tensor.cpp 52.7 KB
Newer Older
1
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
2
#include "megbrain/dtype.h"
3
#include "megbrain/imperative/backtrace.h"
4
#include "megbrain/imperative/cpp_cupti.h"
5
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
6 7
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
8
#include "megbrain/imperative/profiler.h"
9
#include "megbrain/imperative/transformation.h"
10
#include "megbrain/imperative/transformations/dim_expansion.h"
11
#include "megbrain/imperative/transformations/dtype_promote.h"
12
#include "megbrain/imperative/transformations/eval.h"
13
#include "megbrain/imperative/transformations/format.h"
14
#include "megbrain/imperative/transformations/group_comm.h"
15 16 17 18 19
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
20
#include "megbrain/opr/io.h"
21
#include "megbrain/plugin/profiler.h"
22
#include "megbrain/utils/stats.h"
23
#include "megdnn/algorithm_cache.h"
24

25
#include "./common.h"
M
Megvii Engine Team 已提交
26
#include "./grad.h"
27
#include "./graph_rt.h"
28
#include "./helper.h"
M
Megvii Engine Team 已提交
29 30 31
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
32
#include "./tensor_utils.h"
33
#include "./transformation.h"
34

35
#include <object.h>
36 37
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
38 39
#include <pybind11/pytypes.h>
#include <pyerrors.h>
40
#include <iterator>
41
#include <range/v3/all.hpp>
42
#include <string>
43 44 45

#include <unordered_map>

46
#include "../../src/impl/mgb_cg_impl.h"
47
#include "./backtrace.h"
48

49
namespace py = pybind11;
50
namespace views = ranges::views;
51 52 53

namespace mgb::imperative::python {

54 55
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
56
PyTypeObject* py_varnode_type = nullptr;
57
pybind11::handle py_device_type = nullptr;
58
PyObject* cpp_use_symbolic_shape;
59 60 61 62 63 64 65

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
66

67 68 69
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
70 71
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
72 73 74 75 76
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
77
        if (nargs < 2) {
M
Megvii Engine Team 已提交
78 79 80 81
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
82 83
            return nullptr;
        }
84

85
        auto* py_op = args[0];
86

87 88 89
        ++args;
        --nargs;

90
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
91
        SmallVector<ValueRef, 8> tensors(nargs);
92

93 94 95 96 97 98 99 100 101 102
        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
103
            record_py_backtrace();
104
            if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
105
                // py_tuple is not allowed here because of tracing
106 107 108 109 110 111 112 113 114 115
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

116
        bool is_varnode_apply = false;
117
        for (size_t i = 0; i < nargs; ++i) {
118 119 120
            if (PyObject_TypeCheck(args[i], py_varnode_type)) {
                is_varnode_apply = true;
            }
121
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
122
                tensors[i] = tw->m_tensor->data();
123 124
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
125
                    (op->same_type<Elemwise>() || op->same_type<ElemwiseMultiType>())) {
126
                tensors[i] = convert_pyinput_to_tensor(i);
127 128 129
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
130 131
            }
        }
132
        record_py_backtrace();
133
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
134 135
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
136
        PyTypeObject* py_type = is_varnode_apply ? py_varnode_type : py_tensor_type;
137
        for (size_t i = 0; i < nout; ++i) {
138
            ret[i] = TensorWrapper::make(py_type, std::move(outputs[i]));
139 140
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
141 142
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
143
}
144 145 146 147 148
FrameInfoPtr get_current_frameinfo() {
    auto frame = PyEval_GetFrame();
    auto frameinfo = get_frameinfo_from_pyframe(frame);
    return frameinfo;
}
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163
namespace {

