tensor.cpp 53.7 KB
Newer Older
1
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
2
#include "megbrain/dtype.h"
3
#include "megbrain/imperative/cpp_cupti.h"
4
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
5 6
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
7
#include "megbrain/imperative/profiler.h"
8
#include "megbrain/imperative/transformations/dim_expansion.h"
9
#include "megbrain/imperative/transformations/dtype_promote.h"
10 11 12 13 14 15
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
16
#include "megbrain/opr/io.h"
17
#include "megbrain/plugin/profiler.h"
18
#include "megbrain/utils/stats.h"
19
#include "megdnn/algorithm_cache.h"
20

21
#include "./common.h"
M
Megvii Engine Team 已提交
22
#include "./grad.h"
23
#include "./graph_rt.h"
24
#include "./helper.h"
M
Megvii Engine Team 已提交
25 26 27
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
28
#include "./tensor_utils.h"
29
#include "./transformation.h"
30

31
#include <object.h>
32 33
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
34 35
#include <pybind11/pytypes.h>
#include <pyerrors.h>
36
#include <iterator>
37
#include <range/v3/all.hpp>
38
#include <string>
39 40 41

#include <unordered_map>

42 43
#include "../../src/impl/mgb_cg_impl.h"

44
namespace py = pybind11;
45
namespace views = ranges::views;
46 47 48

namespace mgb::imperative::python {

49 50
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
51 52 53

struct SymbolVarContext {
    TransformationContext context;
54 55
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
56
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
57
    std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf;
58

59 60 61
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
62
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
63
        dim_expansion_tsf = std::make_shared<DimExpansionTransformation>();
64 65 66 67
        Transformation::swap_context(context);
    }

    void init() {
68 69
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
70
        dtype_promote_tsf->register_at(Transformation::top());
71
        dim_expansion_tsf->register_at(Transformation::top());
72 73
    }

74 75 76 77 78 79 80 81
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
82

83 84 85 86 87 88 89 90 91 92 93
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
94 95
    }

96 97
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
98

99 100
}  // namespace

101 102
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
103
pybind11::handle py_device_type = nullptr;
104
PyObject* cpp_use_symbolic_shape;
105 106 107 108 109 110 111

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
112

113 114 115
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
116 117
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
118 119 120 121 122
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
123
        if (nargs < 2) {
M
Megvii Engine Team 已提交
124 125 126 127
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
128 129
            return nullptr;
        }
130

131
        auto* py_op = args[0];
132

133 134 135
        ++args;
        --nargs;

136
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
137
        SmallVector<ValueRef, 8> tensors(nargs);
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
165
            if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
166
                // py_tuple is not allowed here because of tracing
167 168 169 170 171 172 173 174 175 176 177
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
178
            // swap to a special context to reuse scalar handle
179 180
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
181
            context.init();
182
            for (size_t i = 0; i < nargs; ++i) {
183 184 185
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
186 187 188
                } else if (
                        DTypePromoteCfg::convert_input_enabled &&
                        op->same_type<Elemwise>()) {
189
                    tensors[i] = convert_pyinput_to_tensor(i);
190 191 192 193
                } else {
                    PyErr_SetString(
                            PyExc_TypeError, "py_apply expects tensor as inputs");
                    return nullptr;
194
                }
195
            }
196
            auto outputs = imperative::apply(*op, tensors);
197
            auto ret = pybind11::tuple(outputs.size());
198
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
199
            for (size_t i = 0; i < outputs.size(); ++i) {
200
                ret[i] = context.val2symvar(typeobj, outputs[i]);
201 202 203
            }
            return ret.release().ptr();
        }
204 205

        for (size_t i = 0; i < nargs; ++i) {
206
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
207
                tensors[i] = tw->m_tensor->data();
208 209 210
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
                    op->same_type<Elemwise>()) {
211
                tensors[i] = convert_pyinput_to_tensor(i);
212 213 214
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
215 216 217
            }
        }

