tensor.cpp 63.3 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18 19 20 21 22 23
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
24
#include "megbrain/imperative/utils/stats.h"
25
#include "megbrain/opr/io.h"
26
#include "megbrain/plugin/profiler.h"
27

28
#include "./common.h"
M
Megvii Engine Team 已提交
29
#include "./grad.h"
30
#include "./graph_rt.h"
31
#include "./helper.h"
M
Megvii Engine Team 已提交
32 33 34
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
35
#include "./transformation.h"
36

37
#include <object.h>
38 39
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
40 41
#include <pybind11/pytypes.h>
#include <pyerrors.h>
42
#include <range/v3/all.hpp>
43
#include <string>
44 45 46

#include <unordered_map>

47 48
#include "../../src/impl/mgb_cg_impl.h"

49
namespace py = pybind11;
50
namespace views = ranges::views;
51 52 53

namespace mgb::imperative::python {

54 55
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

struct SymbolVarContext {
    TransformationContext context;
    cg::ComputingGraph* graph;

    SymbolVarContext(cg::ComputingGraph* graph) : graph(graph) {
        Transformation::swap_context(context);
    }

    void init() {
        std::make_shared<SymbolTransformation>(graph)->register_at(
                Transformation::top());
        std::make_shared<ScalarTransformation>()->register_at(Transformation::top());
    }

    ~SymbolVarContext() { Transformation::swap_context(context); }
};

ValueRef symvar2val(py::handle py_symbol_var) {
    auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
    ValueRef value = SymbolValue::make(symbol_var->m_node);
    if (symbol_var->is_scalar) {
        value = ScalarValue::make(value);
    }
    return value;
}

py::object val2symvar(py::handle typeobj, ValueRef value) {
    bool is_scalar = false;
    if (auto* scalar_value = value.as<ScalarValue>()) {
        value = scalar_value->value();
        is_scalar = true;
    }
    auto* node = value.cast<SymbolValue>().node();
    auto py_symbol_var =
            typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
    py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
    return py_symbol_var;
M
Megvii Engine Team 已提交
94
}
95

96 97
}  // namespace

98 99
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
100 101 102 103 104 105 106 107 108
PyObject *cpp_use_symbolic_shape, *cpp_astensor1d;

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)
REGISTE_APPLY_FUNC(cpp_astensor1d)

#undef REGISTE_APPLY_FUNC
109

M
Megvii Engine Team 已提交
110 111
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
112 113 114 115 116
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
117
        if (nargs < 2) {
M
Megvii Engine Team 已提交
118 119 120 121
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
122 123
            return nullptr;
        }
124

125
        auto* py_op = args[0];
126

127 128 129
        ++args;
        --nargs;

130
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
131
        SmallVector<ValueRef, 8> tensors(nargs);
132

M
Megvii Engine Team 已提交
133
        if (py::isinstance<PySymbolVar>(py::handle(args[0]))) {
134
            // swap to a special context to reuse scalar handle
135 136 137
            SymbolVarContext context(
                    py::handle(args[0]).cast<PySymbolVar*>()->m_node->owner_graph());
            context.init();
138
            for (size_t i = 0; i < nargs; ++i) {
139
                tensors[i] = symvar2val(args[i]);
140
            }
141
            auto outputs = imperative::apply(*op, tensors);
142
            auto ret = pybind11::tuple(outputs.size());
143
            auto typeobj = py::handle(args[0]).get_type();
144
            for (size_t i = 0; i < outputs.size(); ++i) {
145
                ret[i] = val2symvar(typeobj, outputs[i]);
146 147 148
            }
            return ret.release().ptr();
        }
149 150

        for (size_t i = 0; i < nargs; ++i) {
151
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
152
                tensors[i] = tw->m_tensor->data();
153
            } else {
M
Megvii Engine Team 已提交
154 155 156 157
                PyErr_SetString(
                        PyExc_TypeError,
                        ssprintf(
                                "op %s expect type Tensor as inputs, got %s actually",
158
                                op->make_name().c_str(), Py_TYPE(args[i])->tp_name)
M
Megvii Engine Team 已提交
159
                                .c_str());
160 161 162 163
                return nullptr;
            }
        }