template <typename T>
py::handle py_type() {
    if constexpr (std::is_same_v<T, py::int_>) {
        return (PyObject*)&PyLong_Type;
    } else if constexpr (std::is_same_v<T, py::float_>) {
        return (PyObject*)&PyFloat_Type;
    } else if constexpr (std::is_same_v<T, py::tuple>) {
        return (PyObject*)&PyTuple_Type;
    } else if constexpr (std::is_same_v<T, py::list>) {
        return (PyObject*)&PyList_Type;
    } else {
        static_assert(std::is_same_v<T, T>);
164
    }
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
}

template <typename T>
auto scalar2storage(T val, CompNode cn, DType dtype) {
    using max_ctype_t = DTypeScalar::max_ctype;
    DTypeScalar scalar(dtype);
    scalar.set_retain_dtype(val);
    HostTensorStorage storage(cn);
    auto* raw_ptr = reinterpret_cast<dt_byte*>(new max_ctype_t());
    std::shared_ptr<dt_byte> raw_storage = {
            raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast<max_ctype_t*>(ptr); }};
    storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0);
    std::memcpy(storage.ptr(), scalar.storage(), dtype.size());
    return HostStorage::make(std::move(storage));
}

template <typename ctype>
auto vec2storage(Span<DTypeScalar> vec, CompNode cn, DType dtype) {
    mgb_assert(vec.size() <= MEGDNN_MAX_NDIM);
    // TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
    auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM];
    for (size_t i = 0; i < vec.size(); ++i) {
        raw_ptr[i] = vec[i].get_cast<ctype>();
188
    }
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    mgb_assert(sizeof(ctype) == dtype.size());
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0);
    return HostStorage::make(std::move(storage));
}

struct HostTensorArgs {
    ValueShape shape;
    DType dtype;
    HostStorage::ref_t storage;

    HostTensorND as_tensor_nd() const {
        HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype);
        ret.only_reset_raw_storage(*storage);
        return ret;
    }
};

template <typename seq_type, typename ctype>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    ctype items[size];
    for (size_t i = 0; i < size; ++i) {
        py::handle item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (ctype)(dt_int32)item.template cast<py::int_>();
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (ctype)(dt_float32)item.template cast<py::float_>();
        } else {
            return false;
225
        }
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    }
    mgb_assert(sizeof(ctype) == dtype.size());
    auto* raw_ptr = new ctype[size];
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0);
    std::memcpy(storage.ptr(), items, sizeof(ctype) * size);
    ret.dtype = dtype;
    ret.shape = {size};
    ret.storage = HostStorage::make(std::move(storage));
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    DTypeScalar items[size];
    DType dtype;
    for (size_t i = 0; i < size; ++i) {
        auto&& item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (dt_int32)item.template cast<py::int_>();
            if (!dtype.valid()) {
                dtype = dtype::Int32();
            } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) {
                return false;
            }
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (dt_float32)item.template cast<py::float_>();
            if (!dtype.valid()) {
                dtype = dtype::Float32();
            } else if (dtype == dtype::Int32()) {
                dtype = dtype::Float32();
            } else if (dtype != dtype::Float32()) {
                return false;
266
            }
267
        } else {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            return false;
        }
    }
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.shape = {size};
    if (dtype == dtype::Int32()) {
        ret.storage = vec2storage<dt_int32>({items, size}, cn, dtype);
    } else if (dtype == dtype::Float32()) {
        ret.storage = vec2storage<dt_float32>({items, size}, cn, dtype);
    } else {
        mgb_assert(false);
    }
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (dtype == dtype::Int32()) {
        return pyseq2hval<seq_type, dt_int32>(obj, cn, dtype, ret);
    } else if (dtype == dtype::Float32()) {
        return pyseq2hval<seq_type, dt_float32>(obj, cn, dtype, ret);
    } else if (!dtype.valid()) {
        return pyseq2hval<seq_type>(obj, cn, ret);
    } else {
        return false;
    }
}

bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto data = obj.cast<py::array>();
    auto strides = data.strides();
    bool need_squeeze = false;
    for (size_t i = 0; i < data.ndim(); ++i) {
        if (strides[i] == 0) {
            need_squeeze = true;
            break;
        }
    }
    if (need_squeeze) {
        std::vector<size_t> shape;
        for (size_t i = 0; i < data.ndim(); ++i) {
            shape.push_back(data.shape(i));
        }
        data = data.squeeze();
        data.resize(shape);
    }
    HostTensorND retnd(cn);
    retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype);
    if (!dtype.valid()) {
        dtype = retnd.dtype();
    }
    mgb_assert(
            retnd.layout().is_empty() || retnd.layout().is_contiguous(),
            "host value should be continuous");
    for (size_t i = 0; i < data.ndim(); ++i) {
        ret.shape[ret.shape.ndim++] = data.shape(i);
    }
    ret.dtype = dtype;
    ret.storage = HostStorage::make(retnd.storage());
    return true;
}

bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Int32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_int32)obj, cn, dtype);
    return true;
}

bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_float32)obj, cn, dtype);
    return true;
}

HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) {
    HostTensorArgs ret;
    bool success = false;
    // check order: float -> int -> tuple(int -> float) -> list(int -> float)
    // only handle `exact` pytype, isinstance also accepts subtype
    // for example, isinstance(True, int) == True
    if (obj.get_type().is(py_type<py::float_>())) {
        success = pyfloat2hval(py::float_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::int_>())) {  // py::bool_ is py::int_
        success = pyint2hval(py::int_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::tuple>())) {
        success = pyseq2hval<py::tuple>(py::tuple(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::list>())) {
        success = pyseq2hval<py::list>(py::list(obj), cn, dtype, ret);
    } else if (obj.is_none()) {
        obj = py::list(0);
    }
    if (!success) {
        success = pyarr2hval(obj, cn, dtype, ret);
    }
    mgb_assert(success);
    return ret;
}

struct PyArgDesc {
    const char* name;
    py::object (*default_value)();
};

struct PyArgDescs {
    std::vector<PyArgDesc> items;
    ssize_t (*name2idx)(const char* name);
};

py::tuple parse_args(py::tuple args, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        ret[i] = descs.items[i].default_value();
    }
    return ret;
}

py::tuple parse_args_and_kwargs(
        py::tuple args, py::dict kwargs, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_kwargs = kwargs.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    bool has_value[nr_items - nr_args];
    for (size_t i = nr_args; i < nr_items; ++i) {
        has_value[i - nr_args] = false;
    }
    for (auto&& [k, v] : kwargs) {
        auto key = py::str(k).cast<std::string>();
        ssize_t index = descs.name2idx(key.c_str());
        mgb_assert(index >= nr_args);
        ret[index] = v;
        has_value[index - nr_args] = true;
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        if (!has_value[i - nr_args]) {
            ret[i] = descs.items[i].default_value();
        }
    }
    return ret;
}

CompNode as_comp_node(const std::string& name) {
    thread_local struct {
        std::string name;
        CompNode cn;
    } cached;
    if (cached.name != name) {
        cached.name = name;
        cached.cn = CompNode::load(name);
    }
    return cached.cn;
}

CompNode as_comp_node(py::object py_device) {
    std::optional<std::string> device_name;
    if (py_device.is_none() || py::str::check_(py_device)) {
        auto cls = py::handle(reinterpret_cast<PyObject*>(py_tensor_type));
        auto dmap_callback = cls.attr("dmap_callback");
        std::string name;
        if (dmap_callback.is_none() && py_device.is_none()) {
            name = get_default_device();
        } else {
            if (py_device.is_none()) {
                py_device = py::str(get_default_device());
457
            }
458 459
            if (!dmap_callback.is_none()) {
                py_device = dmap_callback(py_device);
460
            }
461 462 463 464 465 466 467 468 469 470 471
            name = py::str(py_device).cast<std::string>();
        }
        return as_comp_node(name);
    } else {
        if (py::isinstance(py_device, py_device_type)) {
            py_device = py_device.attr("_cn");
        }
        mgb_assert(py::isinstance(py_device, py_comp_node_type));
        return py_device.cast<CompNode>();
    }
}
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
template <char... Chars>
bool compare_cstr(const char* cstr) {
    return (((*cstr++) == Chars) && ...) && *cstr == '\0';
}