218
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
219 220 221
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
222
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
223 224
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
225 226
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
227 228
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242
namespace {

template <typename T>
py::handle py_type() {
    if constexpr (std::is_same_v<T, py::int_>) {
        return (PyObject*)&PyLong_Type;
    } else if constexpr (std::is_same_v<T, py::float_>) {
        return (PyObject*)&PyFloat_Type;
    } else if constexpr (std::is_same_v<T, py::tuple>) {
        return (PyObject*)&PyTuple_Type;
    } else if constexpr (std::is_same_v<T, py::list>) {
        return (PyObject*)&PyList_Type;
    } else {
        static_assert(std::is_same_v<T, T>);
243
    }
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

template <typename T>
auto scalar2storage(T val, CompNode cn, DType dtype) {
    using max_ctype_t = DTypeScalar::max_ctype;
    DTypeScalar scalar(dtype);
    scalar.set_retain_dtype(val);
    HostTensorStorage storage(cn);
    auto* raw_ptr = reinterpret_cast<dt_byte*>(new max_ctype_t());
    std::shared_ptr<dt_byte> raw_storage = {
            raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast<max_ctype_t*>(ptr); }};
    storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0);
    std::memcpy(storage.ptr(), scalar.storage(), dtype.size());
    return HostStorage::make(std::move(storage));
}

template <typename ctype>
auto vec2storage(Span<DTypeScalar> vec, CompNode cn, DType dtype) {
    mgb_assert(vec.size() <= MEGDNN_MAX_NDIM);
    // TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
    auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM];
    for (size_t i = 0; i < vec.size(); ++i) {
        raw_ptr[i] = vec[i].get_cast<ctype>();
267
    }
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    mgb_assert(sizeof(ctype) == dtype.size());
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0);
    return HostStorage::make(std::move(storage));
}

struct HostTensorArgs {
    ValueShape shape;
    DType dtype;
    HostStorage::ref_t storage;

    HostTensorND as_tensor_nd() const {
        HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype);
        ret.only_reset_raw_storage(*storage);
        return ret;
    }
};

template <typename seq_type, typename ctype>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    ctype items[size];
    for (size_t i = 0; i < size; ++i) {
        py::handle item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (ctype)(dt_int32)item.template cast<py::int_>();
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (ctype)(dt_float32)item.template cast<py::float_>();
        } else {
            return false;
304
        }
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    }
    mgb_assert(sizeof(ctype) == dtype.size());
    auto* raw_ptr = new ctype[size];
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0);
    std::memcpy(storage.ptr(), items, sizeof(ctype) * size);
    ret.dtype = dtype;
    ret.shape = {size};
    ret.storage = HostStorage::make(std::move(storage));
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    DTypeScalar items[size];
    DType dtype;
    for (size_t i = 0; i < size; ++i) {
        auto&& item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (dt_int32)item.template cast<py::int_>();
            if (!dtype.valid()) {
                dtype = dtype::Int32();
            } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) {
                return false;
            }
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (dt_float32)item.template cast<py::float_>();
            if (!dtype.valid()) {
                dtype = dtype::Float32();
            } else if (dtype == dtype::Int32()) {
                dtype = dtype::Float32();
            } else if (dtype != dtype::Float32()) {
                return false;
345
            }
346
        } else {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
            return false;
        }
    }
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.shape = {size};
    if (dtype == dtype::Int32()) {
        ret.storage = vec2storage<dt_int32>({items, size}, cn, dtype);
    } else if (dtype == dtype::Float32()) {
        ret.storage = vec2storage<dt_float32>({items, size}, cn, dtype);
    } else {
        mgb_assert(false);
    }
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (dtype == dtype::Int32()) {
        return pyseq2hval<seq_type, dt_int32>(obj, cn, dtype, ret);
    } else if (dtype == dtype::Float32()) {
        return pyseq2hval<seq_type, dt_float32>(obj, cn, dtype, ret);
    } else if (!dtype.valid()) {
        return pyseq2hval<seq_type>(obj, cn, ret);
    } else {
        return false;
    }
}

bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto data = obj.cast<py::array>();
    auto strides = data.strides();
    bool need_squeeze = false;
    for (size_t i = 0; i < data.ndim(); ++i) {
        if (strides[i] == 0) {
            need_squeeze = true;
            break;
        }
    }
    if (need_squeeze) {
        std::vector<size_t> shape;
        for (size_t i = 0; i < data.ndim(); ++i) {
            shape.push_back(data.shape(i));
        }
        data = data.squeeze();
        data.resize(shape);
    }
    HostTensorND retnd(cn);
    retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype);
    if (!dtype.valid()) {
        dtype = retnd.dtype();
    }
    mgb_assert(
            retnd.layout().is_empty() || retnd.layout().is_contiguous(),
            "host value should be continuous");
    for (size_t i = 0; i < data.ndim(); ++i) {
        ret.shape[ret.shape.ndim++] = data.shape(i);
    }
    ret.dtype = dtype;
    ret.storage = HostStorage::make(retnd.storage());
    return true;
}

bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Int32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_int32)obj, cn, dtype);
    return true;
}

bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_float32)obj, cn, dtype);
    return true;
}

HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) {
    HostTensorArgs ret;
    bool success = false;
    // check order: float -> int -> tuple(int -> float) -> list(int -> float)
    // only handle `exact` pytype, isinstance also accepts subtype
    // for example, isinstance(True, int) == True
    if (obj.get_type().is(py_type<py::float_>())) {
        success = pyfloat2hval(py::float_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::int_>())) {  // py::bool_ is py::int_
        success = pyint2hval(py::int_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::tuple>())) {
        success = pyseq2hval<py::tuple>(py::tuple(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::list>())) {
        success = pyseq2hval<py::list>(py::list(obj), cn, dtype, ret);
    } else if (obj.is_none()) {
        obj = py::list(0);
    }
    if (!success) {
        success = pyarr2hval(obj, cn, dtype, ret);
    }
    mgb_assert(success);
    return ret;
}

struct PyArgDesc {
    const char* name;
    py::object (*default_value)();
};

struct PyArgDescs {
    std::vector<PyArgDesc> items;
    ssize_t (*name2idx)(const char* name);
};

py::tuple parse_args(py::tuple args, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        ret[i] = descs.items[i].default_value();
    }
    return ret;
}

py::tuple parse_args_and_kwargs(
        py::tuple args, py::dict kwargs, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_kwargs = kwargs.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    bool has_value[nr_items - nr_args];
    for (size_t i = nr_args; i < nr_items; ++i) {
        has_value[i - nr_args] = false;
    }
    for (auto&& [k, v] : kwargs) {
        auto key = py::str(k).cast<std::string>();
        ssize_t index = descs.name2idx(key.c_str());
        mgb_assert(index >= nr_args);
        ret[index] = v;
        has_value[index - nr_args] = true;
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        if (!has_value[i - nr_args]) {
            ret[i] = descs.items[i].default_value();
        }
    }
    return ret;
}

CompNode as_comp_node(const std::string& name) {
    thread_local struct {
        std::string name;
        CompNode cn;
    } cached;
    if (cached.name != name) {
        cached.name = name;
        cached.cn = CompNode::load(name);
    }
    return cached.cn;
}

CompNode as_comp_node(py::object py_device) {
    std::optional<std::string> device_name;
    if (py_device.is_none() || py::str::check_(py_device)) {
        auto cls = py::handle(reinterpret_cast<PyObject*>(py_tensor_type));
        auto dmap_callback = cls.attr("dmap_callback");
        std::string name;
        if (dmap_callback.is_none() && py_device.is_none()) {
            name = get_default_device();
        } else {
            if (py_device.is_none()) {
                py_device = py::str(get_default_device());
536
            }
537 538
            if (!dmap_callback.is_none()) {
                py_device = dmap_callback(py_device);
539
            }
540 541 542 543 544 545 546 547 548 549 550
            name = py::str(py_device).cast<std::string>();
        }
        return as_comp_node(name);
    } else {
        if (py::isinstance(py_device, py_device_type)) {
            py_device = py_device.attr("_cn");
        }
        mgb_assert(py::isinstance(py_device, py_comp_node_type));
        return py_device.cast<CompNode>();
    }
}
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
template <char... Chars>
bool compare_cstr(const char* cstr) {
    return (((*cstr++) == Chars) && ...) && *cstr == '\0';
}

ssize_t name2idx(const char* name) {
    const char* ch = name;
    // TODO: trie
    // clang-format off
    switch (*ch++) {
    case 'd':
        switch (*ch++) {
        // data
        case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1;
        // dtype
        case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1;
        // device
        case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1;
        }
    case 'i':
        // is_const
        return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1;
    case 'n':
        switch (*ch++) {
        // no_cache
        case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1;
        // name
        case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1;
        }
    }
    // clang-format on
    return -1;
}

