L
Linus Torvalds 已提交
249 250
};

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
491
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
		 * truncated in parallel so warn for now if this happens.
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

695
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696
		key->shared.inode = inode;
697
		key->shared.pgoff = basepage_index(tail);
698
		rcu_read_unlock();
L
Linus Torvalds 已提交
699 700
	}

701
out:
702
	put_page(page);
703
	return err;
L
Linus Torvalds 已提交
704 705
}

706
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
707
{
708
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
709 710
}

711 712
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
713 714 715 716 717
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
718
 * We have no generic implementation of a non-destructive write to the
719 720 721 722 723 724
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
725 726 727 728
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
729
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730
			       FAULT_FLAG_WRITE, NULL);
731 732
	up_read(&mm->mmap_sem);

733 734 735
	return ret < 0 ? ret : 0;
}

736 737
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
738 739
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

755 756
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
757
{
758
	int ret;
T
Thomas Gleixner 已提交
759 760

	pagefault_disable();
761
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
762 763
	pagefault_enable();

764
	return ret;
T
Thomas Gleixner 已提交
765 766 767
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
768 769 770
{
	int ret;

771
	pagefault_disable();
772
	ret = __get_user(*dest, from);
773
	pagefault_enable();
L
Linus Torvalds 已提交
774 775 776 777

	return ret ? -EFAULT : 0;
}

778 779 780 781 782 783 784 785 786 787 788

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

789
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790 791 792 793 794 795 796 797

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
798
	pi_state->key = FUTEX_KEY_INIT;
799 800 801 802 803 804

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
805
static struct futex_pi_state *alloc_pi_state(void)
806 807 808 809 810 811 812 813 814
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
815 816 817 818 819
static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}

820
/*
821 822 823
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
824 825
 * Must be called with the hb lock held.
 */
826
static void put_pi_state(struct futex_pi_state *pi_state)
827
{
828 829 830
	if (!pi_state)
		return;

831 832 833 834 835 836 837 838
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
839
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
840
		list_del_init(&pi_state->list);
841
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
P
Peter Zijlstra 已提交
864
static struct task_struct *futex_find_get_task(pid_t pid)
865 866 867
{
	struct task_struct *p;

868
	rcu_read_lock();
869
	p = find_task_by_vpid(pid);
870 871
	if (p)
		get_task_struct(p);
872

873
	rcu_read_unlock();
874 875 876 877 878 879 880 881 882 883 884 885 886

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
887
	struct futex_hash_bucket *hb;
888
	union futex_key key = FUTEX_KEY_INIT;
889

890 891
	if (!futex_cmpxchg_enabled)
		return;
892 893 894
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
895
	 * versus waiters unqueueing themselves:
896
	 */
897
	raw_spin_lock_irq(&curr->pi_lock);
898 899 900 901 902
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
903
		hb = hash_futex(&key);
904
		raw_spin_unlock_irq(&curr->pi_lock);
905 906 907

		spin_lock(&hb->lock);

908
		raw_spin_lock_irq(&curr->pi_lock);
909 910 911 912
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
913 914 915 916 917 918
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
919 920
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
921
		pi_state->owner = NULL;
922
		raw_spin_unlock_irq(&curr->pi_lock);
923

924
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
925 926 927

		spin_unlock(&hb->lock);

928
		raw_spin_lock_irq(&curr->pi_lock);
929
	}
930
	raw_spin_unlock_irq(&curr->pi_lock);
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1014
 */
1015 1016 1017 1018 1019 1020

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1021 1022
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1023
			      struct futex_pi_state **ps)
1024
{
1025
	pid_t pid = uval & FUTEX_TID_MASK;
P
Peter Zijlstra 已提交
1026
	int ret, uval2;
1027

1028 1029 1030 1031 1032
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1033

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
	 */
1041
	WARN_ON(!atomic_read(&pi_state->refcount));
1042

P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1061 1062 1063 1064
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1065
		/*
1066 1067 1068
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1069
		 */
1070
		if (!pi_state->owner) {
1071
			/*
1072 1073
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1074
			 */
1075
			if (pid)
P
Peter Zijlstra 已提交
1076
				goto out_einval;
1077
			/*
1078
			 * Take a ref on the state and return success. [4]
1079
			 */
P
Peter Zijlstra 已提交
1080
			goto out_attach;
1081
		}
1082 1083

		/*
1084 1085 1086 1087 1088 1089 1090 1091
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1092
			goto out_attach;
1093 1094 1095 1096
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1097
		 */
1098
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1099
			goto out_einval;
1100 1101
	}

1102 1103 1104 1105 1106 1107
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1108 1109 1110
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1111
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1112
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1113 1114
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1131 1132
}

1133 1134 1135 1136 1137 1138
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1139 1140
{
	pid_t pid = uval & FUTEX_TID_MASK;
1141 1142
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1143

1144
	/*
1145
	 * We are the first waiter - try to look up the real owner and attach
1146
	 * the new pi_state to it, but bail out when TID = 0 [1]
1147
	 */
1148
	if (!pid)
1149
		return -ESRCH;
1150
	p = futex_find_get_task(pid);
1151 1152
	if (!p)
		return -ESRCH;
1153

