tensor.cpp 40.4 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18 19 20 21 22 23
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
24
#include "megbrain/opr/io.h"
25
#include "megbrain/plugin/profiler.h"
26

27
#include "./common.h"
M
Megvii Engine Team 已提交
28
#include "./grad.h"
29
#include "./graph_rt.h"
30
#include "./helper.h"
M
Megvii Engine Team 已提交
31 32 33
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
34
#include "./transformation.h"
35

36
#include <object.h>
37 38
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
39 40
#include <pybind11/pytypes.h>
#include <pyerrors.h>
41
#include <range/v3/all.hpp>
42
#include <string>
43 44 45

#include <unordered_map>

46 47
#include "../../src/impl/mgb_cg_impl.h"

48
namespace py = pybind11;
49
namespace views = ranges::views;
50 51 52

namespace mgb::imperative::python {

53 54
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
M
Megvii Engine Team 已提交
55
}
56

57 58
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
59

M
Megvii Engine Team 已提交
60 61
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
62 63 64 65 66
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
67
        if (nargs < 2) {
M
Megvii Engine Team 已提交
68 69 70 71
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
72 73
            return nullptr;
        }
74

75
        auto* py_op = args[0];
76

77 78 79
        ++args;
        --nargs;

80 81
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
        SmallVector<ValueRef, 64> tensors(nargs);
82

M
Megvii Engine Team 已提交
83
        if (py::isinstance<PySymbolVar>(py::handle(args[0]))) {
84 85 86 87 88 89 90 91 92 93 94
            // swap to a special context to reuse scalar handle
            TransformationContext symbol_var_context;
            Transformation::swap_context(symbol_var_context);
            CleanupGuard _{[&] { Transformation::swap_context(symbol_var_context); }};
            auto* graph =
                    py::handle(args[0]).cast<PySymbolVar*>()->m_node->owner_graph();
            std::make_shared<SymbolTransformation>(graph)->register_at(
                    Transformation::top());
            std::make_shared<ScalarTransformation>()->register_at(
                    Transformation::top());
            SmallVector<ValueRef> inputs(nargs);
95
            for (size_t i = 0; i < nargs; ++i) {
96 97 98 99 100 101
                auto* py_input = py::handle(args[i]).cast<PySymbolVar*>();
                ValueRef input = SymbolValue::make(py_input->m_node);
                if (py_input->is_scalar) {
                    input = ScalarValue::make(input);
                }
                inputs[i] = input;
102
            }
103 104
            auto outputs = imperative::apply(*op, inputs);
            auto ret = pybind11::tuple(outputs.size());
105
            auto typeobj = py::handle(args[0]).get_type();
106 107 108 109 110 111 112 113 114 115
            for (size_t i = 0; i < outputs.size(); ++i) {
                bool is_scalar = false;
                if (auto* scalar_value = outputs[i].as<ScalarValue>()) {
                    outputs[i] = scalar_value->value();
                    is_scalar = true;
                }
                auto* node = outputs[i].cast<SymbolValue>().node();
                ret[i] = typeobj(
                        pybind11::cast(node, pybind11::return_value_policy::automatic));
                py::handle(ret[i]).cast<PySymbolVar*>()->is_scalar = is_scalar;
116 117 118
            }
            return ret.release().ptr();
        }
119 120

        for (size_t i = 0; i < nargs; ++i) {
121
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
122
                tensors[i] = tw->m_tensor->data();
123
            } else {
M
Megvii Engine Team 已提交
124 125 126 127
                PyErr_SetString(
                        PyExc_TypeError,
                        ssprintf(
                                "op %s expect type Tensor as inputs, got %s actually",
128
                                op->make_name().c_str(), Py_TYPE(args[i])->tp_name)
M
Megvii Engine Team 已提交
129
                                .c_str());
130 131 132 133
                return nullptr;
            }
        }