}  // namespace

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    static PyArgDescs descs = {
            {
                    {"data", []() -> py::object { return py::none(); }},
                    {"dtype", []() -> py::object { return py::none(); }},
                    {"device", []() -> py::object { return py::none(); }},
                    {"is_const", []() -> py::object { return py::bool_(false); }},
                    {"no_cache", []() -> py::object { return py::bool_(false); }},
                    {"name", []() -> py::object { return py::none(); }},
            },
            name2idx};
    py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (kwargs) {
        tup = parse_args_and_kwargs(
                tup, py::reinterpret_borrow<py::dict>(kwargs), descs);
    } else {
        tup = parse_args(tup, descs);
    }
    mgb_assert(tup.size() == 6);
    if (auto* t = try_cast(tup[0].ptr())) {
        m_tensor = t->m_tensor->copy();
    } else {
        auto data = tup[0];
        DType dtype = tup[1].cast<DType>();
        bool is_const = tup[3].cast<bool>();
        bool no_cache = tup[4].cast<bool>();
        std::string name;
        if (!tup[5].is_none()) {
            name = tup[5].cast<std::string>();
        }
        CompNode cn = as_comp_node(tup[2]);

        {
            CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                    : no_cache ? CreateTensor::Unique
                                               : CreateTensor::Common;
            auto&& hval = pyobj2hval(data, cn, dtype);
            auto val = imperative::apply(
                    CreateTensor(kind, cn, hval.dtype, hval.shape), hval.storage)[0];
            m_tensor.emplace(val);
        }

        if (!name.empty()) {
            m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]);
633 634
        }
    }
635
    mgb_assert(m_tensor->data());
636 637
}

638
PyObject* TensorWrapper::module_trace_info() {
639
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
640 641 642
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
643
    }
644 645 646 647 648
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
649 650 651
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
652
    // TODO: erase when obj == nullptr
653
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
654 655
}

656 657 658 659 660
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
661

662 663
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
664 665
}

666 667
void TensorWrapper::_watch() {
    m_tensor->data().watch();
668 669
}

670
PyObject* TensorWrapper::shape() {
671
    auto shape = m_tensor->shape();
672

673
    if (!shape) {
674 675
        Py_RETURN_NONE;
    }
676 677 678
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
679 680 681 682 683 684 685 686 687 688 689 690 691
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
692
    auto hv = m_tensor->numpy();
693
    if (!hv) {
694 695 696
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
697 698
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
699
    if (hv->shape().is_scalar()) {
700 701 702 703 704 705 706
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
707
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
708 709 710
    if (!t) {
        throw py::type_error("expect Tensor");
    }
711
    m_tensor->reset(t->m_tensor->data());
712 713
}

714
PyObject* TensorWrapper::detach() {
715 716
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
717 718
}

M
Megvii Engine Team 已提交
719
PyObject* TensorWrapper::_dev_tensor() {
720 721 722
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
723 724 725
}

void TensorWrapper::_drop() {
726
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
727 728
}

729
PyObject* TensorWrapper::isscalar() {
730
    if (m_tensor->is_scalar()) {
731 732 733 734 735 736 737
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
738
    ValueWeakRef data;
739

740
    TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {}
741 742

    py::object operator()() {
743
        if (auto p = data.lock()) {
744
            return TensorWrapper::make(py_tensor_type, p);
745 746 747 748 749
        }
        return py::none();
    }
};

750 751 752 753 754 755 756 757 758 759 760 761 762
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
763 764 765
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
766
WRAP_FUNC_PY35(split_cpp);
767
WRAP_FUNC_PY35(expand_dims_cpp);
768
WRAP_FUNC_PY35(squeeze_cpp);
769
WRAP_FUNC_PY35(transpose_cpp);
770 771
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
772
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
773
WRAP_FUNC_PY35(Const);
774
WRAP_FUNC_PY35(astype_cpp);
775 776
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
777 778
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
779
WRAP_FUNC_PY35(astensor1d_cpp);
780
WRAP_FUNC_PY35(pixel_shuffle_cpp);
781 782 783 784 785
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

786
void init_tensor(py::module m) {
787
    imperative::Tensor::static_initialize();
788 789 790 791 792

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

793 794 795 796 797 798
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
799
    interpreter_for_py = channel;
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
818

M
Megvii Engine Team 已提交
819 820
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
821 822
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
823 824
            if (p)
                std::rethrow_exception(p);
825 826 827 828 829 830 831 832 833 834
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
835 836
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
837
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
838 839 840
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
841 842
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
843 844
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
845 846 847 848 849 850
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
851 852 853 854 855 856 857 858 859
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
860
                    // TODO: remove this
M
Megvii Engine Team 已提交
861 862
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
863 864 865
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
866 867 868 869 870 871
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
872 873 874
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
875
            .def(py::init<const TensorWrapper&>())
876
            .def("__call__", &TensorWeakRef::operator());
877

