tensor.cpp 53.4 KB
Newer Older
1
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
2
#include "megbrain/dtype.h"
3
#include "megbrain/imperative/backtrace.h"
4
#include "megbrain/imperative/cpp_cupti.h"
5
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
6 7
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
8
#include "megbrain/imperative/profiler.h"
9
#include "megbrain/imperative/transformation.h"
10
#include "megbrain/imperative/transformations/dim_expansion.h"
11
#include "megbrain/imperative/transformations/dtype_promote.h"
12
#include "megbrain/imperative/transformations/eval.h"
13
#include "megbrain/imperative/transformations/format.h"
14
#include "megbrain/imperative/transformations/group_comm.h"
15 16 17 18 19
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
20
#include "megbrain/opr/io.h"
21
#include "megbrain/plugin/profiler.h"
22
#include "megbrain/utils/stats.h"
23
#include "megdnn/algorithm_cache.h"
24

25
#include "./common.h"
M
Megvii Engine Team 已提交
26
#include "./grad.h"
27
#include "./graph_rt.h"
28
#include "./helper.h"
M
Megvii Engine Team 已提交
29 30 31
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
32
#include "./tensor_utils.h"
33
#include "./transformation.h"
34

35
#include <object.h>
36 37
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
38 39
#include <pybind11/pytypes.h>
#include <pyerrors.h>
40
#include <iterator>
41
#include <range/v3/all.hpp>
42
#include <string>
43 44 45

#include <unordered_map>

46
#include "../../src/impl/mgb_cg_impl.h"
47
#include "./backtrace.h"
48

49
namespace py = pybind11;
50
namespace views = ranges::views;
51 52 53

namespace mgb::imperative::python {

54 55
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
56
PyTypeObject* py_varnode_type = nullptr;
57
pybind11::handle py_device_type = nullptr;
58
PyObject* cpp_use_symbolic_shape;
59 60 61 62 63 64 65

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
66

67 68 69
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
70 71
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
72 73 74 75 76
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
77
        if (nargs < 2) {
M
Megvii Engine Team 已提交
78 79 80 81
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
82 83
            return nullptr;
        }
84

85
        auto* py_op = args[0];
86

87 88 89
        ++args;
        --nargs;

90
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
91
        SmallVector<ValueRef, 8> tensors(nargs);
92

93 94 95 96 97 98 99 100 101 102
        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
103
            record_py_backtrace();
104 105 106 107
            //! operand in elemwise can't be None
            if (args[i] == Py_None) {
                throw py::type_error("the operand is None and is not supported.");
            } else if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
108
                // py_tuple is not allowed here because of tracing
109 110 111 112 113 114 115 116 117 118
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

119
        bool is_varnode_apply = false;
120
        for (size_t i = 0; i < nargs; ++i) {
121 122 123
            if (PyObject_TypeCheck(args[i], py_varnode_type)) {
                is_varnode_apply = true;
            }
124
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
125
                tensors[i] = tw->m_tensor->data();
126 127
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
128
                    (op->same_type<Elemwise>() || op->same_type<ElemwiseMultiType>())) {
129
                tensors[i] = convert_pyinput_to_tensor(i);
130 131 132
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
133 134
            }
        }
135
        record_py_backtrace();
136
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
137 138
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
139
        PyTypeObject* py_type = is_varnode_apply ? py_varnode_type : py_tensor_type;
140
        for (size_t i = 0; i < nout; ++i) {
141
            ret[i] = TensorWrapper::make(py_type, std::move(outputs[i]));
142 143
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
144 145
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
146
}
147 148 149 150 151
FrameInfoPtr get_current_frameinfo() {
    auto frame = PyEval_GetFrame();
    auto frameinfo = get_frameinfo_from_pyframe(frame);
    return frameinfo;
}
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166
namespace {