164
        auto outputs = imperative::apply(*op, tensors);
165 166 167
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
168
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
169 170
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
171 172
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
173 174 175 176 177 178 179 180 181 182 183
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
184
    if (auto* t = try_cast(tup[0].ptr())) {
185 186 187
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
188
        m_tensor = t->m_tensor->copy();
189
    } else {
190 191
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
192 193 194 195 196 197
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
198
            } else {
199 200
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
201
            }
202
        } else {
M
Megvii Engine Team 已提交
203
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
204 205
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
206
            }
207 208 209 210
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
211
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
212
            std::string name;
M
Megvii Engine Team 已提交
213 214
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
215 216

            // const op
217
            {
218 219 220
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
221
                HostTensorND ret(cn);
222 223 224 225 226 227 228 229 230 231 232
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
233 234
            }

235 236 237
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
238
            }
239 240
        }
    }
241
    mgb_assert(m_tensor->data());
242 243
}

244
PyObject* TensorWrapper::module_trace_info() {
245
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
246 247 248
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
249
    }
250 251 252 253 254
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
255 256 257
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
258
    // TODO: erase when obj == nullptr
259
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
260 261
}

262 263 264 265 266
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
267

268 269
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
270 271
}

272 273
void TensorWrapper::_watch() {
    m_tensor->data().watch();
274 275
}

276
PyObject* TensorWrapper::shape() {
277
    auto shape = m_tensor->shape();
278

279
    if (!shape) {
280 281
        Py_RETURN_NONE;
    }
282 283 284
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
285 286 287 288 289 290 291 292 293 294 295 296 297
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
298
    auto hv = m_tensor->numpy();
299
    if (!hv) {
300 301 302
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
303 304
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
305
    if (hv->shape().is_scalar()) {
306 307 308 309 310 311 312
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
313
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
314 315 316
    if (!t) {
        throw py::type_error("expect Tensor");
    }
317
    m_tensor->reset(t->m_tensor->data());
318 319
}

320
PyObject* TensorWrapper::detach() {
321 322
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
323 324
}

M
Megvii Engine Team 已提交
325
PyObject* TensorWrapper::_dev_tensor() {
326 327 328
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
329 330 331
}

void TensorWrapper::_drop() {
332
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
333 334
}

335
PyObject* TensorWrapper::isscalar() {
336
    if (m_tensor->is_scalar()) {
337 338 339 340 341 342 343 344 345 346 347 348 349
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
350
            return TensorWrapper::make(py_tensor_type, p);
351 352 353
        }
        return py::none();
    }
354
    int _use_cnt() { return wptr.use_count(); }
355 356
};

357 358 359 360 361
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
M
Megvii Engine Team 已提交
362 363 364 365 366 367 368 369 370 371
        case 'f':
            return 3;  // floating-point
        case 'i':
            return 2;  // signed integer
        case 'u':
            return 2;  // unsigned integer
        case 'b':
            return 1;  // boolean
        default:
            return 0;
372 373 374 375 376 377 378 379 380
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
M
Megvii Engine Team 已提交
381
        for (auto&& desc : types) {
382 383 384 385 386 387
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

388
// Returns the data type with sufficient size to hold all types of
389 390 391 392
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
M
Megvii Engine Team 已提交
393
    for (auto&& desc : types) {
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

M
Megvii Engine Team 已提交
428
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs) {
429 430 431 432 433
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
434
    PyObject* tuple = nullptr;
435 436 437 438 439 440 441 442 443 444 445 446
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
M
Megvii Engine Team 已提交
447 448 449
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
        if (handle == Py_None)
            continue;
450
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
451 452 453 454 455
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
M
Megvii Engine Team 已提交
456
        } else {
457 458 459 460 461
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
462

M
Megvii Engine Team 已提交
463
            if (py::isinstance<PySymbolVar>(py::handle(handle))) {
464 465
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
M
Megvii Engine Team 已提交
466
                auto&& descr = npy::dtype_mgb2np_descr(type);
467 468 469 470 471
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
M
Megvii Engine Team 已提交
489
    } else {
490 491
        res = promote_types(tensors, max_pri_tensors);
    }
M
Megvii Engine Team 已提交
492 493 494 495 496 497
    for (auto* p : tensors) {
        Py_DECREF(p);
    }
    for (auto* p : scalars) {
        Py_DECREF(p);
    }
498
    Py_XDECREF(tuple);
499 500 501
    return res;
}

