tree.c 122.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105
	.name = RCU_STATE_NAME(sname), \
106
	.abbr = sabbr, \
107
}; \
108
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158

159 160 161 162
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

175 176 177 178 179 180 181 182 183 184
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

185
/*
186
 * Note a quiescent state.  Because we do not need to know
187
 * how many quiescent states passed, just if there was at least
188
 * one since the start of the grace period, this just sets a flag.
189
 * The caller must have disabled preemption.
190
 */
191
void rcu_sched_qs(void)
192
{
193 194 195 196 197 198
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
199 200
}

201
void rcu_bh_qs(void)
202
{
203 204 205 206 207 208
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
209
}
210

211 212 213 214 215 216 217 218 219 220 221
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

222 223 224
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

278 279 280
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
281
 * The caller must have disabled preemption.
282
 */
283
void rcu_note_context_switch(void)
284
{
285
	trace_rcu_utilization(TPS("Start context switch"));
286
	rcu_sched_qs();
287
	rcu_preempt_note_context_switch();
288 289
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
290
	trace_rcu_utilization(TPS("End context switch"));
291
}
292
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Register a quiesecent state for all RCU flavors.  If there is an
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
 * RCU flavors in desparate need of a quiescent state, which will normally
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
310 311 312
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
313

E
Eric Dumazet 已提交
314 315 316
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
317

318 319
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
320 321 322 323

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

324 325 326 327 328 329 330
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

331
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
332
				  struct rcu_data *rdp);
333 334 335 336
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
337
static void force_quiescent_state(struct rcu_state *rsp);
338
static int rcu_pending(void);
339 340

/*
341
 * Return the number of RCU batches started thus far for debug & stats.
342
 */
343 344 345 346 347 348 349 350
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
351
 */
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
378
 */
379
unsigned long rcu_batches_completed_sched(void)
380
{
381
	return rcu_sched_state.completed;
382
}
383
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
384 385

/*
386
 * Return the number of RCU BH batches completed thus far for debug & stats.
387
 */
388
unsigned long rcu_batches_completed_bh(void)
389 390 391 392 393
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

394 395 396 397 398
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
399
	force_quiescent_state(rcu_state_p);
400 401 402
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

403 404 405 406 407
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
408
	force_quiescent_state(&rcu_bh_state);
409 410 411
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

441 442 443 444 445 446 447 448 449 450
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
451
		rsp = rcu_state_p;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

474 475 476 477 478 479 480 481 482 483 484
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

485 486 487 488 489
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
490
	force_quiescent_state(&rcu_sched_state);
491 492 493
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

494 495 496 497 498 499
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
500 501
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

526
/*
527 528 529
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
530 531 532 533
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
534
	int i;
P
Paul E. McKenney 已提交
535

536 537
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
538
	if (rcu_future_needs_gp(rsp))
539
		return 1;  /* Yes, a no-CBs CPU needs one. */
540 541 542 543 544 545 546 547 548 549
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
550 551
}

552
/*
553
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
554 555 556 557 558
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
559
static void rcu_eqs_enter_common(long long oldval, bool user)
560
{
561 562
	struct rcu_state *rsp;
	struct rcu_data *rdp;
563
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
564

565
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
566
	if (!user && !is_idle_task(current)) {
567 568
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
569

570
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
571
		ftrace_dump(DUMP_ORIG);
572 573 574
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
575
	}
576 577 578 579
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
580
	rcu_prepare_for_idle();
581
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582
	smp_mb__before_atomic();  /* See above. */
583
	atomic_inc(&rdtp->dynticks);
584
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
585
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
586
	rcu_dynticks_task_enter();
587 588

	/*
589
	 * It is illegal to enter an extended quiescent state while
590 591 592 593 594 595 596 597
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
598
}
599

600 601 602
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
603
 */
604
static void rcu_eqs_enter(bool user)
605
{
606
	long long oldval;
607 608
	struct rcu_dynticks *rdtp;

609
	rdtp = this_cpu_ptr(&rcu_dynticks);
610
	oldval = rdtp->dynticks_nesting;
611
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
612
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
613
		rdtp->dynticks_nesting = 0;
614
		rcu_eqs_enter_common(oldval, user);
615
	} else {
616
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
617
	}
618
}
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
634 635 636
	unsigned long flags;

	local_irq_save(flags);
637
	rcu_eqs_enter(false);
638
	rcu_sysidle_enter(0);
639
	local_irq_restore(flags);
640
}
641
EXPORT_SYMBOL_GPL(rcu_idle_enter);
642

643
#ifdef CONFIG_RCU_USER_QS
644 645 646 647 648 649 650 651 652 653
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
654
	rcu_eqs_enter(1);
655
}
656
#endif /* CONFIG_RCU_USER_QS */
657

658 659 660 661 662 663
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
664
 *
665 666 667 668 669 670 671 672
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
673
 */
674
void rcu_irq_exit(void)
675 676
{
	unsigned long flags;
677
	long long oldval;
678 679 680
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
681
	rdtp = this_cpu_ptr(&rcu_dynticks);
682
	oldval = rdtp->dynticks_nesting;
683 684
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
685
	if (rdtp->dynticks_nesting)
686
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
687
	else
688 689
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
690 691 692 693
	local_irq_restore(flags);
}

/*
694
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
695 696 697 698 699
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
700
static void rcu_eqs_exit_common(long long oldval, int user)
701
{
702 703
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

704
	rcu_dynticks_task_exit();
705
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
706 707
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
708
	smp_mb__after_atomic();  /* See above. */
709
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
710
	rcu_cleanup_after_idle();
711
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
712
	if (!user && !is_idle_task(current)) {
713 714
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
715

716
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
717
				  oldval, rdtp->dynticks_nesting);
718
		ftrace_dump(DUMP_ORIG);
719 720 721
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
722 723 724
	}
}

725 726 727
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
728
 */
729
static void rcu_eqs_exit(bool user)
730 731 732 733
{
	struct rcu_dynticks *rdtp;
	long long oldval;

734
	rdtp = this_cpu_ptr(&rcu_dynticks);
735
	oldval = rdtp->dynticks_nesting;
736
	WARN_ON_ONCE(oldval < 0);
737
	if (oldval & DYNTICK_TASK_NEST_MASK) {
738
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
739
	} else {
740
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
741
		rcu_eqs_exit_common(oldval, user);
742
	}
743
}
744 745 746 747 748 749 750 751 752 753 754 755 756 757