template <typename T>
py::handle py_type() {
    if constexpr (std::is_same_v<T, py::int_>) {
        return (PyObject*)&PyLong_Type;
    } else if constexpr (std::is_same_v<T, py::float_>) {
        return (PyObject*)&PyFloat_Type;
    } else if constexpr (std::is_same_v<T, py::tuple>) {
        return (PyObject*)&PyTuple_Type;
    } else if constexpr (std::is_same_v<T, py::list>) {
        return (PyObject*)&PyList_Type;
    } else {
        static_assert(std::is_same_v<T, T>);
167
    }
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
}

template <typename T>
auto scalar2storage(T val, CompNode cn, DType dtype) {
    using max_ctype_t = DTypeScalar::max_ctype;
    DTypeScalar scalar(dtype);
    scalar.set_retain_dtype(val);
    HostTensorStorage storage(cn);
    auto* raw_ptr = reinterpret_cast<dt_byte*>(new max_ctype_t());
    std::shared_ptr<dt_byte> raw_storage = {
            raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast<max_ctype_t*>(ptr); }};
    storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0);
    std::memcpy(storage.ptr(), scalar.storage(), dtype.size());
    return HostStorage::make(std::move(storage));
}

template <typename ctype>
auto vec2storage(Span<DTypeScalar> vec, CompNode cn, DType dtype) {
    mgb_assert(vec.size() <= MEGDNN_MAX_NDIM);
    // TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
    auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM];
    for (size_t i = 0; i < vec.size(); ++i) {
        raw_ptr[i] = vec[i].get_cast<ctype>();
191
    }
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    mgb_assert(sizeof(ctype) == dtype.size());
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0);
    return HostStorage::make(std::move(storage));
}

struct HostTensorArgs {
    ValueShape shape;
    DType dtype;
    HostStorage::ref_t storage;

    HostTensorND as_tensor_nd() const {
        HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype);
        ret.only_reset_raw_storage(*storage);
        return ret;
    }
};

template <typename seq_type, typename ctype>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    ctype items[size];
    for (size_t i = 0; i < size; ++i) {
        py::handle item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (ctype)(dt_int32)item.template cast<py::int_>();
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (ctype)(dt_float32)item.template cast<py::float_>();
        } else {
            return false;
228
        }
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    }
    mgb_assert(sizeof(ctype) == dtype.size());
    auto* raw_ptr = new ctype[size];
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0);
    std::memcpy(storage.ptr(), items, sizeof(ctype) * size);
    ret.dtype = dtype;
    ret.shape = {size};
    ret.storage = HostStorage::make(std::move(storage));
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    DTypeScalar items[size];
    DType dtype;
    for (size_t i = 0; i < size; ++i) {
        auto&& item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (dt_int32)item.template cast<py::int_>();
            if (!dtype.valid()) {
                dtype = dtype::Int32();
            } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) {
                return false;
            }
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (dt_float32)item.template cast<py::float_>();
            if (!dtype.valid()) {
                dtype = dtype::Float32();
            } else if (dtype == dtype::Int32()) {
                dtype = dtype::Float32();
            } else if (dtype != dtype::Float32()) {
                return false;
269
            }
270
        } else {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            return false;
        }
    }
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.shape = {size};
    if (dtype == dtype::Int32()) {
        ret.storage = vec2storage<dt_int32>({items, size}, cn, dtype);
    } else if (dtype == dtype::Float32()) {
        ret.storage = vec2storage<dt_float32>({items, size}, cn, dtype);
    } else {
        mgb_assert(false);
    }
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (dtype == dtype::Int32()) {
        return pyseq2hval<seq_type, dt_int32>(obj, cn, dtype, ret);
    } else if (dtype == dtype::Float32()) {
        return pyseq2hval<seq_type, dt_float32>(obj, cn, dtype, ret);
    } else if (!dtype.valid()) {
        return pyseq2hval<seq_type>(obj, cn, ret);
    } else {
        return false;
    }
}

bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto data = obj.cast<py::array>();
    auto strides = data.strides();
    bool need_squeeze = false;
    for (size_t i = 0; i < data.ndim(); ++i) {
        if (strides[i] == 0) {
            need_squeeze = true;
            break;
        }
    }
    if (need_squeeze) {
        std::vector<size_t> shape;
        for (size_t i = 0; i < data.ndim(); ++i) {
            shape.push_back(data.shape(i));
        }
        data = data.squeeze();
        data.resize(shape);
    }
    HostTensorND retnd(cn);
    retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype);
    if (!dtype.valid()) {
        dtype = retnd.dtype();
    }
    mgb_assert(
            retnd.layout().is_empty() || retnd.layout().is_contiguous(),
            "host value should be continuous");
    for (size_t i = 0; i < data.ndim(); ++i) {
        ret.shape[ret.shape.ndim++] = data.shape(i);
    }
    ret.dtype = dtype;
    ret.storage = HostStorage::make(retnd.storage());
    return true;
}

bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Int32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_int32)obj, cn, dtype);
    return true;
}

bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_float32)obj, cn, dtype);
    return true;
}

HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) {
    HostTensorArgs ret;
    bool success = false;
    // check order: float -> int -> tuple(int -> float) -> list(int -> float)
    // only handle `exact` pytype, isinstance also accepts subtype
    // for example, isinstance(True, int) == True
    if (obj.get_type().is(py_type<py::float_>())) {
        success = pyfloat2hval(py::float_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::int_>())) {  // py::bool_ is py::int_
        success = pyint2hval(py::int_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::tuple>())) {
        success = pyseq2hval<py::tuple>(py::tuple(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::list>())) {
        success = pyseq2hval<py::list>(py::list(obj), cn, dtype, ret);
    } else if (obj.is_none()) {
        obj = py::list(0);
    }
    if (!success) {
        success = pyarr2hval(obj, cn, dtype, ret);
    }
    mgb_assert(success);
    return ret;
}

struct PyArgDesc {
    const char* name;
    py::object (*default_value)();
};

struct PyArgDescs {
    std::vector<PyArgDesc> items;
    ssize_t (*name2idx)(const char* name);
};

py::tuple parse_args(py::tuple args, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        ret[i] = descs.items[i].default_value();
    }
    return ret;
}

py::tuple parse_args_and_kwargs(
        py::tuple args, py::dict kwargs, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_kwargs = kwargs.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    bool has_value[nr_items - nr_args];
    for (size_t i = nr_args; i < nr_items; ++i) {
        has_value[i - nr_args] = false;
    }
    for (auto&& [k, v] : kwargs) {
        auto key = py::str(k).cast<std::string>();
        ssize_t index = descs.name2idx(key.c_str());
        mgb_assert(index >= nr_args);
        ret[index] = v;
        has_value[index - nr_args] = true;
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        if (!has_value[i - nr_args]) {
            ret[i] = descs.items[i].default_value();
        }
    }
    return ret;
}

CompNode as_comp_node(const std::string& name) {
    thread_local struct {
        std::string name;
        CompNode cn;
    } cached;
    if (cached.name != name) {
        cached.name = name;
        cached.cn = CompNode::load(name);
    }
    return cached.cn;
}

CompNode as_comp_node(py::object py_device) {
    std::optional<std::string> device_name;
    if (py_device.is_none() || py::str::check_(py_device)) {
        auto cls = py::handle(reinterpret_cast<PyObject*>(py_tensor_type));
        auto dmap_callback = cls.attr("dmap_callback");
        std::string name;
        if (dmap_callback.is_none() && py_device.is_none()) {
            name = get_default_device();
        } else {
            if (py_device.is_none()) {
                py_device = py::str(get_default_device());
460
            }
461 462
            if (!dmap_callback.is_none()) {
                py_device = dmap_callback(py_device);
463
            }
464 465 466 467 468 469 470 471 472 473 474
            name = py::str(py_device).cast<std::string>();
        }
        return as_comp_node(name);
    } else {
        if (py::isinstance(py_device, py_device_type)) {
            py_device = py_device.attr("_cn");
        }
        mgb_assert(py::isinstance(py_device, py_comp_node_type));
        return py_device.cast<CompNode>();
    }
}
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
template <char... Chars>
bool compare_cstr(const char* cstr) {
    return (((*cstr++) == Chars) && ...) && *cstr == '\0';
}

