tensor.cpp 42.8 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/imperative/transformations/dim_expansion.h"
19
#include "megbrain/imperative/transformations/dtype_promote.h"
20 21 22 23 24 25
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
26
#include "megbrain/imperative/utils/stats.h"
27
#include "megbrain/opr/io.h"
28
#include "megbrain/plugin/profiler.h"
29

30
#include "./common.h"
M
Megvii Engine Team 已提交
31
#include "./grad.h"
32
#include "./graph_rt.h"
33
#include "./helper.h"
M
Megvii Engine Team 已提交
34 35 36
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
37
#include "./tensor_utils.h"
38
#include "./transformation.h"
39

40
#include <object.h>
41 42
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
43 44
#include <pybind11/pytypes.h>
#include <pyerrors.h>
45
#include <range/v3/all.hpp>
46
#include <string>
47 48 49

#include <unordered_map>

50 51
#include "../../src/impl/mgb_cg_impl.h"

52
namespace py = pybind11;
53
namespace views = ranges::views;
54 55 56

namespace mgb::imperative::python {

57 58
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
59 60 61

struct SymbolVarContext {
    TransformationContext context;
62 63
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
64
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
65
    std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf;
66

67 68 69
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
70
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
71
        dim_expansion_tsf = std::make_shared<DimExpansionTransformation>();
72 73 74 75
        Transformation::swap_context(context);
    }

    void init() {
76 77
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
78
        dtype_promote_tsf->register_at(Transformation::top());
79
        dim_expansion_tsf->register_at(Transformation::top());
80 81
    }

82 83 84 85 86 87 88 89
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
90

91 92 93 94 95 96 97 98 99 100 101
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
102 103
    }

104 105
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
106

107 108
}  // namespace

109 110
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
111
PyObject* cpp_use_symbolic_shape;
112 113 114 115 116 117 118

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
119

120 121 122
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
123 124
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
125 126 127 128 129
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
130
        if (nargs < 2) {
M
Megvii Engine Team 已提交
131 132 133 134
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
135 136
            return nullptr;
        }
137

138
        auto* py_op = args[0];
139

140 141 142
        ++args;
        --nargs;

143
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
144
        SmallVector<ValueRef, 8> tensors(nargs);
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
172
            if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
173 174 175 176 177 178 179 180 181 182 183
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
184
            // swap to a special context to reuse scalar handle
185 186
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
187
            context.init();
188
            for (size_t i = 0; i < nargs; ++i) {
189 190 191 192 193 194
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
                } else {
                    tensors[i] = convert_pyinput_to_tensor(i);
                }
195
            }
196
            auto outputs = imperative::apply(*op, tensors);
197
            auto ret = pybind11::tuple(outputs.size());
198
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
199
            for (size_t i = 0; i < outputs.size(); ++i) {
200
                ret[i] = context.val2symvar(typeobj, outputs[i]);
201 202 203
            }
            return ret.release().ptr();
        }
204 205

        for (size_t i = 0; i < nargs; ++i) {
206
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
207
                tensors[i] = tw->m_tensor->data();
208 209 210
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
                    op->same_type<Elemwise>()) {
211
                tensors[i] = convert_pyinput_to_tensor(i);
212 213 214
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
215 216 217
            }
        }

218
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
219 220 221
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
222
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
223 224
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
225 226
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
227 228 229 230 231 232 233 234 235 236 237
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
238
    if (auto* t = try_cast(tup[0].ptr())) {
239 240 241
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
242
        m_tensor = t->m_tensor->copy();
243
    } else {
244 245
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
246 247 248 249 250 251
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
252
            } else {
253 254
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
255
            }
256
        } else {
M
Megvii Engine Team 已提交
257
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
258 259
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
260
            }
261 262 263 264
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
265
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
266
            std::string name;
M
Megvii Engine Team 已提交
267 268
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
269 270

            // const op
271
            {
272 273 274
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
275
                HostTensorND ret(cn);
276 277 278 279 280 281 282 283 284 285 286
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
287 288
            }

289 290 291
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
292
            }
293 294
        }
    }
295
    mgb_assert(m_tensor->data());
296 297
}

298
PyObject* TensorWrapper::module_trace_info() {
299
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
300 301 302
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
303
    }
304 305 306 307 308
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
309 310 311
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
312
    // TODO: erase when obj == nullptr
313
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
314 315
}

316 317 318 319 320
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
321

322 323
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
324 325
}

326 327
void TensorWrapper::_watch() {
    m_tensor->data().watch();
328 329
}

330
PyObject* TensorWrapper::shape() {
331
    auto shape = m_tensor->shape();
332

333
    if (!shape) {
334 335
        Py_RETURN_NONE;
    }
336 337 338
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
339 340 341 342 343 344 345 346 347 348 349 350 351
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
352
    auto hv = m_tensor->numpy();
353
    if (!hv) {
354 355 356
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
357 358
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
359
    if (hv->shape().is_scalar()) {
360 361 362 363 364 365 366
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
367
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
368 369 370
    if (!t) {
        throw py::type_error("expect Tensor");
    }
371
    m_tensor->reset(t->m_tensor->data());
372 373
}

374
PyObject* TensorWrapper::detach() {
375 376
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
377 378
}

M
Megvii Engine Team 已提交
379
PyObject* TensorWrapper::_dev_tensor() {
380 381 382
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
383 384 385
}

void TensorWrapper::_drop() {
386
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
387 388
}