1154
	if (unlikely(p->flags & PF_KTHREAD)) {
1155 1156 1157 1158
		put_task_struct(p);
		return -EPERM;
	}

1159 1160 1161 1162 1163 1164
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1165
	raw_spin_lock_irq(&p->pi_lock);
1166 1167 1168 1169 1170 1171 1172 1173
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1174
		raw_spin_unlock_irq(&p->pi_lock);
1175 1176 1177
		put_task_struct(p);
		return ret;
	}
1178

1179 1180
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1181 1182 1183
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1184
	 */
1185 1186 1187
	pi_state = alloc_pi_state();

	/*
1188
	 * Initialize the pi_mutex in locked state and make @p
1189 1190 1191 1192 1193
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1194
	pi_state->key = *key;
1195

1196
	WARN_ON(!list_empty(&pi_state->list));
1197 1198
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1199
	raw_spin_unlock_irq(&p->pi_lock);
1200 1201 1202

	put_task_struct(p);

P
Pierre Peiffer 已提交
1203
	*ps = pi_state;
1204 1205 1206 1207

	return 0;
}

P
Peter Zijlstra 已提交
1208 1209
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1210 1211
			   union futex_key *key, struct futex_pi_state **ps)
{
1212
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1213 1214 1215 1216 1217

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1218
	if (top_waiter)
P
Peter Zijlstra 已提交
1219
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1220 1221 1222 1223 1224 1225 1226 1227

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1228 1229 1230 1231
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1232 1233 1234
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1235 1236 1237
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

P
Peter Zijlstra 已提交
1238
	/* If user space value changed, let the caller retry */
1239 1240 1241
	return curval != uval ? -EAGAIN : 0;
}

1242
/**
1243
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1244 1245 1246 1247 1248 1249 1250 1251
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1252
 *
1253 1254 1255
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1256 1257 1258 1259 1260 1261 1262
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1263
				struct task_struct *task, int set_waiters)
1264
{
1265
	u32 uval, newval, vpid = task_pid_vnr(task);
1266
	struct futex_q *top_waiter;
1267
	int ret;
1268 1269

	/*
1270 1271
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1272
	 */
1273
	if (get_futex_value_locked(&uval, uaddr))
1274 1275
		return -EFAULT;

1276 1277 1278
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1279 1280 1281
	/*
	 * Detect deadlocks.
	 */
1282
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1283 1284
		return -EDEADLK;

1285 1286 1287
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1288
	/*
1289 1290
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1291
	 */
1292 1293
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1294
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1295 1296

	/*
1297 1298 1299 1300
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1301
	 */
1302
	if (!(uval & FUTEX_TID_MASK)) {
1303
		/*
1304 1305
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1306
		 */
1307 1308
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1309

1310 1311 1312 1313 1314 1315 1316 1317
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1318 1319

	/*
1320 1321 1322
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1323
	 */
1324 1325 1326 1327
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1328
	/*
1329 1330 1331
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1332
	 */
1333
	return attach_to_pi_owner(uval, key, ps);
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1346 1347
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1348 1349 1350 1351
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1352
	hb_waiters_dec(hb);
1353 1354
}

L
Linus Torvalds 已提交
1355 1356
/*
 * The hash bucket lock must be held when this is called.
1357 1358 1359
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1360
 */
1361
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1362
{
T
Thomas Gleixner 已提交
1363 1364
	struct task_struct *p = q->task;

1365 1366 1367
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1368
	/*
1369 1370
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1371
	 */
1372
	wake_q_add(wake_q, p);
1373
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1374
	/*
T
Thomas Gleixner 已提交
1375 1376 1377 1378
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1379
	 */
1380
	smp_store_release(&q->lock_ptr, NULL);
L
Linus Torvalds 已提交
1381 1382
}

1383
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *top_waiter,
1384
			 struct futex_hash_bucket *hb)
1385 1386
{
	struct task_struct *new_owner;
1387
	struct futex_pi_state *pi_state = top_waiter->pi_state;
1388
	u32 uninitialized_var(curval), newval;
1389
	DEFINE_WAKE_Q(wake_q);
1390
	bool deboost;
1391
	int ret = 0;
1392 1393 1394 1395

	if (!pi_state)
		return -EINVAL;

1396 1397 1398 1399 1400 1401 1402
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1403
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1404 1405 1406
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1407
	 * It is possible that the next waiter (the one that brought
1408
	 * top_waiter owner to the kernel) timed out and is no longer
1409
	 * waiting on the lock.
1410 1411
	 */
	if (!new_owner)
1412
		new_owner = top_waiter->task;
1413 1414

	/*
1415 1416 1417
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1418
	 */
1419
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1420

1421 1422 1423
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1424
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1425
		ret = -EFAULT;
P
Peter Zijlstra 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1439

1440
	if (ret) {
1441
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1442
		return ret;
1443
	}
1444

1445
	raw_spin_lock(&pi_state->owner->pi_lock);
1446 1447
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1448
	raw_spin_unlock(&pi_state->owner->pi_lock);
1449