ssize_t name2idx(const char* name) {
    const char* ch = name;
    // TODO: trie
    // clang-format off
    switch (*ch++) {
    case 'd':
        switch (*ch++) {
        // data
        case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1;
        // dtype
        case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1;
        // device
        case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1;
        }
    case 'i':
        // is_const
        return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1;
    case 'n':
        switch (*ch++) {
        // no_cache
        case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1;
        // name
        case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1;
        }
505 506 507
    case 'f':
        // format
        return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    }
    // clang-format on
    return -1;
}

}  // namespace

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    static PyArgDescs descs = {
            {
                    {"data", []() -> py::object { return py::none(); }},
                    {"dtype", []() -> py::object { return py::none(); }},
                    {"device", []() -> py::object { return py::none(); }},
                    {"is_const", []() -> py::object { return py::bool_(false); }},
                    {"no_cache", []() -> py::object { return py::bool_(false); }},
                    {"name", []() -> py::object { return py::none(); }},
524
                    {"format", []() -> py::object { return py::none(); }},
525 526 527 528 529 530 531 532 533 534
            },
            name2idx};
    py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (kwargs) {
        tup = parse_args_and_kwargs(
                tup, py::reinterpret_borrow<py::dict>(kwargs), descs);
    } else {
        tup = parse_args(tup, descs);
    }
535
    mgb_assert(tup.size() == 7);
536
    if (auto* t = try_cast(tup[0].ptr())) {
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        m_tensor = t->m_tensor;
        // TODO: merge two path in arg parse
        if (!tup[1].is_none()) {
            auto dtype = tup[1].cast<DType>();
            mgb_assert(
                    dtype == m_tensor->dtype(), "dtype mismatch: %s vs %s",
                    dtype.name(), m_tensor->dtype().name());
        }
        if (!tup[2].is_none()) {
            auto device = as_comp_node(tup[2]);
            mgb_assert(
                    device == m_tensor->comp_node(), "device mismatch: %s vs %s",
                    device.to_string().c_str(),
                    m_tensor->comp_node().to_string().c_str());
        }
        mgb_assert(!tup[3].cast<bool>(), "expect is_const == False, got True");
        bool no_cache = tup[4].cast<bool>();
        if (no_cache) {
            // always copy because it's hard to tell whether this tensor is cached
            m_tensor = m_tensor->copy();
        }
        // ignore name
        if (!tup[6].is_none()) {
            Format format = tup[6].cast<std::string>();
            mgb_assert(
                    format == m_tensor->format(), "format mismatch: %s vs %s",
                    format.to_string().c_str(), m_tensor->format().to_string().c_str());
        }
565 566 567
    } else {
        auto data = tup[0];
        DType dtype = tup[1].cast<DType>();
568
        CompNode cn = as_comp_node(tup[2]);
569 570 571 572 573 574
        bool is_const = tup[3].cast<bool>();
        bool no_cache = tup[4].cast<bool>();
        std::string name;
        if (!tup[5].is_none()) {
            name = tup[5].cast<std::string>();
        }
575 576 577 578
        Format format;
        if (!tup[6].is_none()) {
            format = tup[6].cast<std::string>();
        }
579 580 581 582 583

        {
            CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                    : no_cache ? CreateTensor::Unique
                                               : CreateTensor::Common;
584 585 586 587 588 589 590 591
            ValueRef val;
            if (py::isinstance(data, Py_Varnode)) {
                cg::VarNode* m_node = py::handle(data).cast<cg::VarNode*>();
                val = imperative::apply(
                        CreateNode(m_node), Span<ValueRef>(nullptr, nullptr))[0];
            } else {
                auto&& hval = pyobj2hval(data, cn, dtype);
                val = imperative::apply(
592
                        CreateTensor(kind, cn, hval.dtype, hval.shape, format),
593 594
                        hval.storage)[0];
            }
595 596 597 598 599
            m_tensor.emplace(val);
        }

        if (!name.empty()) {
            m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]);
600 601
        }
    }
602
    mgb_assert(m_tensor->data());
603 604
}