ssize_t name2idx(const char* name) {
    const char* ch = name;
    // TODO: trie
    // clang-format off
    switch (*ch++) {
    case 'd':
        switch (*ch++) {
        // data
        case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1;
        // dtype
        case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1;
        // device
        case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1;
        }
    case 'i':
        // is_const
        return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1;
    case 'n':
        switch (*ch++) {
        // no_cache
        case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1;
        // name
        case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1;
        }
502 503 504
    case 'f':
        // format
        return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    }
    // clang-format on
    return -1;
}

}  // namespace

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    static PyArgDescs descs = {
            {
                    {"data", []() -> py::object { return py::none(); }},
                    {"dtype", []() -> py::object { return py::none(); }},
                    {"device", []() -> py::object { return py::none(); }},
                    {"is_const", []() -> py::object { return py::bool_(false); }},
                    {"no_cache", []() -> py::object { return py::bool_(false); }},
                    {"name", []() -> py::object { return py::none(); }},
521
                    {"format", []() -> py::object { return py::none(); }},
522 523 524 525 526 527 528 529 530 531
            },
            name2idx};
    py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (kwargs) {
        tup = parse_args_and_kwargs(
                tup, py::reinterpret_borrow<py::dict>(kwargs), descs);
    } else {
        tup = parse_args(tup, descs);
    }
532
    mgb_assert(tup.size() == 7);
533
    if (auto* t = try_cast(tup[0].ptr())) {
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        m_tensor = t->m_tensor;
        // TODO: merge two path in arg parse
        if (!tup[1].is_none()) {
            auto dtype = tup[1].cast<DType>();
            mgb_assert(
                    dtype == m_tensor->dtype(), "dtype mismatch: %s vs %s",
                    dtype.name(), m_tensor->dtype().name());
        }
        if (!tup[2].is_none()) {
            auto device = as_comp_node(tup[2]);
            mgb_assert(
                    device == m_tensor->comp_node(), "device mismatch: %s vs %s",
                    device.to_string().c_str(),
                    m_tensor->comp_node().to_string().c_str());
        }
        mgb_assert(!tup[3].cast<bool>(), "expect is_const == False, got True");
        bool no_cache = tup[4].cast<bool>();
        if (no_cache) {
            // always copy because it's hard to tell whether this tensor is cached
            m_tensor = m_tensor->copy();
        }
        // ignore name
        if (!tup[6].is_none()) {
            Format format = tup[6].cast<std::string>();
            mgb_assert(
                    format == m_tensor->format(), "format mismatch: %s vs %s",
                    format.to_string().c_str(), m_tensor->format().to_string().c_str());
        }
562 563 564
    } else {
        auto data = tup[0];
        DType dtype = tup[1].cast<DType>();
565
        CompNode cn = as_comp_node(tup[2]);
566 567 568 569 570 571
        bool is_const = tup[3].cast<bool>();
        bool no_cache = tup[4].cast<bool>();
        std::string name;
        if (!tup[5].is_none()) {
            name = tup[5].cast<std::string>();
        }
572 573 574 575
        Format format;
        if (!tup[6].is_none()) {
            format = tup[6].cast<std::string>();
        }
576 577 578 579 580

        {
            CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                    : no_cache ? CreateTensor::Unique
                                               : CreateTensor::Common;
581 582 583 584 585 586 587 588
            ValueRef val;
            if (py::isinstance(data, Py_Varnode)) {
                cg::VarNode* m_node = py::handle(data).cast<cg::VarNode*>();
                val = imperative::apply(
                        CreateNode(m_node), Span<ValueRef>(nullptr, nullptr))[0];
            } else {
                auto&& hval = pyobj2hval(data, cn, dtype);
                val = imperative::apply(
589
                        CreateTensor(kind, cn, hval.dtype, hval.shape, format),
590 591
                        hval.storage)[0];
            }
592 593 594 595 596
            m_tensor.emplace(val);
        }

        if (!name.empty()) {
            m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]);
597 598
        }
    }
599
    mgb_assert(m_tensor->data());
600 601
}