1450
	raw_spin_lock(&new_owner->pi_lock);
1451
	WARN_ON(!list_empty(&pi_state->list));
1452 1453
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1454
	raw_spin_unlock(&new_owner->pi_lock);
1455

1456
	/*
1457
	 * We've updated the uservalue, this unlock cannot fail.
1458
	 */
1459 1460 1461
	deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);

	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1462
	spin_unlock(&hb->lock);
1463 1464 1465

	if (deboost) {
		wake_up_q(&wake_q);
1466
		rt_mutex_adjust_prio(current);
1467
	}
1468 1469 1470 1471

	return 0;
}

I
Ingo Molnar 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1488 1489 1490
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1491
	spin_unlock(&hb1->lock);
1492 1493
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1494 1495
}

L
Linus Torvalds 已提交
1496
/*
D
Darren Hart 已提交
1497
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1498
 */
1499 1500
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1501
{
1502
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1503
	struct futex_q *this, *next;
1504
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1505
	int ret;
1506
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1507

1508 1509 1510
	if (!bitset)
		return -EINVAL;

1511
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1512 1513 1514
	if (unlikely(ret != 0))
		goto out;

1515
	hb = hash_futex(&key);
1516 1517 1518 1519 1520

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1521
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1522

J
Jason Low 已提交
1523
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1524
		if (match_futex (&this->key, &key)) {
1525
			if (this->pi_state || this->rt_waiter) {
1526 1527 1528
				ret = -EINVAL;
				break;
			}
1529 1530 1531 1532 1533

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1534
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539
			if (++ret >= nr_wake)
				break;
		}
	}

1540
	spin_unlock(&hb->lock);
1541
	wake_up_q(&wake_q);
1542
out_put_key:
1543
	put_futex_key(&key);
1544
out:
L
Linus Torvalds 已提交
1545 1546 1547
	return ret;
}

1548 1549 1550 1551
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1552
static int
1553
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1554
	      int nr_wake, int nr_wake2, int op)
1555
{
1556
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1557
	struct futex_hash_bucket *hb1, *hb2;
1558
	struct futex_q *this, *next;
D
Darren Hart 已提交
1559
	int ret, op_ret;
1560
	DEFINE_WAKE_Q(wake_q);
1561

D
Darren Hart 已提交
1562
retry:
1563
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1564 1565
	if (unlikely(ret != 0))
		goto out;
1566
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1567
	if (unlikely(ret != 0))
1568
		goto out_put_key1;
1569

1570 1571
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1572

D
Darren Hart 已提交
1573
retry_private:
T
Thomas Gleixner 已提交
1574
	double_lock_hb(hb1, hb2);
1575
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1576 1577
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1578
		double_unlock_hb(hb1, hb2);
1579

1580
#ifndef CONFIG_MMU
1581 1582 1583 1584
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1585
		ret = op_ret;
1586
		goto out_put_keys;
1587 1588
#endif

1589 1590
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1591
			goto out_put_keys;
1592 1593
		}

1594
		ret = fault_in_user_writeable(uaddr2);
1595
		if (ret)
1596
			goto out_put_keys;
1597

1598
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1599 1600
			goto retry_private;

1601 1602
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1603
		goto retry;
1604 1605
	}

J
Jason Low 已提交
1606
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1607
		if (match_futex (&this->key, &key1)) {
1608 1609 1610 1611
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1612
			mark_wake_futex(&wake_q, this);
1613 1614 1615 1616 1617 1618 1619
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1620
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1621
			if (match_futex (&this->key, &key2)) {
1622 1623 1624 1625
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1626
				mark_wake_futex(&wake_q, this);
1627 1628 1629 1630 1631 1632 1633
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1634
out_unlock:
D
Darren Hart 已提交
1635
	double_unlock_hb(hb1, hb2);
1636
	wake_up_q(&wake_q);
1637
out_put_keys:
1638
	put_futex_key(&key2);
1639
out_put_key1:
1640
	put_futex_key(&key1);
1641
out:
1642 1643 1644
	return ret;
}

D
Darren Hart 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1663 1664
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1665
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1666 1667 1668 1669 1670 1671
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1672 1673
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1674 1675 1676
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1677 1678 1679 1680 1681
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1682 1683 1684
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1685 1686
 */
static inline
1687 1688
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1689 1690 1691 1692
{
	get_futex_key_refs(key);
	q->key = *key;

1693
	__unqueue_futex(q);
1694 1695 1696 1697

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1698 1699
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1700
	wake_up_state(q->task, TASK_NORMAL);
1701 1702 1703 1704
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1705 1706 1707 1708 1709 1710 1711
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1712 1713
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1714 1715 1716
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1717
 *
1718 1719
 * Return:
 *  0 - failed to acquire the lock atomically;
1720
 * >0 - acquired the lock, return value is vpid of the top_waiter
1721 1722 1723 1724 1725 1726
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1727
				 struct futex_pi_state **ps, int set_waiters)
1728
{
1729
	struct futex_q *top_waiter = NULL;
1730
	u32 curval;
1731
	int ret, vpid;
1732 1733 1734 1735