M
Megvii Engine Team 已提交
502
CompNode _get_device(PyObject* const* args, size_t nargs) {
503
    bool is_tuple = false;
504
    PyObject* tuple = nullptr;
505 506 507 508 509 510 511 512 513 514 515 516 517
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
518
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
519
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
520

521 522
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
523
            if (!valid) {
524
                cn = tw ? tw->m_tensor->comp_node()
M
Megvii Engine Team 已提交
525
                        : py::handle(handle).cast<PySymbolVar*>()->m_node->comp_node();
526 527
                valid = true;
            } else {
528 529 530 531
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
532
                if (cn1 != cn) {
M
Megvii Engine Team 已提交
533 534 535
                    throw py::value_error(ssprintf(
                            "ambiguous device: %s vs %s", cn.to_string().c_str(),
                            cn1.to_string().c_str()));
536 537 538 539 540
                }
            }
        }
    }
    if (!valid) {
541
        return CompNode::load(get_default_device());
542
    }
543
    Py_XDECREF(tuple);
544 545 546
    return cn;
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
bool is_scalar(PyObject* tensor) {
    if (py::isinstance<PySymbolVar>(py::handle(tensor))) {
        auto var = py::handle(tensor).cast<PySymbolVar*>();
        return var->is_scalar;
    }
    auto* tw = TensorWrapper::try_cast(tensor);
    if (tw) {
        return tw->m_tensor->is_scalar();
    }
    return PyArray_CheckAnyScalar(tensor);
}

bool is_bool_list(PyObject* arg) {
    if (!PyList_Check(arg)) {
        return false;
    }
    size_t sz = PyList_Size(arg);
    if (!sz) {
        return false;
    }
    for (size_t i = 0; i < sz; ++i) {
        PyObject* handle = PyList_GetItem(arg, i);
        if (!PyBool_Check(handle)) {
            return false;
        }
    }
    return true;
}

bool is_bool_dtype(PyObject* args) {
    if (!PyObject_HasAttrString(args, "dtype"))
        return false;
    PyObject* dobj = PyObject_GetAttrString(args, "dtype");
    PyArray_Descr* dtype;
    PyArray_DescrConverter(dobj, &dtype);
    bool ret = (dtype->kind == 'b');
    Py_XDECREF(dtype);
    Py_XDECREF(dobj);
    return ret;
}

py::object _Const(
        py::handle value, py::handle dtype, py::handle device, py::handle ref) {
    py::object val = py::reinterpret_borrow<py::object>(value);
    if (PyArray_Check(value.ptr())) {
        py::tuple strides =
                py::reinterpret_borrow<py::tuple>(getattr(value, "strides"));
        bool need_squeeze = false;
        for (size_t i = 0; i < strides.size(); ++i) {
            if (strides[i].cast<ptrdiff_t>() == 0) {
                need_squeeze = true;
            }
        }
        if (need_squeeze) {
            val = py::reinterpret_borrow<py::array>(value);
            val = val.attr("squeeze")();
            val = val.attr("reshape")(val.attr("shape"));
        }
    }
    if (py::isinstance<PySymbolVar>(ref)) {
        auto ref_var = ref.cast<PySymbolVar*>();
        auto* graph = ref_var->m_node->owner_graph();
        auto cn = device.cast<CompNode>();
        OperatorNodeConfig config(cn);
        auto hv = npy::np2tensor(
                val.ptr(), npy::Meth::borrow(cn), dtype.cast<mgb::DType>());
        auto typeobj = ref.get_type();
        return typeobj(opr::ImmutableTensor::make(*graph, hv, config).node());
    }
    py::tuple tup = py::make_tuple(val, dtype, device, true, false, py::none());
    return TensorWrapper::make(py_tensor_type, tup.ptr(), nullptr);
}