389
PyObject* TensorWrapper::isscalar() {
390
    if (m_tensor->is_scalar()) {
391 392 393 394 395 396 397 398 399 400 401 402 403
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
404
            return TensorWrapper::make(py_tensor_type, p);
405 406 407
        }
        return py::none();
    }
408
    int _use_cnt() { return wptr.use_count(); }
409 410
};

411 412 413 414 415 416 417 418 419 420 421 422 423
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
424 425 426
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
427
WRAP_FUNC_PY35(split_cpp);
428
WRAP_FUNC_PY35(expand_dims_cpp);
429
WRAP_FUNC_PY35(squeeze_cpp);
430
WRAP_FUNC_PY35(transpose_cpp);
431 432
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
433
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
434
WRAP_FUNC_PY35(Const);
435
WRAP_FUNC_PY35(astype_cpp);
436 437
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
438 439
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
440
WRAP_FUNC_PY35(astensor1d_cpp);
441 442 443 444 445
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

446
void init_tensor(py::module m) {
447
    imperative::Tensor::static_initialize();
448 449 450 451 452

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

453 454 455 456 457 458
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
459
    interpreter_for_py = channel;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
478

M
Megvii Engine Team 已提交
479 480
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
481 482
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
483 484
            if (p)
                std::rethrow_exception(p);
485 486 487 488 489 490 491 492 493 494
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
495 496
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
497
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
498 499 500
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
501 502
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
503 504
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
505 506 507 508 509 510
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
511 512 513 514 515 516 517 518 519
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
520
                    // TODO: remove this
M
Megvii Engine Team 已提交
521 522 523
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
524 525 526
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
527 528 529 530 531 532
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
533 534 535
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
536 537 538
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
539

540 541 542
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
543 544 545
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
546
            .def_property_readonly(
M
Megvii Engine Team 已提交
547
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
548
            .def_property_readonly(
M
Megvii Engine Team 已提交
549
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
550 551 552
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
553
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
554 555
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
571 572 573 574 575 576
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

577
    static PyMethodDef method_defs[] = {
578 579 580
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
581 582 583
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
584
            MGE_PY_INTERFACE(split_cpp, split_cpp),
585
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
586
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
587
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
588 589
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
590
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
591
            MGE_PY_INTERFACE(Const, Const),
592
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
593 594
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
595 596
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
597
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
598
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
599
    for (auto&& def : method_defs) {
600 601
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
602 603
            if (!func)
                throw py::error_already_set();
604 605 606
            py::setattr(m, def.ml_name, func);
        }
    }
607

608 609 610 611
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
612

613
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
614 615
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
616
    });
617
    m.def("get_option",
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
664 665 666 667 668 669 670 671
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
672 673 674 675
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
676 677 678
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
679
    py::setattr(m, "GradKey", grad_key_type);
680
    m.def("backward", &GradKeyWrapper::backward);
681
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
704 705 706
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
707 708

        bool compare_value(ValueRef lhs, ValueRef rhs) {
709 710
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
711
            if (lvalue->shape() != rvalue->shape()) {
712 713
                return false;
            }
714
            if (lvalue->shape().total_nr_elems() == 1) {
715 716 717 718
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
719
            auto larr = py::reinterpret_steal<py::array>(
720
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
721
            auto rarr = py::reinterpret_steal<py::array>(
722
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
756 757
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
758 759 760
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
761 762
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
763
                if (self.lazy_eval) {
764 765
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
766 767 768 769 770 771 772 773 774
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
775
                tracing_guard.reset();
776 777 778 779
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
780
                    lazy_eval_guard.reset();
781 782 783
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
784
                compiled_guard.reset();
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
858
                         self.tracing_guard.reset();
859
                     } else if (self.compiled) {
860
                         self.compiled_guard.reset();
861
                     }
M
Megvii Engine Team 已提交
862
                 })
863 864 865
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
866 867
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
868
                } else if (self.compiled) {
869 870
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
871 872 873
                }
            });

874 875 876 877 878 879 880 881
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
882
        };
883 884 885 886 887
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
888
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
889
            auto typeobj = tensor.get_type();
890
            return context.val2symvar(typeobj, output);
891 892 893 894 895 896
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
897 898
    });

899 900 901 902 903 904 905
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
906
        SmallVector<ValueRef> values(tensors.size());
907 908
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
909 910 911 912 913 914 915 916 917 918
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
919
        SmallVector<ValueRef> values(tensors.size());
920 921
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
922
        }
923 924
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
925 926
            return py::none();
        }
927 928
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
929 930
    });

931
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
932 933
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
934
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
935 936 937 938 939 940 941 942 943 944
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
945 946 947
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
948
                if (!input_grad_tw.is_none()) {
949 950
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
951
                } else {
952
                    input_grads[i] = {};
953 954 955 956
                }
            }
            return input_grads;
        };
957
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
958 959
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
960
        }
961 962 963
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
964
        }
965 966
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
967 968 969 970 971 972 973 974 975 976 977
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

978 979
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
980 981 982 983
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
984 985 986 987
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
988
        }
989 990
        return module_trace_transformation;
    };
991

992 993
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

994 995 996
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
997

998
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
999

1000 1001 1002 1003
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1004

1005 1006 1007
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1019 1020 1021 1022
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1080
    py::register_exception<TraceError>(m, "TraceError");
1081 1082
}

1083 1084
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1085
}  // namespace mgb::imperative::python