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
758 759 760
	unsigned long flags;

	local_irq_save(flags);
761
	rcu_eqs_exit(false);
762
	rcu_sysidle_exit(0);
763
	local_irq_restore(flags);
764
}
765
EXPORT_SYMBOL_GPL(rcu_idle_exit);
766

767
#ifdef CONFIG_RCU_USER_QS
768 769 770 771 772 773 774 775
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
776
	rcu_eqs_exit(1);
777
}
778
#endif /* CONFIG_RCU_USER_QS */
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
806
	rdtp = this_cpu_ptr(&rcu_dynticks);
807 808 809
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
810
	if (oldval)
811
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
812
	else
813 814
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
815 816 817 818 819 820
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
821 822 823 824 825
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
826 827 828
 */
void rcu_nmi_enter(void)
{
829
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830
	int incby = 2;
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
853 854 855 856 857
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
858 859 860 861
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
862 863 864
 */
void rcu_nmi_exit(void)
{
865
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
881
		return;
882 883 884 885
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
886
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
887
	smp_mb__before_atomic();  /* See above. */
888
	atomic_inc(&rdtp->dynticks);
889
	smp_mb__after_atomic();  /* Force delay to next write. */
890
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
891 892 893
}

/**
894 895 896 897 898 899 900
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
901
bool notrace __rcu_is_watching(void)
902 903 904 905 906 907
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
908
 *
909
 * If the current CPU is in its idle loop and is neither in an interrupt
910
 * or NMI handler, return true.
911
 */
912
bool notrace rcu_is_watching(void)
913
{
914
	bool ret;
915 916

	preempt_disable();
917
	ret = __rcu_is_watching();
918 919
	preempt_enable();
	return ret;
920
}
921
EXPORT_SYMBOL_GPL(rcu_is_watching);
922

923
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
924 925 926 927 928 929 930

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
931 932 933 934 935 936 937 938 939 940 941
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
942 943 944 945 946 947
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
948 949
	struct rcu_data *rdp;
	struct rcu_node *rnp;
950 951 952
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
953
		return true;
954
	preempt_disable();
955
	rdp = this_cpu_ptr(&rcu_sched_data);
956 957
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
958 959 960 961 962 963
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

964
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
965

966
/**
967
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
968
 *
969 970 971
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
972
 */
973
static int rcu_is_cpu_rrupt_from_idle(void)
974
{
975
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
976 977 978 979 980
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
981
 * is in dynticks idle mode, which is an extended quiescent state.
982
 */
983 984
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
985
{
986
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
987
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
988 989 990 991
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
992 993 994
		if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
				 rdp->mynode->gpnum))
			ACCESS_ONCE(rdp->gpwrap) = true;
995 996
		return 0;
	}
997 998 999 1000 1001 1002
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1003
 * for this same CPU, or by virtue of having been offline.
1004
 */
1005 1006
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1007
{
1008
	unsigned int curr;
1009
	int *rcrmp;
1010
	unsigned int snap;
1011

1012 1013
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1014 1015 1016 1017 1018 1019 1020 1021 1022

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1023
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1024
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1025 1026 1027 1028
		rdp->dynticks_fqs++;
		return 1;
	}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1044
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1045 1046 1047
		rdp->offline_fqs++;
		return 1;
	}
1048 1049

	/*
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1069
	 */
1070 1071 1072
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1073
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1087 1088
	}

1089
	return 0;
1090 1091 1092 1093
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1094
	unsigned long j = jiffies;
1095
	unsigned long j1;
1096 1097 1098

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1099
	j1 = rcu_jiffies_till_stall_check();
1100
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1101
	rsp->jiffies_resched = j + j1 / 2;
1102
	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
	gpa = ACCESS_ONCE(rsp->gp_activity);
	if (j - gpa > 2 * HZ)
		pr_err("%s kthread starved for %ld jiffies!\n",
		       rsp->name, j - gpa);
1118 1119
}

1120
/*
1121
 * Dump stacks of all tasks running on stalled CPUs.
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1140
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1141 1142 1143 1144
{
	int cpu;
	long delta;
	unsigned long flags;
1145 1146
	unsigned long gpa;
	unsigned long j;
1147
	int ndetected = 0;
1148
	struct rcu_node *rnp = rcu_get_root(rsp);
1149
	long totqlen = 0;
1150 1151 1152

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1153
	raw_spin_lock_irqsave(&rnp->lock, flags);
1154
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1155
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1156
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1157 1158
		return;
	}
1159
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1160
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1161

1162 1163 1164 1165 1166
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1167
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1168
	       rsp->name);
1169
	print_cpu_stall_info_begin();
1170
	rcu_for_each_leaf_node(rsp, rnp) {
1171
		raw_spin_lock_irqsave(&rnp->lock, flags);
1172
		ndetected += rcu_print_task_stall(rnp);
1173 1174 1175 1176 1177 1178 1179 1180
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1181
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1182
	}
1183 1184

	print_cpu_stall_info_end();
1185 1186
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1187
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1188
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1189
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1190
	if (ndetected) {
1191
		rcu_dump_cpu_stacks(rsp);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	} else {
		if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
		    ACCESS_ONCE(rsp->completed) == gpnum) {
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
			gpa = ACCESS_ONCE(rsp->gp_activity);
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
			       rsp->name, j - gpa, j, gpa,
			       jiffies_till_next_fqs);
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1206

1207
	/* Complain about tasks blocking the grace period. */
1208 1209
	rcu_print_detail_task_stall(rsp);

1210 1211
	rcu_check_gp_kthread_starvation(rsp);

1212
	force_quiescent_state(rsp);  /* Kick them all. */
1213 1214 1215 1216
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1217
	int cpu;
1218 1219
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1220
	long totqlen = 0;
1221

1222 1223 1224 1225 1226
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1227
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1228 1229 1230
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1231 1232
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1233 1234 1235
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1236 1237 1238

	rcu_check_gp_kthread_starvation(rsp);