py::tuple _make_shape_tuple(py::handle shape) {
    py::list orig;
    py::list ret(0);
    auto solve_one = [&](py::handle val) {
        if (TensorWrapper::try_cast(val.ptr()) || py::isinstance<PySymbolVar>(val)) {
            py::object np = getattr(val, "numpy")();
            PyArrayObject* arr = (PyArrayObject*)np.ptr();
            PyObject* maybe_list = PyArray_ToList(arr);
            if (PyList_Check(maybe_list)) {
                py::list may = py::reinterpret_steal<py::list>(maybe_list);
                for (size_t i = 0; i < may.size(); ++i) {
                    ret.append(may[i]);
                }
            } else {
                mgb_assert(PyLong_Check(maybe_list));
                ret.append(PyLong_AsLong(maybe_list));
                Py_XDECREF(maybe_list);
            }
        } else if (PyArray_Check(val.ptr())) {
            ret.append(PyArray_PyIntAsInt(val.ptr()));
        } else {
            ret.append(PyLong_AsLong(val.ptr()));
        }
    };
    if (PyArray_Check(shape.ptr()) && !PyArray_CheckAnyScalar(shape.ptr())) {
        orig = py::reinterpret_steal<py::list>(
                PyArray_ToList((PyArrayObject*)shape.ptr()));
        for (size_t i = 0; i < orig.size(); ++i) {
            solve_one(orig[i]);
        }
    } else if (PyList_Check(shape.ptr())) {
        orig = py::reinterpret_borrow<py::list>(shape);
        for (size_t i = 0; i < orig.size(); ++i) {
            solve_one(orig[i]);
        }
    } else if (PyTuple_Check(shape.ptr())) {
        py::tuple tup = py::reinterpret_borrow<py::tuple>(shape);
        for (size_t i = 0; i < tup.size(); ++i) {
            solve_one(tup[i]);
        }
    } else {
        solve_one(shape);
    }
    return py::reinterpret_steal<py::tuple>(PyList_AsTuple(ret.ptr()));
}

py::object _get_index(py::object tensor, py::object src) {
    if (!TensorWrapper::try_cast(tensor.ptr()) &&
        !py::isinstance<PySymbolVar>(tensor)) {
        auto get_const = [&](mgb::DType dtype) -> py::object {
            return _Const(tensor, py::cast(dtype), src.attr("device"), src);
        };
        if (is_bool_list(tensor.ptr()) || is_bool_dtype(tensor.ptr())) {
            tensor = get_const(dtype::Bool());
        } else {
            tensor = get_const(dtype::Int32());
        }
        if (!is_bool_dtype(tensor.ptr())) {
            return tensor;
        }
    } else {
        if (!is_bool_dtype(tensor.ptr())) {
            return tensor;
        }
    }
    static std::shared_ptr<OpDef> op = CondTake::make();
    std::vector<PyObject*> p;
    p.resize(3);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    p[2] = tensor.ptr();
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret[1];
}

py::tuple _try_cond_take(py::handle tensor, py::handle index) {
    if (!hasattr(index, "dtype") || !hasattr(index, "shape")) {
        return py::tuple();
    }
    if (!is_bool_dtype(index.ptr()) ||
        _make_shape_tuple(getattr(index, "shape"))
                .not_equal(_make_shape_tuple(getattr(tensor, "shape")))) {
        return py::tuple();
    }
    py::object iobj;
    if (PyArray_Check(index.ptr())) {
        iobj =
                _Const(index, py::cast((mgb::DType)dtype::Bool()),
                       getattr(tensor, "device"), tensor);
    } else {
        iobj = py::reinterpret_borrow<py::object>(index);
    }
    static std::shared_ptr<OpDef> op = CondTake::make();
    std::vector<PyObject*> p;
    p.resize(3);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    p[2] = iobj.ptr();
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret;
}