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1736 1737 1738
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1747 1748 1749 1750 1751 1752
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1753 1754 1755 1756
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1757
	/*
1758 1759 1760
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1761
	 */
1762
	vpid = task_pid_vnr(top_waiter->task);
1763 1764
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1765
	if (ret == 1) {
1766
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1767 1768
		return vpid;
	}
1769 1770 1771 1772 1773
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1774
 * @uaddr1:	source futex user address
1775
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1776 1777 1778 1779 1780
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1781
 *		pi futex (pi to pi requeue is not supported)
1782 1783 1784 1785
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1786 1787
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1788
 *  <0 - on error
L
Linus Torvalds 已提交
1789
 */
1790 1791 1792
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1793
{
1794
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1795 1796
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1797
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1798
	struct futex_q *this, *next;
1799
	DEFINE_WAKE_Q(wake_q);
1800 1801

	if (requeue_pi) {
1802 1803 1804 1805 1806 1807 1808
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1828

1829
retry:
1830
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1831 1832
	if (unlikely(ret != 0))
		goto out;
1833 1834
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1835
	if (unlikely(ret != 0))
1836
		goto out_put_key1;
L
Linus Torvalds 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1847 1848
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1849

D
Darren Hart 已提交
1850
retry_private:
1851
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1852
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1853

1854 1855
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1856

1857
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1858 1859

		if (unlikely(ret)) {
D
Darren Hart 已提交
1860
			double_unlock_hb(hb1, hb2);
1861
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1862

1863
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1864 1865
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1866

1867
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1868
				goto retry_private;
L
Linus Torvalds 已提交
1869

1870 1871
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1872
			goto retry;
L
Linus Torvalds 已提交
1873
		}
1874
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1880
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1881 1882 1883 1884 1885 1886
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1887
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1888
						 &key2, &pi_state, nr_requeue);
1889 1890 1891 1892 1893

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1894 1895
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1896 1897
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1898
		 */
1899
		if (ret > 0) {
1900
			WARN_ON(pi_state);
1901
			drop_count++;
1902
			task_count++;
1903
			/*
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1914
			 */
P
Peter Zijlstra 已提交
1915
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1916 1917 1918 1919
		}

		switch (ret) {
		case 0:
1920
			/* We hold a reference on the pi state. */
1921
			break;
1922 1923

			/* If the above failed, then pi_state is NULL */
1924 1925
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1926
			hb_waiters_dec(hb2);
1927 1928
			put_futex_key(&key2);
			put_futex_key(&key1);
1929
			ret = fault_in_user_writeable(uaddr2);
1930 1931 1932 1933
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1934 1935 1936 1937 1938 1939
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1940
			double_unlock_hb(hb1, hb2);
1941
			hb_waiters_dec(hb2);
1942 1943
			put_futex_key(&key2);
			put_futex_key(&key1);
1944 1945 1946 1947 1948 1949 1950
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1951
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1952 1953 1954 1955
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1956
			continue;
1957

1958 1959 1960
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1961 1962 1963
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1964 1965
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1966 1967
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1968 1969 1970
			ret = -EINVAL;
			break;
		}
1971 1972 1973 1974 1975 1976 1977

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1978
			mark_wake_futex(&wake_q, this);
1979 1980
			continue;
		}
L
Linus Torvalds 已提交
1981

1982 1983 1984 1985 1986 1987
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1988 1989 1990 1991 1992
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1993 1994 1995 1996 1997
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
1998
			get_pi_state(pi_state);
1999 2000 2001
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2002
							this->task);
2003
			if (ret == 1) {
2004 2005 2006 2007 2008 2009 2010 2011
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2012
				requeue_pi_wake_futex(this, &key2, hb2);
2013
				drop_count++;
2014 2015
				continue;
			} else if (ret) {
2016 2017 2018 2019 2020 2021 2022 2023
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2024
				this->pi_state = NULL;
2025
				put_pi_state(pi_state);
2026 2027 2028 2029 2030
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2031
			}
L
Linus Torvalds 已提交
2032
		}
2033 2034
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2035 2036
	}

2037 2038 2039 2040 2041
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2042
	put_pi_state(pi_state);
2043 2044

out_unlock:
D
Darren Hart 已提交
2045
	double_unlock_hb(hb1, hb2);
2046
	wake_up_q(&wake_q);
2047
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2048

2049 2050 2051 2052 2053 2054
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2055
	while (--drop_count >= 0)
2056
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2057

2058
out_put_keys:
2059
	put_futex_key(&key2);
2060
out_put_key1:
2061
	put_futex_key(&key1);
2062
out:
2063
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2064 2065 2066
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2067
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2068
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2069
{
2070
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2071

2072
	hb = hash_futex(&q->key);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

2084
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2085

2086
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2087
	return hb;
L
Linus Torvalds 已提交
2088 2089
}

2090
static inline void
J
Jason Low 已提交
2091
queue_unlock(struct futex_hash_bucket *hb)
2092
	__releases(&hb->lock)
2093 2094
{
	spin_unlock(&hb->lock);
2095
	hb_waiters_dec(hb);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
2110
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2111
	__releases(&hb->lock)
L
Linus Torvalds 已提交
2112
{
P
Pierre Peiffer 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2127
	q->task = current;
2128
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2129 2130
}