134
        auto outputs = imperative::apply(ApplyOp(*op), {tensors.data(), nargs});
135 136 137
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
138
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
139 140
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
141 142
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
143 144 145 146 147 148 149 150 151 152 153
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
154
    if (auto* t = try_cast(tup[0].ptr())) {
155 156 157
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
158
        m_tensor = t->m_tensor->copy();
159
    } else {
160 161
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
162 163 164 165 166 167
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
168
            } else {
169 170
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
171
            }
172
        } else {
M
Megvii Engine Team 已提交
173
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
174 175
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
176
            }
177 178 179 180
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
181
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
182
            std::string name;
M
Megvii Engine Team 已提交
183 184
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
185 186

            // const op
187
            {
188 189 190
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
191
                HostTensorND ret(cn);
192 193 194 195 196 197 198 199 200 201 202
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
203 204
            }

205 206 207 208 209 210 211
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
                mgb_assert(
                        ((std::string&)*m_tensor->data().name()) == name,
                        "result name incorrect");
            }
212

213
            if (data.ndim() == 0) {
214
                mgb_assert(m_tensor->is_scalar(), "result should be scalar");
215
            }
216 217 218 219
        }
    }
}

220
PyObject* TensorWrapper::module_trace_info() {
221 222 223
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
        return module_trace_info->inc_ref().ptr();
    } else {
M
Megvii Engine Team 已提交
224 225 226 227
        PyErr_SetString(
                PyExc_AttributeError,
                "Has no attribute named \'_NodeMixin__node\', please "
                "set it first");
228 229 230 231 232
        return nullptr;
    }
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
233
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
234 235
}

236 237 238 239 240
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
241

242 243
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
244 245
}

246 247
void TensorWrapper::_watch() {
    m_tensor->data().watch();
248 249
}

250
PyObject* TensorWrapper::shape() {
251
    auto shape = m_tensor->shape();
252

253
    if (!shape) {
254 255
        Py_RETURN_NONE;
    }
256 257 258
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
259 260 261 262 263 264 265 266 267 268 269 270 271
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
272 273 274 275 276
    auto hv = m_tensor->numpy();
    // if (!hv) {
    //     PyErr_SetString(PyExc_ValueError, "tensor invalid");
    //     return nullptr;
    // }
M
Megvii Engine Team 已提交
277
    auto arr = py::reinterpret_steal<py::array>(
278
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
279 280 281 282
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
283
    if (hv->shape().is_scalar()) {
284 285 286 287 288 289 290
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
291
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
292 293 294
    if (!t) {
        throw py::type_error("expect Tensor");
    }
295
    m_tensor->reset(t->m_tensor->data());
296 297
}

298
PyObject* TensorWrapper::detach() {
299 300
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
301 302
}

M
Megvii Engine Team 已提交
303
PyObject* TensorWrapper::_dev_tensor() {
304 305 306
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
307 308 309
}

void TensorWrapper::_drop() {
310
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
311 312
}

313
PyObject* TensorWrapper::isscalar() {
314
    if (m_tensor->is_scalar()) {
315 316 317 318 319 320 321 322 323 324 325 326 327
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
328
            return TensorWrapper::make(py_tensor_type, p);
329 330 331
        }
        return py::none();
    }
332
    int _use_cnt() { return wptr.use_count(); }
333 334
};

335 336 337 338 339
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
M
Megvii Engine Team 已提交
340 341 342 343 344 345 346 347 348 349
        case 'f':
            return 3;  // floating-point
        case 'i':
            return 2;  // signed integer
        case 'u':
            return 2;  // unsigned integer
        case 'b':
            return 1;  // boolean
        default:
            return 0;
350 351 352 353 354 355 356 357 358
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
M
Megvii Engine Team 已提交
359
        for (auto&& desc : types) {
360 361 362 363 364 365
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

366
// Returns the data type with sufficient size to hold all types of
367 368 369 370
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
M
Megvii Engine Team 已提交
371
    for (auto&& desc : types) {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

M
Megvii Engine Team 已提交
406
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs) {
407 408 409 410 411
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
412
    PyObject* tuple = nullptr;
413 414 415 416 417 418 419 420 421 422 423 424
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
M
Megvii Engine Team 已提交
425 426 427
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
        if (handle == Py_None)
            continue;
428
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
429 430 431 432 433
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
M
Megvii Engine Team 已提交
434
        } else {
435 436 437 438 439
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
440