605
PyObject* TensorWrapper::module_trace_info() {
606 607 608
    if (auto module_trace_info =
                ModuleTraceTransformation::module_trace_info_map.try_get(
                        m_tensor->data())) {
609 610 611
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
612
    }
613 614 615 616 617
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
618 619 620
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
621
    // TODO: erase when obj == nullptr
622 623
    ModuleTraceTransformation::module_trace_info_map[m_tensor->data()] =
            py::reinterpret_borrow<py::object>(obj);
624 625
}

626 627 628 629 630 631
void TensorWrapper::_set_format(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto format = py_dest.cast<std::string>();
    m_tensor->set_format(format);
}

632 633 634
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
635

636 637
    m_tensor->set_name(name);
}
638

639 640
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
641 642
}

643 644
void TensorWrapper::_watch() {
    m_tensor->data().watch();
645 646
}

647
PyObject* TensorWrapper::shape() {
648
    auto shape = m_tensor->shape();
649

650
    if (!shape) {
651 652
        Py_RETURN_NONE;
    }
653 654 655
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
656 657 658 659 660 661 662 663 664 665 666 667
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

668 669 670 671
PyObject* TensorWrapper::format() {
    return py::cast(m_tensor->format().to_string()).release().ptr();
}

672
PyObject* TensorWrapper::numpy() {
673
    auto hv = m_tensor->numpy();
674
    if (!hv) {
675 676 677
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
678 679
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
680
    if (hv->shape().is_scalar()) {
681 682 683 684 685 686 687
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
688
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
689 690 691
    if (!t) {
        throw py::type_error("expect Tensor");
    }
692
    m_tensor->reset(t->m_tensor->data());
693 694
}

695
PyObject* TensorWrapper::detach() {
696 697
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
698 699
}

M
Megvii Engine Team 已提交
700
PyObject* TensorWrapper::_dev_tensor() {
701 702 703
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
704 705 706
}

void TensorWrapper::_drop() {
707
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
708 709
}

710
PyObject* TensorWrapper::isscalar() {
711
    if (m_tensor->is_scalar()) {
712 713 714 715 716 717
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731
PyObject* TensorWrapper::_var() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* node = value->node();
    return py::cast(node).release().ptr();
}

PyObject* TensorWrapper::_graph() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* graph = value->graph();
    return py::cast(graph).release().ptr();
}

732
struct TensorWeakRef {
733
    ValueWeakRef data;
734

735
    TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {}
736 737

    py::object operator()() {
738
        if (auto p = data.lock()) {
739
            return TensorWrapper::make(py_tensor_type, p);
740 741 742 743 744
        }
        return py::none();
    }
};

745 746 747 748 749 750 751 752 753 754
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
755

756 757 758
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
759 760 761
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
762
WRAP_FUNC_PY35(split_cpp);
763
WRAP_FUNC_PY35(expand_dims_cpp);
764
WRAP_FUNC_PY35(squeeze_cpp);
765
WRAP_FUNC_PY35(transpose_cpp);
766 767
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
768
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
769
WRAP_FUNC_PY35(Const);
770
WRAP_FUNC_PY35(astype_cpp);
771 772
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
773 774
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
775
WRAP_FUNC_PY35(astensor1d_cpp);
776
WRAP_FUNC_PY35(pixel_shuffle_cpp);
777 778 779 780 781
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

782
void init_tensor(py::module m) {
783
    imperative::Tensor::static_initialize();
784
    init_backtrace_tss_key();
785
    // Transformations
786 787 788 789
    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

790 791 792 793 794 795
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
796
    interpreter_for_py = channel;
797 798 799 800 801 802 803 804 805 806
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
807 808 809 810
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Symbol>(
                                      std::make_shared<SymbolTransformation>())
                              .release());
811 812 813 814 815 816 817 818
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
819 820 821
    auto format_trans = std::make_shared<FormatTransformation>();
    MGB_MARK_USED_VAR(
            transformations.register_at<Segment::Format>(format_trans).release());
822