2131 2132 2133 2134 2135 2136 2137
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2138 2139
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
2140
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2141 2142 2143 2144
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2145
	int ret = 0;
L
Linus Torvalds 已提交
2146 2147

	/* In the common case we don't take the spinlock, which is nice. */
2148
retry:
2149 2150 2151 2152 2153 2154
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2155
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2174
		__unqueue_futex(q);
2175 2176 2177

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2178 2179 2180 2181
		spin_unlock(lock_ptr);
		ret = 1;
	}

2182
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2183 2184 2185
	return ret;
}

2186 2187
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2188 2189
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2190
 */
P
Pierre Peiffer 已提交
2191
static void unqueue_me_pi(struct futex_q *q)
2192
	__releases(q->lock_ptr)
2193
{
2194
	__unqueue_futex(q);
2195 2196

	BUG_ON(!q->pi_state);
2197
	put_pi_state(q->pi_state);
2198 2199
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2200
	spin_unlock(q->lock_ptr);
2201 2202
}

P
Pierre Peiffer 已提交
2203
/*
2204
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2205
 *
2206 2207
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2208
 */
2209
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2210
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2211
{
2212
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2213
	struct futex_pi_state *pi_state = q->pi_state;
2214
	u32 uval, uninitialized_var(curval), newval;
P
Peter Zijlstra 已提交
2215
	struct task_struct *oldowner;
D
Darren Hart 已提交
2216
	int ret;
P
Pierre Peiffer 已提交
2217

P
Peter Zijlstra 已提交
2218 2219 2220
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
2221
	/* Owner died? */
2222 2223 2224 2225 2226
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2227 2228 2229 2230
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2231
	 *
D
Darren Hart 已提交
2232 2233 2234
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2235
	 *
P
Peter Zijlstra 已提交
2236 2237 2238 2239
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2240 2241 2242 2243 2244 2245 2246 2247
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2248
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2259
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2260
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2261 2262
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2263
		raw_spin_unlock(&pi_state->owner->pi_lock);
2264
	}
P
Pierre Peiffer 已提交
2265

2266
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2267

P
Peter Zijlstra 已提交
2268
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2269
	WARN_ON(!list_empty(&pi_state->list));
2270
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2271 2272 2273
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2274
	return 0;
P
Pierre Peiffer 已提交
2275 2276

	/*
P
Peter Zijlstra 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	 * To handle the page fault we need to drop the locks here. That gives
	 * the other task (either the highest priority waiter itself or the
	 * task which stole the rtmutex) the chance to try the fixup of the
	 * pi_state. So once we are back from handling the fault we need to
	 * check the pi_state after reacquiring the locks and before trying to
	 * do another fixup. When the fixup has been done already we simply
	 * return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2288
	 */
2289
handle_fault:
P
Peter Zijlstra 已提交
2290
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2291
	spin_unlock(q->lock_ptr);
2292

2293
	ret = fault_in_user_writeable(uaddr);
2294

2295
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2296
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2297

2298 2299 2300
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2301 2302 2303 2304
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2305 2306

	if (ret)
P
Peter Zijlstra 已提交
2307
		goto out_unlock;
2308 2309

	goto retry;
P
Peter Zijlstra 已提交
2310 2311 2312 2313

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2314 2315
}

N
Nick Piggin 已提交
2316
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2328 2329 2330
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2331 2332
 * <0 - on error (-EFAULT)
 */
2333
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2344
			ret = fixup_pi_state_owner(uaddr, q, current);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
2358
		if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) {
2359 2360 2361 2362 2363 2364 2365
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2366
		 * rt_mutex. Too late.
2367
		 */
2368
		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2369
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2370 2371
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2372
		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2373
		ret = fixup_pi_state_owner(uaddr, q, owner);
2374 2375 2376 2377 2378
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2379
	 * the owner of the rt_mutex.
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2391 2392 2393 2394 2395 2396 2397
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2398
				struct hrtimer_sleeper *timeout)
2399
{
2400 2401
	/*
	 * The task state is guaranteed to be set before another task can
2402
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2403 2404 2405
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2406
	set_current_state(TASK_INTERRUPTIBLE);
2407
	queue_me(q, hb);
2408 2409

	/* Arm the timer */
2410
	if (timeout)
2411 2412 2413
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2414 2415
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2416 2417 2418 2419 2420 2421 2422 2423
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2424
			freezable_schedule();
2425 2426 2427 2428
	}
	__set_current_state(TASK_RUNNING);
}

2429 2430 2431 2432
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2433
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2434 2435 2436 2437 2438 2439 2440 2441
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2442 2443
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2444
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2445
 */
2446
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2447
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2448
{
2449 2450
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2451 2452

	/*
D
Darren Hart 已提交
2453
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2454 2455 2456 2457 2458 2459 2460
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2461 2462
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2463 2464
	 * cond(var) false, which would violate the guarantee.
	 *
2465 2466 2467 2468
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2469
	 */
2470
retry:
2471
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2472
	if (unlikely(ret != 0))
2473
		return ret;
2474 2475 2476 2477

retry_private:
	*hb = queue_lock(q);