py::tuple _remove_ellipsis(py::object tensor, py::tuple tuple_val) {
    size_t tuple_size = tuple_val.size();
    size_t ndim_sum = 0, cur_sum = 0;
    int pos = -1;
    bool has_unknown_ndim_bool_index = false;
    for (size_t i = 0; i < tuple_size; ++i) {
        py::object handle = tuple_val[i];
        if (handle.ptr() == Py_Ellipsis) {
            pos = static_cast<int>(i);
            for (size_t j = 0; j < i; ++j) {
                py::object t = tuple_val[j];
                if (t.ptr() == Py_Ellipsis) {
                    throw py::index_error("only one ellipsis is allowed.");
                }
            }
        } else {
            size_t ndim_incr = 1;
            if (hasattr(handle, "dtype") && is_bool_dtype(handle.ptr()) &&
                hasattr(handle, "ndim")) {
                py::object ndim = getattr(handle, "ndim");
                if (PyLong_Check(ndim.ptr())) {
                    ndim_incr = PyLong_AsLong(ndim.ptr());
                } else {
                    has_unknown_ndim_bool_index = true;
                }
            }
            cur_sum += ndim_incr;
        }
    }
    if (pos == -1) {
        return tuple_val;
    } else {
        if (has_unknown_ndim_bool_index) {
            throw py::index_error(
                    "does not support bool index with unknown shape when using "
                    "Ellipsis.");
        }
        try {
            ndim_sum = getattr(tensor, "ndim").cast<size_t>();
        } catch (py::error_already_set& err) {
            throw py::index_error(
                    "does not support Ellipsis when tensor's ndim is unknown.");
        }
        py::tuple ret(ndim_sum - cur_sum + tuple_size - 1);
        size_t idx = 0;
        for (size_t i = 0; i < tuple_size; ++i) {
            if (i == pos) {
                for (size_t j = cur_sum; j < ndim_sum; ++j) {
                    ret[idx++] = PySlice_New(NULL, NULL, NULL);
                }
            } else {
                ret[idx++] = tuple_val[i];
            }
        }
        return ret;
    }
}

py::tuple _expand_bool_dim(py::object tensor, py::tuple tuple_val) {
    py::tuple cur_shape = _make_shape_tuple(py::handle(getattr(tensor, "shape")));
    py::list new_tuple_val(0);

    size_t offset = 0;
    size_t tdim = 0;
    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::handle k = tuple_val[i];
        if (is_bool_dtype(k.ptr())) {
            size_t ndim = getattr(k, "ndim").cast<size_t>();
            if (ndim > 1) {
                py::tuple ishape = _make_shape_tuple(py::handle(getattr(k, "shape")));
                for (size_t j = 0; j < ndim; ++j) {
                    if (cur_shape[tdim + j - offset].cast<size_t>() !=
                        ishape[j].cast<size_t>()) {
                        std::string msg =
                                "boolean index did not match tensor along dimension " +
                                std::to_string(tdim + j) + "; dimension is " +
                                std::to_string(
                                        cur_shape[tdim + j - offset].cast<size_t>()) +
                                " but corresponding boolean dimension is " +
                                std::to_string(ishape[j].cast<size_t>());
                        throw py::index_error(msg.c_str());
                    }
                }
                py::object new_k = getattr(k, "reshape")(-1);
                py::object kshape = getattr(new_k, "shape");
                py::list new_shape(0);
                PyObject* sym = PyObject_CallObject(cpp_use_symbolic_shape, nullptr);
                bool is_sym = (sym == Py_True);
                Py_XDECREF(sym);
                if (is_sym) {
                    py::object tshape = getattr(tensor, "shape");
                    for (size_t j = 0; j < i; ++j) {
                        new_shape.append(tshape[py::int_(j)]);
                    }
                    new_shape.append(kshape[py::int_(0)]);
                    for (size_t j = tdim + ndim - offset; j < cur_shape.size(); ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    py::tuple args = py::make_tuple(new_shape);
                    PyObject* shape_tensor =
                            PyObject_CallObject(cpp_astensor1d, args.ptr());
                    py::object reshape_func = getattr(tensor, "reshape");
                    Py_INCREF(shape_tensor);
                    PyObject* Args = PyTuple_New(1);
                    PyTuple_SetItem(Args, 0, shape_tensor);
                    PyObject* new_tensor =
                            PyObject_CallObject(reshape_func.ptr(), Args);
                    Py_XDECREF(Args);
                    tensor = py::reinterpret_steal<py::object>(new_tensor);
                    cur_shape = _make_shape_tuple(py::handle(shape_tensor));
                    Py_XDECREF(shape_tensor);
                } else {
                    for (size_t j = 0; j < i; ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    new_shape.append(py::reinterpret_borrow<py::tuple>(kshape)[0]);
                    for (size_t j = tdim + ndim - offset; j < cur_shape.size(); ++j) {
                        new_shape.append(cur_shape[j]);
                    }
                    cur_shape = new_shape;
                    tensor = getattr(tensor, "reshape")(cur_shape);
                }
                offset++;
                tdim += ndim;
            }
            new_tuple_val.append(k);
        } else {
            new_tuple_val.append(k);
            tdim++;
        }
    }
    return py::make_tuple(tensor, py::reinterpret_borrow<py::tuple>(new_tuple_val));
}