1239
	rcu_dump_cpu_stacks(rsp);
1240

P
Paul E. McKenney 已提交
1241
	raw_spin_lock_irqsave(&rnp->lock, flags);
1242 1243
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1244
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1245
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1246

1247 1248 1249 1250 1251 1252 1253 1254
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1255 1256 1257 1258
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1259 1260 1261
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1262 1263
	unsigned long j;
	unsigned long js;
1264 1265
	struct rcu_node *rnp;

1266
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1267
		return;
1268
	j = jiffies;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1289
	js = ACCESS_ONCE(rsp->jiffies_stall);
1290 1291 1292 1293 1294 1295 1296 1297
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1298
	rnp = rdp->mynode;
1299
	if (rcu_gp_in_progress(rsp) &&
1300
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1301 1302 1303 1304

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1305 1306
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1307

1308
		/* They had a few time units to dump stack, so complain. */
1309
		print_other_cpu_stall(rsp, gpnum);
1310 1311 1312
	}
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1324 1325 1326
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1327
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1328 1329
}

1330 1331 1332 1333 1334 1335 1336
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1337 1338
	if (init_nocb_callback_list(rdp))
		return;
1339 1340 1341 1342 1343
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1373 1374 1375 1376 1377
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1378
				unsigned long c, const char *s)
1379 1380 1381 1382 1383 1384 1385 1386 1387
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1388 1389
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1390 1391 1392
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1393 1394 1395
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1396 1397 1398
{
	unsigned long c;
	int i;
1399
	bool ret = false;
1400 1401 1402 1403 1404 1405 1406
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1407
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1408
	if (rnp->need_future_gp[c & 0x1]) {
1409
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1410
		goto out;
1411 1412 1413 1414 1415 1416 1417
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1418 1419 1420 1421 1422 1423 1424
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1425 1426
	 */
	if (rnp->gpnum != rnp->completed ||
1427
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1428
		rnp->need_future_gp[c & 0x1]++;
1429
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1430
		goto out;
1431 1432 1433 1434 1435 1436 1437
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1438
	if (rnp != rnp_root) {
1439
		raw_spin_lock(&rnp_root->lock);
1440 1441
		smp_mb__after_unlock_lock();
	}
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1459
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1460 1461 1462 1463 1464 1465 1466 1467
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1468
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1469
	} else {
1470
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1471
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1472 1473 1474 1475
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1476 1477 1478 1479
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1497 1498
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1499 1500 1501
	return needmore;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1518 1519 1520 1521 1522 1523 1524
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1525 1526
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1527 1528 1529
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1530
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1531 1532 1533 1534
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1535
	bool ret;
1536 1537 1538

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1539
		return false;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1568
		return false;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1579
	/* Record any needed additional grace periods. */
1580
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1581 1582 1583

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1584
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1585
	else
1586
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1587
	return ret;
1588 1589 1590 1591 1592 1593 1594 1595
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1596
 * Returns true if the RCU grace-period kthread needs to be awakened.
1597 1598 1599
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1600
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1601 1602 1603 1604 1605 1606
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1607
		return false;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1631
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1632 1633
}

1634
/*
1635 1636 1637
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1638
 * Returns true if the grace-period kthread needs to be awakened.
1639
 */
1640 1641
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1642
{
1643 1644
	bool ret;

1645
	/* Handle the ends of any preceding grace periods first. */
1646 1647
	if (rdp->completed == rnp->completed &&
	    !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1648

1649
		/* No grace period end, so just accelerate recent callbacks. */
1650
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1651

1652 1653 1654
	} else {

		/* Advance callbacks. */
1655
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1656 1657 1658

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1659
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1660
	}
1661

1662
	if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1663 1664 1665 1666 1667 1668
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1669
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1670
		rdp->passed_quiesce = 0;
1671
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1672 1673
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1674
		ACCESS_ONCE(rdp->gpwrap) = false;
1675
	}
1676
	return ret;
1677 1678
}

1679
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1680 1681
{
	unsigned long flags;
1682
	bool needwake;
1683 1684 1685 1686
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1687
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1688 1689
	     rdp->completed == ACCESS_ONCE(rnp->completed) &&
	     !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1690 1691 1692 1693
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1694
	smp_mb__after_unlock_lock();
1695
	needwake = __note_gp_changes(rsp, rnp, rdp);
1696
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1697 1698
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1699 1700
}

1701
/*
1702
 * Initialize a new grace period.  Return 0 if no grace period required.
1703
 */
1704
static int rcu_gp_init(struct rcu_state *rsp)
1705 1706
{
	struct rcu_data *rdp;
1707
	struct rcu_node *rnp = rcu_get_root(rsp);
1708

1709
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1710
	rcu_bind_gp_kthread();
1711
	raw_spin_lock_irq(&rnp->lock);
1712
	smp_mb__after_unlock_lock();
1713
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1714 1715 1716 1717
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1718
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1719

1720 1721 1722 1723 1724
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1725 1726 1727 1728 1729
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1730
	record_gp_stall_check_time(rsp);
1731 1732
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1733
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1734 1735 1736
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1737
	mutex_lock(&rsp->onoff_mutex);
1738
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1754
		raw_spin_lock_irq(&rnp->lock);
1755
		smp_mb__after_unlock_lock();
1756
		rdp = this_cpu_ptr(rsp->rda);
1757 1758
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1759
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1760
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1761
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1762
		if (rnp == rdp->mynode)
1763
			(void)__note_gp_changes(rsp, rnp, rdp);
1764 1765 1766 1767 1768
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1769
		cond_resched_rcu_qs();
1770
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1771
	}
1772

1773
	mutex_unlock(&rsp->onoff_mutex);
1774 1775
	return 1;
}
1776

1777 1778 1779
/*
 * Do one round of quiescent-state forcing.
 */
1780
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1781 1782
{
	int fqs_state = fqs_state_in;
1783 1784
	bool isidle = false;
	unsigned long maxj;
1785 1786
	struct rcu_node *rnp = rcu_get_root(rsp);