M
Megvii Engine Team 已提交
441
            if (py::isinstance<PySymbolVar>(py::handle(handle))) {
442 443
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
M
Megvii Engine Team 已提交
444
                auto&& descr = npy::dtype_mgb2np_descr(type);
445 446 447 448 449
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
M
Megvii Engine Team 已提交
467
    } else {
468 469
        res = promote_types(tensors, max_pri_tensors);
    }
M
Megvii Engine Team 已提交
470 471 472 473 474 475
    for (auto* p : tensors) {
        Py_DECREF(p);
    }
    for (auto* p : scalars) {
        Py_DECREF(p);
    }
476
    Py_XDECREF(tuple);
477 478 479
    return res;
}

M
Megvii Engine Team 已提交
480
CompNode _get_device(PyObject* const* args, size_t nargs) {
481
    bool is_tuple = false;
482
    PyObject* tuple = nullptr;
483 484 485 486 487 488 489 490 491 492 493 494 495
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
496
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
497
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
498

499 500
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
501
            if (!valid) {
502
                cn = tw ? tw->m_tensor->comp_node()
M
Megvii Engine Team 已提交
503
                        : py::handle(handle).cast<PySymbolVar*>()->m_node->comp_node();
504 505
                valid = true;
            } else {
506 507 508 509
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
510
                if (cn1 != cn) {
M
Megvii Engine Team 已提交
511 512 513
                    throw py::value_error(ssprintf(
                            "ambiguous device: %s vs %s", cn.to_string().c_str(),
                            cn1.to_string().c_str()));
514 515 516 517 518
                }
            }
        }
    }
    if (!valid) {
519
        return CompNode::load(get_default_device());
520
    }
521
    Py_XDECREF(tuple);
522 523 524 525 526
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
M
Megvii Engine Team 已提交
527
PyObject* dtype_promotion(PyObject* self, PyObject* const* args, size_t nargs) {
528 529 530 531 532 533 534
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
M
Megvii Engine Team 已提交
535 536
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
537 538
}

M
Megvii Engine Team 已提交
539
PyObject* get_device(PyObject* self, PyObject* const* args, size_t nargs) {
540 541 542 543 544 545 546
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
M
Megvii Engine Team 已提交
547 548
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
549
}
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

569
void init_tensor(py::module m) {
570
    imperative::Tensor::static_initialize();
571 572 573 574 575 576 577 578 579 580 581 582

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

    auto* channel = interpreter::Interpreter::inst().create_channel().release();
    interpreter_for_py = channel;
    transformations.register_at<Segment::Eval>(
            std::make_shared<InterpreterTransformation>(
                    std::unique_ptr<interpreter::Interpreter::Channel>(channel)));
    transformations.register_at<Segment::Scalar>(
            std::make_shared<ScalarTransformation>());
583

M
Megvii Engine Team 已提交
584 585
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
586 587
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
588 589
            if (p)
                std::rethrow_exception(p);
590 591 592 593 594 595 596 597 598 599
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
600 601
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
602
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
603 604 605
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
606 607
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
608 609
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
610 611 612 613 614 615
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
616 617 618 619 620 621 622 623 624
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
625
                    // TODO: remove this
M
Megvii Engine Team 已提交
626 627 628
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
629 630 631
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
632 633 634 635 636 637
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
638 639 640
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
641 642 643
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
644

645 646 647
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
648 649 650
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
651
            .def_property_readonly(
M
Megvii Engine Team 已提交
652
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
653
            .def_property_readonly(
M
Megvii Engine Team 已提交
654
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
655 656 657
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
658
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
659 660
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
676 677 678 679 680 681
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

682
    static PyMethodDef method_defs[] = {
683 684 685 686
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
687
    for (auto&& def : method_defs) {
688 689
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
690 691
            if (!func)
                throw py::error_already_set();
692 693 694
            py::setattr(m, def.ml_name, func);
        }
    }
695

696 697 698 699
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
700

701
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
702 703
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
704
    });
705
    m.def("get_option",
706 707
          [channel](std::string name) { return channel->get_option(name); });
    m.def("set_buffer_length", [channel](int length) {
M
Megvii Engine Team 已提交
708
        mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
        channel->set_option("buffer_length", length);
    });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
756 757 758 759 760 761 762 763
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
764 765 766 767
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
768 769 770
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
771
    py::setattr(m, "GradKey", grad_key_type);
772
    m.def("backward", &GradKeyWrapper::backward);
773
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
774