2478
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2479

2480
	if (ret) {
J
Jason Low 已提交
2481
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2482

2483
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2484
		if (ret)
2485
			goto out;
L
Linus Torvalds 已提交
2486

2487
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2488 2489
			goto retry_private;

2490
		put_futex_key(&q->key);
D
Darren Hart 已提交
2491
		goto retry;
L
Linus Torvalds 已提交
2492
	}
2493

2494
	if (uval != val) {
J
Jason Low 已提交
2495
		queue_unlock(*hb);
2496
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2497
	}
L
Linus Torvalds 已提交
2498

2499 2500
out:
	if (ret)
2501
		put_futex_key(&q->key);
2502 2503 2504
	return ret;
}

2505 2506
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2507 2508 2509 2510
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2511
	struct futex_q q = futex_q_init;
2512 2513 2514 2515 2516 2517 2518 2519 2520
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2521 2522 2523
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2524 2525 2526 2527 2528
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2529
retry:
2530 2531 2532 2533
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2534
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2535 2536 2537
	if (ret)
		goto out;

2538
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2539
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2540 2541

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2542
	ret = 0;
2543
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2544
	if (!unqueue_me(&q))
2545
		goto out;
P
Peter Zijlstra 已提交
2546
	ret = -ETIMEDOUT;
2547
	if (to && !to->task)
2548
		goto out;
N
Nick Piggin 已提交
2549

2550
	/*
T
Thomas Gleixner 已提交
2551 2552
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2553
	 */
2554
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2555 2556
		goto retry;

P
Peter Zijlstra 已提交
2557
	ret = -ERESTARTSYS;
2558
	if (!abs_time)
2559
		goto out;
L
Linus Torvalds 已提交
2560

2561
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2562
	restart->fn = futex_wait_restart;
2563
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2564
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2565
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2566
	restart->futex.bitset = bitset;
2567
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2568

P
Peter Zijlstra 已提交
2569 2570
	ret = -ERESTART_RESTARTBLOCK;

2571
out:
2572 2573 2574 2575
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2576 2577 2578
	return ret;
}

N
Nick Piggin 已提交
2579 2580 2581

static long futex_wait_restart(struct restart_block *restart)
{
2582
	u32 __user *uaddr = restart->futex.uaddr;
2583
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2584

2585
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2586
		t = restart->futex.time;
2587 2588
		tp = &t;
	}
N
Nick Piggin 已提交
2589
	restart->fn = do_no_restart_syscall;
2590 2591 2592

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2593 2594 2595
}


2596 2597 2598
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2599 2600 2601 2602 2603
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2604
 */
2605
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2606
			 ktime_t *time, int trylock)
2607
{
2608
	struct hrtimer_sleeper timeout, *to = NULL;
2609
	struct futex_hash_bucket *hb;
2610
	struct futex_q q = futex_q_init;
2611
	int res, ret;
2612 2613 2614 2615

	if (refill_pi_state_cache())
		return -ENOMEM;

2616
	if (time) {
2617
		to = &timeout;
2618 2619
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2620
		hrtimer_init_sleeper(to, current);
2621
		hrtimer_set_expires(&to->timer, *time);
2622 2623
	}

2624
retry:
2625
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2626
	if (unlikely(ret != 0))
2627
		goto out;
2628

D
Darren Hart 已提交
2629
retry_private:
E
Eric Sesterhenn 已提交
2630
	hb = queue_lock(&q);
2631

2632
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2633
	if (unlikely(ret)) {
2634 2635 2636 2637
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2638
		switch (ret) {
2639 2640 2641 2642 2643 2644
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2645 2646
		case -EAGAIN:
			/*
2647 2648 2649 2650
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2651
			 */
J
Jason Low 已提交
2652
			queue_unlock(hb);
2653
			put_futex_key(&q.key);
2654 2655 2656
			cond_resched();
			goto retry;
		default:
2657
			goto out_unlock_put_key;
2658 2659 2660 2661 2662 2663
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2664
	queue_me(&q, hb);
2665 2666 2667 2668 2669

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2670 2671 2672
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2673
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2674 2675 2676 2677
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2678
	spin_lock(q.lock_ptr);
2679 2680 2681 2682
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2683
	res = fixup_owner(uaddr, &q, !ret);
2684 2685 2686 2687 2688 2689
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2690

2691
	/*
2692 2693
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2694 2695
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2696
		rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
2697

2698 2699
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2700

2701
	goto out_put_key;
2702

2703
out_unlock_put_key:
J
Jason Low 已提交
2704
	queue_unlock(hb);
2705

2706
out_put_key:
2707
	put_futex_key(&q.key);
2708
out:
2709 2710
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2711
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2712

2713
uaddr_faulted:
J
Jason Low 已提交
2714
	queue_unlock(hb);
2715

2716
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2717 2718
	if (ret)
		goto out_put_key;
2719

2720
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2721 2722
		goto retry_private;