1787
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1788 1789 1790
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1791
		if (is_sysidle_rcu_state(rsp)) {
1792
			isidle = true;
1793 1794
			maxj = jiffies - ULONG_MAX / 4;
		}
1795 1796
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1797
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1798 1799 1800
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1801
		isidle = false;
1802
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1803 1804 1805 1806
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1807
		smp_mb__after_unlock_lock();
1808 1809
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1810 1811 1812 1813 1814
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1815 1816 1817
/*
 * Clean up after the old grace period.
 */
1818
static void rcu_gp_cleanup(struct rcu_state *rsp)
1819 1820
{
	unsigned long gp_duration;
1821
	bool needgp = false;
1822
	int nocb = 0;
1823 1824
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1825

1826
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1827
	raw_spin_lock_irq(&rnp->lock);
1828
	smp_mb__after_unlock_lock();
1829 1830 1831
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1832

1833 1834 1835 1836 1837 1838 1839 1840
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1841
	raw_spin_unlock_irq(&rnp->lock);
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1853
		raw_spin_lock_irq(&rnp->lock);
1854
		smp_mb__after_unlock_lock();
1855
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1856 1857
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1858
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1859
		/* smp_mb() provided by prior unlock-lock pair. */
1860
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1861
		raw_spin_unlock_irq(&rnp->lock);
1862
		cond_resched_rcu_qs();
1863
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1864
	}
1865 1866
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1867
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1868
	rcu_nocb_gp_set(rnp, nocb);
1869

1870 1871
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1872
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1873
	rsp->fqs_state = RCU_GP_IDLE;
1874
	rdp = this_cpu_ptr(rsp->rda);
1875 1876 1877
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1878
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1879 1880 1881 1882
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1883 1884 1885 1886 1887 1888 1889 1890
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1891
	int fqs_state;
1892
	int gf;
1893
	unsigned long j;
1894
	int ret;
1895 1896 1897 1898 1899 1900 1901
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1902 1903 1904
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1905
			rsp->gp_state = RCU_GP_WAIT_GPS;
1906
			wait_event_interruptible(rsp->gp_wq,
1907
						 ACCESS_ONCE(rsp->gp_flags) &
1908
						 RCU_GP_FLAG_INIT);
1909
			/* Locking provides needed memory barrier. */
1910
			if (rcu_gp_init(rsp))
1911
				break;
1912
			cond_resched_rcu_qs();
1913
			ACCESS_ONCE(rsp->gp_activity) = jiffies;
1914
			WARN_ON(signal_pending(current));
1915 1916 1917
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1918
		}
1919

1920 1921
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1922 1923 1924 1925 1926
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1927
		ret = 0;
1928
		for (;;) {
1929 1930
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1931 1932 1933
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1934
			rsp->gp_state = RCU_GP_WAIT_FQS;
1935
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1936 1937
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1938 1939
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1940
					j);
1941
			/* Locking provides needed memory barriers. */
1942
			/* If grace period done, leave loop. */
1943
			if (!ACCESS_ONCE(rnp->qsmask) &&
1944
			    !rcu_preempt_blocked_readers_cgp(rnp))
1945
				break;
1946
			/* If time for quiescent-state forcing, do it. */
1947 1948
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1949 1950 1951
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1952
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1953 1954 1955
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1956
				cond_resched_rcu_qs();
1957
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
1958 1959
			} else {
				/* Deal with stray signal. */
1960
				cond_resched_rcu_qs();
1961
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
1962
				WARN_ON(signal_pending(current));
1963 1964 1965
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1966
			}
1967 1968 1969 1970 1971 1972 1973 1974
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1975
		}
1976 1977 1978

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1979 1980 1981
	}
}

1982 1983 1984
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1985
 * the root node's ->lock and hard irqs must be disabled.
1986 1987 1988 1989
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1990 1991
 *
 * Returns true if the grace-period kthread must be awakened.
1992
 */
1993
static bool
1994 1995
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1996
{
1997
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1998
		/*
1999
		 * Either we have not yet spawned the grace-period
2000 2001
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2002
		 * Either way, don't start a new grace period.
2003
		 */
2004
		return false;
2005
	}
2006
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2007 2008
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
2009

2010 2011
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2012
	 * could cause possible deadlocks with the rq->lock. Defer
2013
	 * the wakeup to our caller.
2014
	 */
2015
	return true;
2016 2017
}

2018 2019 2020 2021 2022 2023
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2024 2025
 *
 * Returns true if the grace-period kthread needs to be awakened.
2026
 */
2027
static bool rcu_start_gp(struct rcu_state *rsp)
2028 2029 2030
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2031
	bool ret = false;
2032 2033 2034 2035 2036 2037 2038 2039 2040

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2041 2042 2043
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2044 2045
}

2046
/*
P
Paul E. McKenney 已提交
2047 2048 2049
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2050 2051
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2052
 */
P
Paul E. McKenney 已提交
2053
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2054
	__releases(rcu_get_root(rsp)->lock)
2055
{
2056
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2057
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2058
	rcu_gp_kthread_wake(rsp);
2059 2060
}

2061
/*
P
Paul E. McKenney 已提交
2062 2063 2064 2065 2066 2067
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
2068 2069
 */
static void
P
Paul E. McKenney 已提交
2070 2071
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
2072 2073
	__releases(rnp->lock)
{
2074 2075
	struct rcu_node *rnp_c;

2076 2077 2078 2079 2080
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
2081
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2082 2083 2084
			return;
		}
		rnp->qsmask &= ~mask;
2085 2086 2087 2088
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2089
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2090 2091

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2092
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2093 2094 2095 2096 2097 2098 2099 2100 2101
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2102
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2103
		rnp_c = rnp;
2104
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2105
		raw_spin_lock_irqsave(&rnp->lock, flags);
2106
		smp_mb__after_unlock_lock();
2107
		WARN_ON_ONCE(rnp_c->qsmask);
2108 2109 2110 2111
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2112
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2113
	 * to clean up and start the next grace period if one is needed.
2114
	 */
P
Paul E. McKenney 已提交
2115
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2116 2117 2118
}

/*
P
Paul E. McKenney 已提交
2119 2120 2121 2122 2123 2124 2125
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2126 2127
 */
static void
2128
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2129 2130 2131
{
	unsigned long flags;
	unsigned long mask;
2132
	bool needwake;
2133 2134 2135
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2136
	raw_spin_lock_irqsave(&rnp->lock, flags);
2137
	smp_mb__after_unlock_lock();
2138 2139 2140 2141
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2142 2143