878 879 880
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
881 882 883
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
884
            .def_property_readonly(
M
Megvii Engine Team 已提交
885
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
886
            .def_property_readonly(
M
Megvii Engine Team 已提交
887
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
888 889 890
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
891
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
892 893
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
909 910 911 912 913 914
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

915
    static PyMethodDef method_defs[] = {
916 917 918
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
919 920 921
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
922
            MGE_PY_INTERFACE(split_cpp, split_cpp),
923
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
924
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
925
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
926 927
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
928
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
929
            MGE_PY_INTERFACE(Const, Const),
930
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
931 932
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
933 934
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
935
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
936
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
937
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
938
    for (auto&& def : method_defs) {
939 940
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
941 942
            if (!func)
                throw py::error_already_set();
943 944 945
            py::setattr(m, def.ml_name, func);
        }
    }
946

947 948 949 950
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
951

952
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
953 954
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
955
    });
956
    m.def("get_option",
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
975
        CompNode::sync_all();
976 977 978 979 980 981 982 983
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
984 985 986
    m.def("enable_cupti", &cupti::enable);
    m.def("disable_cupti", &cupti::disable);
    m.def("cupti_available", &cupti::available);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
1007 1008 1009 1010 1011 1012 1013 1014
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1015 1016 1017 1018
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1019 1020 1021
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1022
    py::setattr(m, "GradKey", grad_key_type);
1023
    m.def("backward", &GradKeyWrapper::backward);
1024
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1025

1026 1027 1028 1029
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1030 1031 1032
    m.def("set_py_device_type",
          [](py::object type_obj) { py_device_type = type_obj.inc_ref(); });

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
1050 1051 1052
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
1053 1054

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1055 1056
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1057
            if (lvalue->shape() != rvalue->shape()) {
1058 1059
                return false;
            }
1060
            if (lvalue->shape().total_nr_elems() == 1) {
1061 1062 1063 1064
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1065
            auto larr = py::reinterpret_steal<py::array>(
1066
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1067
            auto rarr = py::reinterpret_steal<py::array>(
1068
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
1102 1103
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
1104 1105 1106
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
1107 1108
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
1109
                if (self.lazy_eval) {
1110 1111
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
1112 1113 1114 1115 1116 1117 1118 1119 1120
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
1121
                tracing_guard.reset();
1122 1123 1124 1125
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
1126
                    lazy_eval_guard.reset();
1127 1128 1129
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
1130
                compiled_guard.reset();
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
1204
                         self.tracing_guard.reset();
1205
                     } else if (self.compiled) {
1206
                         self.compiled_guard.reset();
1207
                     }
M
Megvii Engine Team 已提交
1208
                 })
1209 1210 1211
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
1212 1213
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
1214
                } else if (self.compiled) {
1215 1216
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
1217 1218 1219
                }
            });

1220 1221 1222 1223 1224 1225 1226 1227
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
1228
        };
1229 1230 1231 1232 1233
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
1234
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
1235
            auto typeobj = tensor.get_type();
1236
            return context.val2symvar(typeobj, output);
1237 1238 1239 1240 1241 1242
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
1243 1244
    });

1245 1246 1247 1248 1249 1250 1251
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1252
        SmallVector<ValueRef> values(tensors.size());
1253 1254
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1265
        SmallVector<ValueRef> values(tensors.size());
1266 1267
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1268
        }
1269 1270
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1271 1272
            return py::none();
        }
1273 1274
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1275 1276
    });

1277
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
1278 1279
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
1280
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1291 1292 1293
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1294
                if (!input_grad_tw.is_none()) {
1295 1296
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1297
                } else {
1298
                    input_grads[i] = {};
1299 1300 1301 1302
                }
            }
            return input_grads;
        };
1303
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1304 1305
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1306
        }
1307 1308 1309
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1310
        }
1311 1312
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

1324 1325
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1326 1327 1328 1329
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1330 1331 1332 1333
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
1334
        }
1335 1336
        return module_trace_transformation;
    };
1337

1338 1339
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1340 1341 1342
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1343

1344
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1345

1346 1347 1348 1349
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1350

1351 1352 1353
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1365
    m.def("print_stats", [] { Stats::print(); });
1366

1367
    m.def("reset_stats", [] { Stats::reset(); });
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1426 1427
    m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); });

1428
    py::register_exception<TraceError>(m, "TraceError");
1429 1430
}

1431 1432
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1433
}  // namespace mgb::imperative::python