2723
	put_futex_key(&q.key);
D
Darren Hart 已提交
2724
	goto retry;
2725 2726 2727 2728 2729 2730 2731
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2732
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2733
{
2734
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2735
	union futex_key key = FUTEX_KEY_INIT;
2736
	struct futex_hash_bucket *hb;
2737
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2738
	int ret;
2739 2740 2741 2742 2743 2744 2745

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2746
	if ((uval & FUTEX_TID_MASK) != vpid)
2747 2748
		return -EPERM;

2749
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2750 2751
	if (ret)
		return ret;
2752 2753 2754 2755 2756

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2757 2758 2759
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2760
	 */
2761 2762 2763
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
		ret = wake_futex_pi(uaddr, uval, top_waiter, hb);
2764 2765 2766 2767 2768 2769
		/*
		 * In case of success wake_futex_pi dropped the hash
		 * bucket lock.
		 */
		if (!ret)
			goto out_putkey;
2770
		/*
2771 2772
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2773 2774 2775
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2776 2777 2778 2779 2780 2781 2782 2783 2784
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			spin_unlock(&hb->lock);
			put_futex_key(&key);
			goto retry;
		}
2785 2786 2787 2788
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2789 2790
		goto out_unlock;
	}
2791

2792
	/*
2793 2794 2795 2796 2797
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2798
	 */
2799
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2800
		goto pi_faulted;
2801

2802 2803 2804 2805 2806
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2807 2808
out_unlock:
	spin_unlock(&hb->lock);
2809
out_putkey:
2810
	put_futex_key(&key);
2811 2812 2813
	return ret;

pi_faulted:
2814
	spin_unlock(&hb->lock);
2815
	put_futex_key(&key);
2816

2817
	ret = fault_in_user_writeable(uaddr);
2818
	if (!ret)
2819 2820
		goto retry;

L
Linus Torvalds 已提交
2821 2822 2823
	return ret;
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2836 2837 2838
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2860
		plist_del(&q->list, &hb->chain);
2861
		hb_waiters_dec(hb);
2862

T
Thomas Gleixner 已提交
2863
		/* Handle spurious wakeups gracefully */
2864
		ret = -EWOULDBLOCK;
2865 2866
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2867
		else if (signal_pending(current))
2868
			ret = -ERESTARTNOINTR;
2869 2870 2871 2872 2873 2874
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2875
 * @uaddr:	the futex we initially wait on (non-pi)
2876
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2877
 *		the same type, no requeueing from private to shared, etc.
2878 2879
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2880
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2881 2882 2883
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2884 2885 2886 2887 2888
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2889 2890
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2891
 * via the following--
2892
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2893 2894 2895
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2896
 *
2897
 * If 3, cleanup and return -ERESTARTNOINTR.
2898 2899 2900 2901 2902 2903 2904
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2905
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2906 2907 2908
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2909 2910
 * Return:
 *  0 - On success;
2911 2912
 * <0 - On error
 */
2913
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2914
				 u32 val, ktime_t *abs_time, u32 bitset,
2915
				 u32 __user *uaddr2)
2916 2917 2918 2919
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
2920 2921
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2922 2923
	int res, ret;

2924 2925 2926
	if (uaddr == uaddr2)
		return -EINVAL;

2927 2928 2929 2930 2931
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2932 2933 2934
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2945 2946
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2947 2948
	rt_waiter.task = NULL;

2949
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2950 2951 2952
	if (unlikely(ret != 0))
		goto out;

2953 2954 2955 2956
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2957 2958 2959 2960
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2961
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2962 2963
	if (ret)
		goto out_key2;
2964

2965 2966 2967 2968 2969
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2970
		queue_unlock(hb);
2971 2972 2973 2974
		ret = -EINVAL;
		goto out_put_keys;
	}

2975
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2976
	futex_wait_queue_me(hb, &q, to);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2988 2989 2990
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3001
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3002
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
3003
				rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
3004 3005 3006 3007
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3008
			put_pi_state(q.pi_state);
3009 3010 3011
			spin_unlock(q.lock_ptr);
		}
	} else {
3012 3013
		struct rt_mutex *pi_mutex;

3014 3015 3016 3017 3018
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3019
		WARN_ON(!q.pi_state);
3020
		pi_mutex = &q.pi_state->pi_mutex;
3021
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
3022 3023 3024 3025 3026 3027 3028
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3029
		res = fixup_owner(uaddr2, &q, !ret);
3030 3031
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3032
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3033 3034 3035 3036
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3037 3038 3039 3040 3041 3042
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
		if (ret && rt_mutex_owner(pi_mutex) == current)
3043
			rt_mutex_futex_unlock(pi_mutex);
3044

3045 3046 3047 3048
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3049
	if (ret == -EINTR) {
3050
		/*
3051 3052 3053 3054 3055
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3056
		 */
3057
		ret = -EWOULDBLOCK;
3058 3059 3060
	}

out_put_keys:
3061
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3062
out_key2:
3063
	put_futex_key(&key2);
3064 3065 3066 3067 3068 3069 3070 3071 3072