602
PyObject* TensorWrapper::module_trace_info() {
603 604 605
    if (auto module_trace_info =
                ModuleTraceTransformation::module_trace_info_map.try_get(
                        m_tensor->data())) {
606 607 608
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
609
    }
610 611 612 613 614
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
615 616 617
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
618
    // TODO: erase when obj == nullptr
619 620
    ModuleTraceTransformation::module_trace_info_map[m_tensor->data()] =
            py::reinterpret_borrow<py::object>(obj);
621 622
}

623 624 625 626 627 628
void TensorWrapper::_set_format(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto format = py_dest.cast<std::string>();
    m_tensor->set_format(format);
}

629 630 631
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
632

633 634
    m_tensor->set_name(name);
}
635

636 637
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
638 639
}

640 641
void TensorWrapper::_watch() {
    m_tensor->data().watch();
642 643
}

644
PyObject* TensorWrapper::shape() {
645
    auto shape = m_tensor->shape();
646

647
    if (!shape) {
648 649
        Py_RETURN_NONE;
    }
650 651 652
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
653 654 655 656 657 658 659 660 661 662 663 664
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

665 666 667 668
PyObject* TensorWrapper::format() {
    return py::cast(m_tensor->format().to_string()).release().ptr();
}

669
PyObject* TensorWrapper::numpy() {
670
    auto hv = m_tensor->numpy();
671
    if (!hv) {
672 673 674
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
675 676
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
677
    if (hv->shape().is_scalar()) {
678 679 680 681 682 683 684
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
685
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
686 687 688
    if (!t) {
        throw py::type_error("expect Tensor");
    }
689
    m_tensor->reset(t->m_tensor->data());
690 691
}

692
PyObject* TensorWrapper::detach() {
693 694
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
695 696
}

M
Megvii Engine Team 已提交
697
PyObject* TensorWrapper::_dev_tensor() {
698 699 700
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
701 702 703
}

void TensorWrapper::_drop() {
704
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
705 706
}

707
PyObject* TensorWrapper::isscalar() {
708
    if (m_tensor->is_scalar()) {
709 710 711 712 713 714
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728
PyObject* TensorWrapper::_var() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* node = value->node();
    return py::cast(node).release().ptr();
}

PyObject* TensorWrapper::_graph() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* graph = value->graph();
    return py::cast(graph).release().ptr();
}

729
struct TensorWeakRef {
730
    ValueWeakRef data;
731

732
    TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {}
733 734

    py::object operator()() {
735
        if (auto p = data.lock()) {
736
            return TensorWrapper::make(py_tensor_type, p);
737 738 739 740 741
        }
        return py::none();
    }
};

742 743 744 745 746 747 748 749 750 751
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
752

753 754 755
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
756 757 758
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
759
WRAP_FUNC_PY35(split_cpp);
760
WRAP_FUNC_PY35(expand_dims_cpp);
761
WRAP_FUNC_PY35(squeeze_cpp);
762
WRAP_FUNC_PY35(transpose_cpp);
763 764
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
765
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
766
WRAP_FUNC_PY35(Const);
767
WRAP_FUNC_PY35(astype_cpp);
768 769
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
770 771
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
772
WRAP_FUNC_PY35(astensor1d_cpp);
773
WRAP_FUNC_PY35(pixel_shuffle_cpp);
774 775 776 777 778
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

779
void init_tensor(py::module m) {
780
    imperative::Tensor::static_initialize();
781
    init_backtrace_tss_key();
782
    // Transformations
783 784 785 786
    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