		/*
2144 2145 2146 2147
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2148
		 */
2149
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2150
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2151
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2152 2153 2154 2155
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2156
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2157 2158 2159 2160 2161 2162 2163
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2164
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2165

P
Paul E. McKenney 已提交
2166
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2167 2168
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2181 2182
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2195 2196
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2197 2198
		return;

P
Paul E. McKenney 已提交
2199 2200 2201 2202
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2203
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2204 2205 2206 2207
}

#ifdef CONFIG_HOTPLUG_CPU

2208
/*
2209 2210
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2211
 * ->orphan_lock.
2212
 */
2213 2214 2215
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2216
{
P
Paul E. McKenney 已提交
2217
	/* No-CBs CPUs do not have orphanable callbacks. */
2218
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2219 2220
		return;

2221 2222
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2223 2224
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2225
	 */
2226
	if (rdp->nxtlist != NULL) {
2227 2228 2229
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2230
		rdp->qlen_lazy = 0;
2231
		ACCESS_ONCE(rdp->qlen) = 0;
2232 2233 2234
	}

	/*
2235 2236 2237 2238 2239 2240 2241
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2242
	 */
2243 2244 2245 2246
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2247 2248 2249
	}

	/*
2250 2251 2252
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2253
	 */
2254
	if (rdp->nxtlist != NULL) {
2255 2256
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2257
	}
2258

2259
	/* Finally, initialize the rcu_data structure's list to empty.  */
2260
	init_callback_list(rdp);
2261 2262 2263 2264
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2265
 * orphanage.  The caller must hold the ->orphan_lock.
2266
 */
2267
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2268 2269
{
	int i;
2270
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2271

P
Paul E. McKenney 已提交
2272
	/* No-CBs CPUs are handled specially. */
2273
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2274 2275
		return;

2276 2277 2278 2279
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2280 2281
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2321 2322
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2323
			       TPS("cpuofl"));
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2366
/*
2367
 * The CPU has been completely removed, and some other CPU is reporting
2368 2369
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2370 2371
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2372
 */
2373
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2374
{
2375
	unsigned long flags;
2376
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2377
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2378

2379
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2380
	rcu_boost_kthread_setaffinity(rnp, -1);
2381 2382

	/* Exclude any attempts to start a new grace period. */
2383
	mutex_lock(&rsp->onoff_mutex);
2384
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2385

2386 2387
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2388
	rcu_adopt_orphan_cbs(rsp, flags);
2389
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2390

2391
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2392
	raw_spin_lock_irqsave(&rnp->lock, flags);
2393 2394
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinit &= ~rdp->grpmask;
2395
	if (rnp->qsmaskinit == 0 && !rcu_preempt_has_tasks(rnp))
2396
		rcu_cleanup_dead_rnp(rnp);
2397
	rcu_report_qs_rnp(rdp->grpmask, rsp, rnp, flags); /* Rlses rnp->lock. */
2398 2399 2400
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2401 2402 2403
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2404
	mutex_unlock(&rsp->onoff_mutex);
2405 2406 2407 2408
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2409
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2410 2411 2412
{
}

2413 2414 2415 2416
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}

2417
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2418 2419 2420 2421 2422 2423 2424 2425 2426
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2427
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2428 2429 2430
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2431 2432
	long bl, count, count_lazy;
	int i;
2433

2434
	/* If no callbacks are ready, just return. */
2435
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2436
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2437 2438 2439
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2440
		return;
2441
	}
2442 2443 2444 2445 2446 2447

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2448
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2449
	bl = rdp->blimit;
2450
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2451 2452 2453 2454
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2455 2456 2457
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2458 2459 2460
	local_irq_restore(flags);

	/* Invoke callbacks. */
2461
	count = count_lazy = 0;
2462 2463 2464
	while (list) {
		next = list->next;
		prefetch(next);
2465
		debug_rcu_head_unqueue(list);
2466 2467
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2468
		list = next;
2469 2470 2471 2472
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2473 2474 2475 2476
			break;
	}

	local_irq_save(flags);
2477 2478 2479
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2480 2481 2482 2483 2484

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2485 2486 2487
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2488 2489 2490
			else
				break;
	}
2491 2492
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2493
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2494
	rdp->n_cbs_invoked += count;
2495 2496 2497 2498 2499

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2500 2501 2502 2503 2504 2505
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2506
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2507

2508 2509
	local_irq_restore(flags);

2510
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2511
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2512
		invoke_rcu_core();
2513 2514 2515 2516 2517
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2518
 * Also schedule RCU core processing.
2519
 *
2520
 * This function must be called from hardirq context.  It is normally
2521 2522 2523
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2524
void rcu_check_callbacks(int user)
2525
{
2526
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2527
	increment_cpu_stall_ticks();
2528
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2529 2530 2531 2532 2533

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2534
		 * a quiescent state, so note it.
2535 2536
		 *
		 * No memory barrier is required here because both
2537 2538 2539
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2540 2541
		 */

2542 2543
		rcu_sched_qs();
		rcu_bh_qs();
2544 2545 2546 2547 2548 2549 2550

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2551
		 * critical section, so note it.
2552 2553
		 */

2554
		rcu_bh_qs();
2555
	}
2556
	rcu_preempt_check_callbacks();
2557
	if (rcu_pending())
2558
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2559 2560
	if (user)
		rcu_note_voluntary_context_switch(current);
2561
	trace_rcu_utilization(TPS("End scheduler-tick"));
2562 2563 2564 2565 2566
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2567 2568
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2569
 * The caller must have suppressed start of new grace periods.
2570
 */
2571 2572 2573 2574
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2575 2576 2577 2578 2579
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2580
	struct rcu_node *rnp;
2581

2582
	rcu_for_each_leaf_node(rsp, rnp) {
2583
		cond_resched_rcu_qs();
2584
		mask = 0;
P
Paul E. McKenney 已提交
2585
		raw_spin_lock_irqsave(&rnp->lock, flags);
2586
		smp_mb__after_unlock_lock();
2587
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2588
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2589
			return;
2590
		}
2591
		if (rnp->qsmask == 0) {
2592
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2593 2594
			continue;
		}
2595
		cpu = rnp->grplo;
2596
		bit = 1;
2597
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2598 2599
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2600
					*isidle = false;
2601 2602 2603
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2604
		}
2605
		if (mask != 0) {
2606