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3073 3074 3075 3076 3077 3078 3079
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3080
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3081 3082 3083 3084 3085 3086 3087 3088
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3089 3090 3091
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3092
 */
3093 3094
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3095
{
3096 3097
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3110 3111 3112 3113
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3114
 */
3115 3116 3117
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3118
{
A
Al Viro 已提交
3119
	struct robust_list_head __user *head;
3120
	unsigned long ret;
3121
	struct task_struct *p;
3122

3123 3124 3125
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3126 3127 3128
	rcu_read_lock();

	ret = -ESRCH;
3129
	if (!pid)
3130
		p = current;
3131
	else {
3132
		p = find_task_by_vpid(pid);
3133 3134 3135 3136
		if (!p)
			goto err_unlock;
	}

3137
	ret = -EPERM;
3138
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3139 3140 3141 3142 3143
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3144 3145 3146 3147 3148
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3149
	rcu_read_unlock();
3150 3151 3152 3153 3154 3155 3156 3157

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3158
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3159
{
3160
	u32 uval, uninitialized_var(nval), mval;
3161

3162 3163
retry:
	if (get_user(uval, uaddr))
3164 3165
		return -1;

3166
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3177
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3192
		if (nval != uval)
3193
			goto retry;
3194

3195 3196 3197 3198
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3199
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3200
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3201 3202 3203 3204
	}
	return 0;
}

3205 3206 3207 3208
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3209
				     struct robust_list __user * __user *head,
3210
				     unsigned int *pi)
3211 3212 3213
{
	unsigned long uentry;

A
Al Viro 已提交
3214
	if (get_user(uentry, (unsigned long __user *)head))
3215 3216
		return -EFAULT;

A
Al Viro 已提交
3217
	*entry = (void __user *)(uentry & ~1UL);
3218 3219 3220 3221 3222
	*pi = uentry & 1;

	return 0;
}

3223 3224 3225 3226 3227 3228 3229 3230 3231
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3232
	struct robust_list __user *entry, *next_entry, *pending;
3233 3234
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3235
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3236
	int rc;
3237

3238 3239 3240
	if (!futex_cmpxchg_enabled)
		return;

3241 3242 3243 3244
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3245
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3256
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3257
		return;
3258

M
Martin Schwidefsky 已提交
3259
	next_entry = NULL;	/* avoid warning with gcc */
3260
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3261 3262 3263 3264 3265
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3266 3267
		/*
		 * A pending lock might already be on the list, so
3268
		 * don't process it twice:
3269 3270
		 */
		if (entry != pending)
A
Al Viro 已提交
3271
			if (handle_futex_death((void __user *)entry + futex_offset,
3272
						curr, pi))
3273
				return;
M
Martin Schwidefsky 已提交
3274
		if (rc)
3275
			return;
M
Martin Schwidefsky 已提交
3276 3277
		entry = next_entry;
		pi = next_pi;
3278 3279 3280 3281 3282 3283 3284 3285
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3286 3287 3288 3289

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3290 3291
}

3292
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3293
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3294
{
T
Thomas Gleixner 已提交
3295
	int cmd = op & FUTEX_CMD_MASK;
3296
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3297 3298

	if (!(op & FUTEX_PRIVATE_FLAG))
3299
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3300

3301 3302
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3303 3304
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3305 3306
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3307

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3318
	switch (cmd) {
L
Linus Torvalds 已提交
3319
	case FUTEX_WAIT:
3320 3321
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3322
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3323
	case FUTEX_WAKE:
3324 3325
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3326
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3327
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3328
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3329
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3330
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3331
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3332
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3333
	case FUTEX_LOCK_PI:
3334
		return futex_lock_pi(uaddr, flags, timeout, 0);
3335
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3336
		return futex_unlock_pi(uaddr, flags);
3337
	case FUTEX_TRYLOCK_PI:
3338
		return futex_lock_pi(uaddr, flags, NULL, 1);
3339 3340
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3341 3342
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3343
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3344
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3345
	}
T
Thomas Gleixner 已提交
3346
	return -ENOSYS;
L
Linus Torvalds 已提交
3347 3348 3349
}


3350 3351 3352
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3353
{
3354 3355
	struct timespec ts;
	ktime_t t, *tp = NULL;
3356
	u32 val2 = 0;
E
Eric Dumazet 已提交
3357
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3358

3359
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3360 3361
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3362 3363
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3364
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3365
			return -EFAULT;
3366
		if (!timespec_valid(&ts))
3367
			return -EINVAL;
3368 3369

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3370
		if (cmd == FUTEX_WAIT)
3371
			t = ktime_add_safe(ktime_get(), t);
3372
		tp = &t;
L
Linus Torvalds 已提交
3373 3374
	}
	/*
3375
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3376
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3377
	 */
3378
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3379
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3380
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3381

3382
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3383 3384
}

3385
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3386
{
3387
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3388
	u32 curval;
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3407
	unsigned int futex_shift;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3419 3420 3421
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3422 3423

	futex_detect_cmpxchg();
3424

3425
	for (i = 0; i < futex_hashsize; i++) {
3426
		atomic_set(&futex_queues[i].waiters, 0);
3427
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3428 3429 3430
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3431 3432
	return 0;
}
3433
core_initcall(futex_init);