787 788 789 790 791 792
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
793
    interpreter_for_py = channel;
794 795 796 797 798 799 800 801 802 803
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
804 805 806 807
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Symbol>(
                                      std::make_shared<SymbolTransformation>())
                              .release());
808 809 810 811 812 813 814 815
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
816 817 818
    auto format_trans = std::make_shared<FormatTransformation>();
    MGB_MARK_USED_VAR(
            transformations.register_at<Segment::Format>(format_trans).release());
819

M
Megvii Engine Team 已提交
820 821
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
822 823
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
824 825
            if (p)
                std::rethrow_exception(p);
826 827 828 829 830 831 832 833 834 835
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
836 837
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
838
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
839 840 841
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
842 843
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
844 845
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
846 847 848 849 850 851
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

852
    // Tensor
M
Megvii Engine Team 已提交
853 854 855 856 857 858
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
859
                    .def<&TensorWrapper::format>("format")
M
Megvii Engine Team 已提交
860 861 862
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
863
                    // TODO: remove this
M
Megvii Engine Team 已提交
864 865
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
866
                    .def<&TensorWrapper::_detail>("_detail")
867
                    .def<&TensorWrapper::_set_format>("_set_format")
868 869
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
870 871
                    .def<&TensorWrapper::_var>("var")
                    .def<&TensorWrapper::_graph>("graph")
M
Megvii Engine Team 已提交
872 873 874 875 876 877
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
878
    py::setattr(m, "Tensor", tensor_type);
879 880 881 882

    auto* tracekey_type = TraceKeyWrapper::wrap_t::type().finalize();
    py::setattr(m, "tracekey", tracekey_type);

883 884 885 886 887
    py::enum_<Format::Type>(m, "FormatType")
            .value("DEFAULT", Format::Type::DEFAULT)
            .value("NCHW", Format::Type::NCHW)
            .value("NHWC", Format::Type::NHWC)
            .export_values();
888 889

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
890
            .def(py::init<const TensorWrapper&>())
891
            .def("__call__", &TensorWeakRef::operator());
892

893
    static PyMethodDef method_defs[] = {
894 895 896
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
897 898 899
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
900
            MGE_PY_INTERFACE(split_cpp, split_cpp),
901
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
902
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
903
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
904 905
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
906
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
907
            MGE_PY_INTERFACE(Const, Const),
908
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
909 910
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
911 912
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
913
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
914
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
915
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
916
    for (auto&& def : method_defs) {
917 918
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
919 920
            if (!func)
                throw py::error_already_set();
921 922 923
            py::setattr(m, def.ml_name, func);
        }
    }
924

925 926 927 928
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
929

930
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
931 932
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
933
    });
934
    m.def("get_option",
935 936 937 938 939
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
940 941 942 943
    m.def("record_scope", [](py::object frame, std::string name) {
        mgb_assert(PyFrame_Check(frame.ptr()));
        record_scope((PyFrameObject*)frame.ptr(), std::move(name));
    });
944 945 946 947 948 949 950 951 952 953 954 955 956
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
957
        CompNode::sync_all();
958 959 960 961 962 963 964 965
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
966 967 968
    m.def("enable_cupti", &cupti::enable);
    m.def("disable_cupti", &cupti::disable);
    m.def("cupti_available", &cupti::available);
969 970 971 972 973 974 975

    static std::unique_ptr<CleanupGuard<>> group_comm_guard;
    m.def("group_start", []() {
        auto commtrans = std::make_shared<GroupCommTransformation>();
        group_comm_guard = transformations.register_at<Segment::GroupComm>(commtrans);
    });
    m.def("group_end", []() { group_comm_guard.reset(); });
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
996 997
    });

998
    // GradTransformation
M
Megvii Engine Team 已提交
999 1000 1001 1002 1003 1004
    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1005 1006 1007 1008
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1009 1010 1011
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1012
    py::setattr(m, "GradKey", grad_key_type);
1013
    m.def("backward", &GradKeyWrapper::backward);
1014
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1015