P
Paul E. McKenney 已提交
2607 2608
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2609 2610
			continue;
		}
P
Paul E. McKenney 已提交
2611
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2612 2613 2614 2615 2616 2617 2618
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2619
static void force_quiescent_state(struct rcu_state *rsp)
2620 2621
{
	unsigned long flags;
2622 2623 2624 2625 2626
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2627
	rnp = __this_cpu_read(rsp->rda->mynode);
2628 2629 2630 2631 2632 2633
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2634
			rsp->n_force_qs_lh++;
2635 2636 2637 2638 2639
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2640

2641 2642
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2643
	smp_mb__after_unlock_lock();
2644 2645
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2646
		rsp->n_force_qs_lh++;
2647
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2648
		return;  /* Someone beat us to it. */
2649
	}
2650 2651
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2652
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2653
	rcu_gp_kthread_wake(rsp);
2654 2655 2656
}

/*
2657 2658 2659
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2660 2661
 */
static void
2662
__rcu_process_callbacks(struct rcu_state *rsp)
2663 2664
{
	unsigned long flags;
2665
	bool needwake;
2666
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2667

2668 2669
	WARN_ON_ONCE(rdp->beenonline == 0);

2670 2671 2672 2673
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2674
	local_irq_save(flags);
2675
	if (cpu_needs_another_gp(rsp, rdp)) {
2676
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2677
		needwake = rcu_start_gp(rsp);
2678
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2679 2680
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2681 2682
	} else {
		local_irq_restore(flags);
2683 2684 2685
	}

	/* If there are callbacks ready, invoke them. */
2686
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2687
		invoke_rcu_callbacks(rsp, rdp);
2688 2689 2690

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2691 2692
}

2693
/*
2694
 * Do RCU core processing for the current CPU.
2695
 */
2696
static void rcu_process_callbacks(struct softirq_action *unused)
2697
{
2698 2699
	struct rcu_state *rsp;

2700 2701
	if (cpu_is_offline(smp_processor_id()))
		return;
2702
	trace_rcu_utilization(TPS("Start RCU core"));
2703 2704
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2705
	trace_rcu_utilization(TPS("End RCU core"));
2706 2707
}

2708
/*
2709 2710 2711
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2712
 * are running on the current CPU with softirqs disabled, the
2713
 * rcu_cpu_kthread_task cannot disappear out from under us.
2714
 */
2715
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2716
{
2717 2718
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2719 2720
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2721 2722
		return;
	}
2723
	invoke_rcu_callbacks_kthread();
2724 2725
}

2726
static void invoke_rcu_core(void)
2727
{
2728 2729
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2730 2731
}

2732 2733 2734 2735 2736
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2737
{
2738 2739
	bool needwake;

2740 2741 2742 2743
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2744
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2745 2746
		invoke_rcu_core();

2747
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2748
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2749
		return;
2750

2751 2752 2753 2754 2755 2756 2757
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2758
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2759 2760

		/* Are we ignoring a completed grace period? */
2761
		note_gp_changes(rsp, rdp);
2762 2763 2764 2765 2766

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2767
			raw_spin_lock(&rnp_root->lock);
2768
			smp_mb__after_unlock_lock();
2769
			needwake = rcu_start_gp(rsp);
2770
			raw_spin_unlock(&rnp_root->lock);
2771 2772
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2773 2774 2775 2776 2777
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2778
				force_quiescent_state(rsp);
2779 2780 2781
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2782
	}
2783 2784
}

2785 2786 2787 2788 2789 2790 2791
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2792 2793 2794 2795 2796 2797
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2798 2799
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2800
	   struct rcu_state *rsp, int cpu, bool lazy)
2801 2802 2803 2804
{
	unsigned long flags;
	struct rcu_data *rdp;

2805
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2806 2807 2808 2809 2810 2811
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2822
	rdp = this_cpu_ptr(rsp->rda);
2823 2824

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2825 2826 2827 2828 2829
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2830
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2831
		WARN_ON_ONCE(offline);
2832 2833 2834 2835
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2836
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2837 2838
	if (lazy)
		rdp->qlen_lazy++;
2839 2840
	else
		rcu_idle_count_callbacks_posted();
2841 2842 2843
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2844

2845 2846
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2847
					 rdp->qlen_lazy, rdp->qlen);
2848
	else
2849
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2850

2851 2852
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2853 2854 2855 2856
	local_irq_restore(flags);
}

/*
2857
 * Queue an RCU-sched callback for invocation after a grace period.
2858
 */
2859
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2860
{
P
Paul E. McKenney 已提交
2861
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2862
}
2863
EXPORT_SYMBOL_GPL(call_rcu_sched);
2864 2865

/*
2866
 * Queue an RCU callback for invocation after a quicker grace period.
2867 2868 2869
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2870
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2871 2872 2873
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
2884
	__call_rcu(head, func, rcu_state_p, -1, 1);
2885 2886 2887
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2899 2900
	int ret;

2901
	might_sleep();  /* Check for RCU read-side critical section. */
2902 2903 2904 2905
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2906 2907
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2942 2943 2944 2945 2946 2947 2948 2949 2950
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2951 2952 2953 2954
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2955 2956
	if (rcu_blocking_is_gp())
		return;
2957 2958 2959 2960
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2972 2973 2974
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2975 2976 2977
 */
void synchronize_rcu_bh(void)
{
2978 2979 2980 2981
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2982 2983
	if (rcu_blocking_is_gp())
		return;
2984 2985 2986 2987
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2988 2989 2990
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3011
	return smp_load_acquire(&rcu_state_p->gpnum);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3037
	newstate = smp_load_acquire(&rcu_state_p->completed);
3038 3039 3040 3041 3042
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3094 3095 3096
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3097 3098
	long firstsnap, s, snap;
	int trycount = 0;
3099
	struct rcu_state *rsp = &rcu_sched_state;
3100

3101 3102 3103 3104 3105 3106 3107 3108
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3109 3110
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3111 3112
			 ULONG_MAX / 8)) {
		synchronize_sched();
3113
		atomic_long_inc(&rsp->expedited_wrap);
3114 3115
		return;
	}
3116