M
Megvii Engine Team 已提交
823 824
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
825 826
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
827 828
            if (p)
                std::rethrow_exception(p);
829 830 831 832 833 834 835 836 837 838
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
839 840
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
841
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
842 843 844
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
845 846
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
847 848
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
849 850 851 852 853 854
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

855
    // Tensor
M
Megvii Engine Team 已提交
856 857 858 859 860 861
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
862
                    .def<&TensorWrapper::format>("format")
M
Megvii Engine Team 已提交
863 864 865
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
866
                    // TODO: remove this
M
Megvii Engine Team 已提交
867 868
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
869
                    .def<&TensorWrapper::_detail>("_detail")
870
                    .def<&TensorWrapper::_set_format>("_set_format")
871 872
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
873 874
                    .def<&TensorWrapper::_var>("var")
                    .def<&TensorWrapper::_graph>("graph")
M
Megvii Engine Team 已提交
875 876 877 878 879 880
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
881
    py::setattr(m, "Tensor", tensor_type);
882 883 884 885

    auto* tracekey_type = TraceKeyWrapper::wrap_t::type().finalize();
    py::setattr(m, "tracekey", tracekey_type);

886 887 888 889 890
    py::enum_<Format::Type>(m, "FormatType")
            .value("DEFAULT", Format::Type::DEFAULT)
            .value("NCHW", Format::Type::NCHW)
            .value("NHWC", Format::Type::NHWC)
            .export_values();
891 892

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
893
            .def(py::init<const TensorWrapper&>())
894
            .def("__call__", &TensorWeakRef::operator());
895

896
    static PyMethodDef method_defs[] = {
897 898 899
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
900 901 902
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
903
            MGE_PY_INTERFACE(split_cpp, split_cpp),
904
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
905
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
906
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
907 908
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
909
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
910
            MGE_PY_INTERFACE(Const, Const),
911
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
912 913
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
914 915
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
916
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
917
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
918
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
919
    for (auto&& def : method_defs) {
920 921
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
922 923
            if (!func)
                throw py::error_already_set();
924 925 926
            py::setattr(m, def.ml_name, func);
        }
    }
927

928 929 930 931
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
932

933
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
934 935
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
936
    });
937
    m.def("get_option",
938 939 940 941 942
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
943 944 945 946
    m.def("record_scope", [](py::object frame, std::string name) {
        mgb_assert(PyFrame_Check(frame.ptr()));
        record_scope((PyFrameObject*)frame.ptr(), std::move(name));
    });
947 948 949 950 951 952 953 954 955 956 957 958 959
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
960
        CompNode::sync_all();
961 962 963 964 965 966 967 968
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
969 970 971 972
    m.def("stop_step", [channel]() {
        imperative::Profiler::stop_step();
        channel->stop_step();
    });
973 974 975
    m.def("enable_cupti", &cupti::enable);
    m.def("disable_cupti", &cupti::disable);
    m.def("cupti_available", &cupti::available);
976 977 978 979 980 981 982

    static std::unique_ptr<CleanupGuard<>> group_comm_guard;
    m.def("group_start", []() {
        auto commtrans = std::make_shared<GroupCommTransformation>();
        group_comm_guard = transformations.register_at<Segment::GroupComm>(commtrans);
    });
    m.def("group_end", []() { group_comm_guard.reset(); });
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
1001 1002 1003 1004 1005 1006 1007 1008 1009
        // sync channel and compnode before close to ensure all tasks have been completed
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
1010 1011
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
1012 1013
    });

1014
    // GradTransformation
M
Megvii Engine Team 已提交
1015 1016 1017 1018 1019 1020
    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1021 1022 1023 1024
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1025 1026 1027
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1028
    py::setattr(m, "GradKey", grad_key_type);
1029
    m.def("backward", &GradKeyWrapper::backward);
1030
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1031