1016 1017 1018 1019
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1020 1021 1022 1023
    m.def("set_py_varnode_type", [](py::object type_obj) {
        py_varnode_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1024 1025 1026
    m.def("set_py_device_type",
          [](py::object type_obj) { py_device_type = type_obj.inc_ref(); });

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
1044 1045 1046
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
1047 1048

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1049 1050
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1051
            if (lvalue->shape() != rvalue->shape()) {
1052 1053
                return false;
            }
1054
            if (lvalue->shape().total_nr_elems() == 1) {
1055 1056 1057 1058
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1059
            auto larr = py::reinterpret_steal<py::array>(
1060
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1061
            auto rarr = py::reinterpret_steal<py::array>(
1062
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
1080 1081 1082
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
1083 1084 1085
                try {
                    self.compiled->compile();
                } catch (const std::exception& e) {
1086
                    mgb_log_error("error in trace: %s", e.what());
1087
                }
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
1100 1101
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
1102 1103 1104
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
1105 1106
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
1107
                if (self.lazy_eval) {
1108 1109
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
1110 1111 1112 1113 1114 1115 1116 1117 1118
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
1119
                tracing_guard.reset();
1120 1121 1122 1123
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
1124
                    lazy_eval_guard.reset();
1125 1126 1127
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
1128
                compiled_guard.reset();
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
1202
                         self.tracing_guard.reset();
1203
                     } else if (self.compiled) {
1204
                         self.compiled_guard.reset();
1205
                     }
M
Megvii Engine Team 已提交
1206
                 })
1207 1208 1209
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
1210 1211
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
1212
                } else if (self.compiled) {
1213 1214
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
                }
            });

    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1225
        SmallVector<ValueRef> values(tensors.size());
1226 1227
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1238
        SmallVector<ValueRef> values(tensors.size());
1239 1240
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1241
        }
1242 1243
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1244 1245
            return py::none();
        }
1246 1247
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1248 1249
    });

1250
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
1251 1252
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
1253
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1264 1265 1266
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1267
                if (!input_grad_tw.is_none()) {
1268 1269
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1270
                } else {
1271
                    input_grads[i] = {};
1272 1273 1274 1275
                }
            }
            return input_grads;
        };
1276
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1277 1278
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1279
        }
1280 1281 1282
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1283
        }
1284 1285
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
1286 1287 1288 1289 1290 1291 1292 1293 1294
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

1295
    // ModuleTraceTransformation
1296 1297
    static py::function module_trace_hook;

1298 1299
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1300 1301 1302 1303
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1304 1305 1306 1307
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
1308
        }
1309 1310
        return module_trace_transformation;
    };
1311

1312 1313
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1314 1315 1316
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1317

1318
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1319 1320 1321 1322 1323 1324
    m.def("set_python_backtrace_enabled", &set_python_backtrace_enabled);
    m.def("set_transformation_backtrace_enabled",
          &set_transformation_backtrace_enabled);
    m.def("_mge_backtrace", &get_py_backtrace);
    m.def("_get_frame_cache_id",
          []() { return (size_t)FrameInfoCache::get_instance(); });
1325 1326 1327 1328
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1329

1330 1331
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1343
    m.def("print_stats", [] { Stats::print(); });
1344

1345
    m.def("reset_stats", [] { Stats::reset(); });
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1404 1405
    m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); });

1406 1407 1408 1409 1410 1411
    // FormatTransformation
    m.def("set_auto_format_convert",
          [format_trans](bool enabled) { format_trans->set_auto_convert(enabled); });
    m.def("get_auto_format_convert",
          [format_trans]() { return format_trans->get_auto_convert(); });

1412
    py::register_exception<TraceError>(m, "TraceError");
1413 1414
}

1415 1416
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1417
}  // namespace mgb::imperative::python