3117 3118 3119 3120
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3121
	snap = atomic_long_inc_return(&rsp->expedited_start);
3122
	firstsnap = snap;
3123 3124 3125 3126 3127 3128
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3129
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3146 3147 3148 3149
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3150
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3151 3152 3153
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3154
		atomic_long_inc(&rsp->expedited_tryfail);
3155

3156
		/* Check to see if someone else did our work for us. */
3157
		s = atomic_long_read(&rsp->expedited_done);
3158
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3159
			/* ensure test happens before caller kfree */
3160
			smp_mb__before_atomic(); /* ^^^ */
3161
			atomic_long_inc(&rsp->expedited_workdone1);
3162
			free_cpumask_var(cm);
3163 3164
			return;
		}
3165 3166

		/* No joy, try again later.  Or just synchronize_sched(). */
3167
		if (trycount++ < 10) {
3168
			udelay(trycount * num_online_cpus());
3169
		} else {
3170
			wait_rcu_gp(call_rcu_sched);
3171
			atomic_long_inc(&rsp->expedited_normal);
3172
			free_cpumask_var(cm);
3173 3174 3175
			return;
		}

3176
		/* Recheck to see if someone else did our work for us. */
3177
		s = atomic_long_read(&rsp->expedited_done);
3178
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3179
			/* ensure test happens before caller kfree */
3180
			smp_mb__before_atomic(); /* ^^^ */
3181
			atomic_long_inc(&rsp->expedited_workdone2);
3182
			free_cpumask_var(cm);
3183 3184 3185 3186 3187
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3188 3189 3190 3191
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3192
		 */
3193 3194 3195 3196
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3197
			free_cpumask_var(cm);
3198 3199
			return;
		}
3200
		snap = atomic_long_read(&rsp->expedited_start);
3201 3202
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3203
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3204

3205 3206 3207
all_cpus_idle:
	free_cpumask_var(cm);

3208 3209 3210 3211
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3212
	 * than we did already did their update.
3213 3214
	 */
	do {
3215
		atomic_long_inc(&rsp->expedited_done_tries);
3216
		s = atomic_long_read(&rsp->expedited_done);
3217
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3218
			/* ensure test happens before caller kfree */
3219
			smp_mb__before_atomic(); /* ^^^ */
3220
			atomic_long_inc(&rsp->expedited_done_lost);
3221 3222
			break;
		}
3223
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3224
	atomic_long_inc(&rsp->expedited_done_exit);
3225 3226 3227 3228 3229

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3230 3231 3232 3233 3234 3235 3236 3237 3238
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3239 3240
	struct rcu_node *rnp = rdp->mynode;

3241 3242 3243 3244 3245
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3246 3247 3248 3249
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3250
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3251
	if (rcu_scheduler_fully_active &&
3252 3253
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3254
		rdp->n_rp_qs_pending++;
3255 3256 3257
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3258
		rdp->n_rp_report_qs++;
3259
		return 1;
3260
	}
3261 3262

	/* Does this CPU have callbacks ready to invoke? */
3263 3264
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3265
		return 1;
3266
	}
3267 3268

	/* Has RCU gone idle with this CPU needing another grace period? */
3269 3270
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3271
		return 1;
3272
	}
3273 3274

	/* Has another RCU grace period completed?  */
3275
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3276
		rdp->n_rp_gp_completed++;
3277
		return 1;
3278
	}
3279 3280

	/* Has a new RCU grace period started? */
3281 3282
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3283
		rdp->n_rp_gp_started++;
3284
		return 1;
3285
	}
3286

3287 3288 3289 3290 3291 3292
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3293
	/* nothing to do */
3294
	rdp->n_rp_need_nothing++;
3295 3296 3297 3298 3299 3300 3301 3302
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3303
static int rcu_pending(void)
3304
{
3305 3306 3307
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3308
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3309 3310
			return 1;
	return 0;
3311 3312 3313
}

/*
3314 3315 3316
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3317
 */
3318
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3319
{
3320 3321 3322
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3323 3324
	struct rcu_state *rsp;

3325
	for_each_rcu_flavor(rsp) {
3326
		rdp = this_cpu_ptr(rsp->rda);
3327 3328 3329 3330
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3331
			al = false;
3332 3333
			break;
		}
3334 3335 3336 3337
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3338 3339
}

3340 3341 3342 3343
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3344
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3345 3346 3347 3348 3349 3350
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3351 3352 3353 3354
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3355
static void rcu_barrier_callback(struct rcu_head *rhp)
3356
{
3357 3358 3359
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3360 3361
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3362
		complete(&rsp->barrier_completion);
3363 3364 3365
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3366 3367 3368 3369 3370 3371 3372
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3373
	struct rcu_state *rsp = type;
3374
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3375

3376
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3377
	atomic_inc(&rsp->barrier_cpu_count);
3378
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3379 3380 3381 3382 3383 3384
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3385
static void _rcu_barrier(struct rcu_state *rsp)
3386
{
3387 3388
	int cpu;
	struct rcu_data *rdp;
3389 3390
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3391

3392
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3393

3394
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3395
	mutex_lock(&rsp->barrier_mutex);
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3409
	snap_done = rsp->n_barrier_done;
3410
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3423
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3434
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3435
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3436
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3437
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3438

3439
	/*
3440 3441
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3442 3443
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3444
	 */
3445
	init_completion(&rsp->barrier_completion);
3446
	atomic_set(&rsp->barrier_cpu_count, 1);
3447
	get_online_cpus();
3448 3449

	/*
3450 3451 3452
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3453
	 */
P
Paul E. McKenney 已提交
3454
	for_each_possible_cpu(cpu) {
3455
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3456
			continue;
3457
		rdp = per_cpu_ptr(rsp->rda, cpu);
3458
		if (rcu_is_nocb_cpu(cpu)) {
3459 3460 3461 3462 3463 3464
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3465
				smp_mb__before_atomic();
3466 3467 3468 3469
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
P
Paul E. McKenney 已提交
3470
		} else if (ACCESS_ONCE(rdp->qlen)) {
3471 3472
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3473
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3474
		} else {
3475 3476
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3477 3478
		}
	}
3479
	put_online_cpus();
3480 3481 3482 3483 3484

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3485
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3486
		complete(&rsp->barrier_completion);
3487