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;

        bool compare_value(ValueRef lhs, ValueRef rhs) {
            if (!lhs.shape()->eq(*rhs.shape())) {
                return false;
            }
            HostTensorND lvalue = lhs.numpy()->as_nd(true);
            HostTensorND rvalue = rhs.numpy()->as_nd(true);
            auto larr = py::reinterpret_steal<py::array>(
                    npy::ndarray_from_tensor(lvalue, npy::ShareType::TRY_SHARE));
            auto rarr = py::reinterpret_steal<py::array>(
                    npy::ndarray_from_tensor(rvalue, npy::ShareType::TRY_SHARE));
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
                transformations.register_at<Segment::Trace>(self.compiled);
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
                transformations.register_at<Segment::Trace>(self.tracing);
                if (self.lazy_eval) {
                    transformations.register_at<Segment::Eval>(self.lazy_eval);
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
                transformations.unregister<Segment::Trace>(self.tracing);
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
                    transformations.unregister<Segment::Eval>(lazy_eval);
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
                transformations.unregister<Segment::Trace>(self.compiled);
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         transformations.unregister<Segment::Trace>(self.tracing);
                     } else if (self.compiled) {
                         transformations.unregister<Segment::Trace>(self.compiled);
                     }
M
Megvii Engine Team 已提交
943
                 })
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
                    transformations.register_at<Segment::Trace>(self.tracing);
                } else if (self.compiled) {
                    transformations.register_at<Segment::Trace>(self.compiled);
                }
            });

    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
        SmallVector<ValueRef> values;
        for (auto&& tensor : tensors) {
            values.push_back(tensor.cast<TensorWrapper>().m_tensor->data());
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
        SmallVector<ValueRef> values;
        for (auto&& tensor : tensors) {
            values.push_back(tensor.cast<TensorWrapper>().m_tensor->data());
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (auto* grad_key_val = outputs[0].as<GradKeyValue>()) {
            return py::reinterpret_borrow<py::object>(
                    GradKeyWrapper::wrap_t::pycast(GradKeyWrapper::get(*grad_key_val)));
        } else {
            return py::none();
        }
    });

    m.def("set_grad", [](py::object py_key, py::function backward_fn,
                         std::vector<py::object> inputs,
                         std::vector<py::object> outputs) {
        mgb_assert(GradKeyWrapper::wrap_t::type().isinstance(py_key.ptr()));
        auto* key = reinterpret_cast<GradKeyWrapper::wrap_t*>(py_key.ptr())->inst();
        GenericFunction generic_backward_fn =
                [backward_fn](Span<ValueRef> output_grads) -> std::vector<ValueRef> {
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
            std::vector<ValueRef> input_grads;
            for (auto&& input_grad_tw : input_grad_tws) {
                if (!input_grad_tw.is_none()) {
                    input_grads.push_back(
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data());
                } else {
                    input_grads.push_back({});
                }
            }
            return input_grads;
        };
        SmallVector<ValueRef> values;
        for (auto&& input : inputs) {
            values.push_back(input.cast<TensorWrapper>().m_tensor->data());
        }
        for (auto&& output : outputs) {
            values.push_back(output.cast<TensorWrapper>().m_tensor->data());
        }
        auto wrapped_output_values = imperative::apply(
                SetGrad(key->m_key, generic_backward_fn, inputs.size()), values);
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

    static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
    static int module_tracing = 0;

    m.def("set_module_tracing", [=] {
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
        }
        if (++module_tracing == 1) {
            transformations.register_at<TransformationManager::ModuleTrace>(
                    module_trace_transformation);
        }
    });

    m.def("unset_module_tracing", [=] {
        if (--module_tracing == 0) {
            transformations.unregister<TransformationManager::ModuleTrace>(
                    module_trace_transformation);
        }
    });

    m.def("is_tracing_module", [=] { return module_tracing > 0; });

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

    py::register_exception<TraceError>(m, "TraceError");
1073 1074
}

1075 1076
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1077
}  // namespace mgb::imperative::python