1032 1033 1034 1035
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1036 1037 1038 1039
    m.def("set_py_varnode_type", [](py::object type_obj) {
        py_varnode_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1040 1041 1042
    m.def("set_py_device_type",
          [](py::object type_obj) { py_device_type = type_obj.inc_ref(); });

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
1060 1061 1062
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
1063 1064

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1065 1066
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1067
            if (lvalue->shape() != rvalue->shape()) {
1068 1069
                return false;
            }
1070
            if (lvalue->shape().total_nr_elems() == 1) {
1071 1072 1073 1074
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1075
            auto larr = py::reinterpret_steal<py::array>(
1076
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1077
            auto rarr = py::reinterpret_steal<py::array>(
1078
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
1096 1097 1098
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
1099 1100 1101
                try {
                    self.compiled->compile();
                } catch (const std::exception& e) {
1102
                    mgb_log_error("error in trace: %s", e.what());
1103
                }
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
1116 1117
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
1118 1119 1120
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
1121 1122
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
1123
                if (self.lazy_eval) {
1124 1125
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
1126 1127 1128 1129 1130 1131 1132 1133 1134
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
1135
                tracing_guard.reset();
1136 1137 1138 1139
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
1140
                    lazy_eval_guard.reset();
1141 1142 1143
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
1144
                compiled_guard.reset();
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
1218
                         self.tracing_guard.reset();
1219
                     } else if (self.compiled) {
1220
                         self.compiled_guard.reset();
1221
                     }
M
Megvii Engine Team 已提交
1222
                 })
1223 1224 1225
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
1226 1227
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
1228
                } else if (self.compiled) {
1229 1230
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
1231 1232 1233 1234 1235
                }
            });

    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
1236
        mgb_assert(tw, "Arg_1 shoud be Tensor!");
1237 1238 1239 1240 1241
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1242
        SmallVector<ValueRef> values(tensors.size());
1243 1244
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1255
        SmallVector<ValueRef> values(tensors.size());
1256 1257
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1258
        }
1259 1260
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1261 1262
            return py::none();
        }
1263 1264
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1265 1266
    });

1267
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
1268 1269
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
1270
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1281 1282 1283
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1284
                if (!input_grad_tw.is_none()) {
1285 1286
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1287
                } else {
1288
                    input_grads[i] = {};
1289 1290 1291 1292
                }
            }
            return input_grads;
        };
1293
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1294 1295
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1296
        }
1297 1298 1299
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1300
        }
1301 1302
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
1303 1304 1305 1306 1307 1308 1309 1310 1311
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

1312
    // ModuleTraceTransformation
1313 1314
    static py::function module_trace_hook;

1315 1316
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1317 1318 1319 1320
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1321 1322 1323 1324
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
1325
        }
1326 1327
        return module_trace_transformation;
    };
1328

1329 1330
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1331 1332 1333
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1334

1335
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1336 1337 1338 1339 1340 1341
    m.def("set_python_backtrace_enabled", &set_python_backtrace_enabled);
    m.def("set_transformation_backtrace_enabled",
          &set_transformation_backtrace_enabled);
    m.def("_mge_backtrace", &get_py_backtrace);
    m.def("_get_frame_cache_id",
          []() { return (size_t)FrameInfoCache::get_instance(); });
1342 1343 1344 1345
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1346

1347 1348
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1360
    m.def("print_stats", [] { Stats::print(); });
1361

1362
    m.def("reset_stats", [] { Stats::reset(); });
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1421 1422
    m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); });

1423 1424 1425 1426 1427 1428
    // FormatTransformation
    m.def("set_auto_format_convert",
          [format_trans](bool enabled) { format_trans->set_auto_convert(enabled); });
    m.def("get_auto_format_convert",
          [format_trans]() { return format_trans->get_auto_convert(); });

1429
    py::register_exception<TraceError>(m, "TraceError");
1430 1431
}

1432 1433
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1434
}  // namespace mgb::imperative::python