3488 3489
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3490
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3491
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3492
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3493 3494
	smp_mb(); /* Keep increment before caller's subsequent code. */

3495
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3496
	wait_for_completion(&rsp->barrier_completion);
3497 3498

	/* Other rcu_barrier() invocations can now safely proceed. */
3499
	mutex_unlock(&rsp->barrier_mutex);
3500 3501 3502 3503 3504 3505 3506
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3507
	_rcu_barrier(&rcu_bh_state);
3508 3509 3510 3511 3512 3513 3514 3515
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3516
	_rcu_barrier(&rcu_sched_state);
3517 3518 3519
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3520
/*
3521
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3522
 */
3523 3524
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3525 3526
{
	unsigned long flags;
3527
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3528 3529 3530
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3531
	raw_spin_lock_irqsave(&rnp->lock, flags);
3532 3533
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3534
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3535
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3536
	rdp->cpu = cpu;
3537
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3538
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3539
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3540 3541 3542 3543 3544 3545 3546
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3547
 */
3548
static void
3549
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3550 3551 3552
{
	unsigned long flags;
	unsigned long mask;
3553
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3554 3555
	struct rcu_node *rnp = rcu_get_root(rsp);

3556 3557 3558
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3559
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3560
	raw_spin_lock_irqsave(&rnp->lock, flags);
3561
	rdp->beenonline = 1;	 /* We have now been online. */
3562 3563
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3564
	rdp->blimit = blimit;
3565
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3566
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3567
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3568 3569
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3570
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3571 3572 3573 3574 3575 3576

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3577
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3578 3579
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3580
		if (rnp == rdp->mynode) {
3581 3582 3583 3584 3585 3586
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3587
			rdp->completed = rnp->completed;
3588
			rdp->passed_quiesce = 0;
3589
			rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3590
			rdp->qs_pending = 0;
3591
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3592
		}
P
Paul E. McKenney 已提交
3593
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3594 3595
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3596
	local_irq_restore(flags);
3597

3598
	mutex_unlock(&rsp->onoff_mutex);
3599 3600
}

3601
static void rcu_prepare_cpu(int cpu)
3602
{
3603 3604 3605
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3606
		rcu_init_percpu_data(cpu, rsp);
3607 3608 3609
}

/*
3610
 * Handle CPU online/offline notification events.
3611
 */
3612
static int rcu_cpu_notify(struct notifier_block *self,
3613
				    unsigned long action, void *hcpu)
3614 3615
{
	long cpu = (long)hcpu;
3616
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3617
	struct rcu_node *rnp = rdp->mynode;
3618
	struct rcu_state *rsp;
3619

3620
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3621 3622 3623
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3624 3625
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3626
		rcu_spawn_all_nocb_kthreads(cpu);
3627 3628
		break;
	case CPU_ONLINE:
3629
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3630
		rcu_boost_kthread_setaffinity(rnp, -1);
3631 3632
		break;
	case CPU_DOWN_PREPARE:
3633
		rcu_boost_kthread_setaffinity(rnp, cpu);
3634
		break;
3635 3636
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3637 3638
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3639
		break;
3640 3641 3642 3643
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3644
		for_each_rcu_flavor(rsp) {
3645
			rcu_cleanup_dead_cpu(cpu, rsp);
3646 3647
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3648 3649 3650 3651
		break;
	default:
		break;
	}
3652
	trace_rcu_utilization(TPS("End CPU hotplug"));
3653
	return NOTIFY_OK;
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3675
/*
3676
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3677 3678 3679 3680
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3681
	int kthread_prio_in = kthread_prio;
3682 3683
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3684
	struct sched_param sp;
3685 3686
	struct task_struct *t;

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3698
	rcu_scheduler_fully_active = 1;
3699
	for_each_rcu_flavor(rsp) {
3700
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3701 3702 3703 3704
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3705 3706 3707 3708 3709
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3710 3711
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3712
	rcu_spawn_nocb_kthreads();
3713
	rcu_spawn_boost_kthreads();
3714 3715 3716 3717
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3733 3734 3735 3736 3737 3738 3739 3740 3741
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3742 3743
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3744 3745 3746 3747 3748 3749 3750 3751 3752
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3753
	cprv = nr_cpu_ids;
3754
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3765 3766
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3767
{
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3778
	static u8 fl_mask = 0x1;
3779 3780 3781 3782 3783
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3784 3785
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3786 3787 3788 3789
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3790 3791
	/* Initialize the level-tracking arrays. */

3792 3793 3794
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3795 3796
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3797 3798
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3799 3800 3801

	/* Initialize the elements themselves, starting from the leaves. */

3802
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3803 3804 3805
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3806
			raw_spin_lock_init(&rnp->lock);
3807 3808
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3809 3810 3811
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3812 3813
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3814 3815 3816 3817
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3818 3819
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3831
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3832
			rcu_init_one_nocb(rnp);
3833 3834
		}
	}
3835

3836
	rsp->rda = rda;
3837
	init_waitqueue_head(&rsp->gp_wq);
3838
	rnp = rsp->level[rcu_num_lvls - 1];
3839
	for_each_possible_cpu(i) {
3840
		while (i > rnp->grphi)
3841
			rnp++;
3842
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3843 3844
		rcu_boot_init_percpu_data(i, rsp);
	}
3845
	list_add(&rsp->flavors, &rcu_struct_flavors);
3846 3847
}

3848 3849
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3850
 * replace the definitions in tree.h because those are needed to size
3851 3852 3853 3854
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3855
	ulong d;
3856 3857
	int i;
	int j;
3858
	int n = nr_cpu_ids;
3859 3860
	int rcu_capacity[MAX_RCU_LVLS + 1];

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3874
	/* If the compile-time values are accurate, just leave. */
3875 3876
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3877
		return;
3878 3879
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3925
void __init rcu_init(void)
3926
{
P
Paul E. McKenney 已提交
3927
	int cpu;
3928

3929
	rcu_bootup_announce();
3930
	rcu_init_geometry();
3931
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3932
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3933
	__rcu_init_preempt();
J
Jiang Fang 已提交
3934
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3935 3936 3937 3938 3939 3940 3941

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3942
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3943 3944
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3945 3946

	rcu_early_boot_tests();
3947 3948
}

3949
#include "tree_plugin.h"