py::tuple _unpack_indexes(py::handle inp_hdl, py::handle idx_hdl) {
    py::object inp = py::reinterpret_borrow<py::object>(inp_hdl);
    py::tuple tuple_val;
    if (py::isinstance<py::tuple>(idx_hdl)) {
        tuple_val = py::reinterpret_borrow<py::tuple>(idx_hdl);
    } else {
        tuple_val = py::make_tuple(idx_hdl);
    }

    bool use_subtensor = true;
    bool need_remove_ellipsis = false;
    bool need_expand_bool_dim = false;
    size_t idx_ndim = 0;
    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::object k = tuple_val[i];
        if (k.ptr() == Py_None) {
            throw py::index_error("newaxis is not allowed here");
        } else if (k.ptr() == Py_Ellipsis) {
            need_remove_ellipsis = true;
        } else {
            if (is_bool_dtype(k.ptr()) && hasattr(k, "ndim")) {
                size_t ndim = getattr(k, "ndim").cast<size_t>();
                idx_ndim += ndim;
                if (ndim > 1) {
                    need_expand_bool_dim = true;
                }
            } else {
                idx_ndim++;
            }
        }
    }
    try {
        size_t inp_ndim = getattr(inp, "ndim").cast<size_t>();
        if (idx_ndim > inp_ndim) {
            std::string msg = "too many indices for tensor: tensor is " +
                              std::to_string(inp_ndim) + "-dimensional, but " +
                              std::to_string(idx_ndim) + " were indexed";
            throw py::index_error(msg.c_str());
        }
    } catch (py::error_already_set& err) {
        ;  // ignore
    }
    if (need_remove_ellipsis) {
        tuple_val = _remove_ellipsis(inp, tuple_val);
    }

    if (need_expand_bool_dim) {
        py::object shape = getattr(inp, "shape");
        if (shape.ptr() != Py_None) {
            py::tuple ret = _expand_bool_dim(inp, tuple_val);
            inp = ret[0];
            tuple_val = ret[1];
        }
    }

    py::list items;
    py::list tensors;
    int cur_axis = -1;

    for (size_t i = 0; i < tuple_val.size(); ++i) {
        py::object handle = tuple_val[i];
        cur_axis++;
        if (!is_scalar(handle.ptr()) && !PySlice_Check(handle.ptr())) {
            use_subtensor = false;
        }
        py::list item;
        item.append(cur_axis);
        auto push = [&](PyObject* v) {
            if (v == Py_None) {
                item.append(false);
            } else {
                item.append(true);
                tensors.append(_get_index(py::reinterpret_borrow<py::object>(v), inp));
            }
        };

        if (PySlice_Check(handle.ptr())) {
            PySliceObject* s = (PySliceObject*)handle.ptr();
            if (s->start == Py_None && s->stop == Py_None && s->step == Py_None) {
                continue;
            }
            push(s->start);
            push(s->stop);
            push(s->step);
            item.append(false);
        } else {
            for (size_t j = 0; j < 3; j++)
                item.append(false);
            push(handle.ptr());
        }
        items.append(item);
    }

    return py::make_tuple(inp, tensors, items, use_subtensor, need_expand_bool_dim);
}

py::object _getitem_cpp(py::handle inp_hdl, py::handle idx_hdl) {
    py::tuple try_res = _try_cond_take(inp_hdl, idx_hdl);
    if (try_res.size() == 2) {
        return try_res[0];
    }
    py::tuple up = _unpack_indexes(inp_hdl, idx_hdl);
    py::object tensor = py::reinterpret_borrow<py::object>(up[0]);
    py::list tensors = py::reinterpret_borrow<py::list>(up[1]);
    py::list py_items = py::reinterpret_borrow<py::list>(up[2]);
    std::vector<std::tuple<int8_t, bool, bool, bool, bool>> cpp_items;
    for (size_t i = 0; i < py_items.size(); ++i) {
        py::list item = py::reinterpret_borrow<py::list>(py_items[i]);
        cpp_items.push_back(
                {item[0].cast<int8_t>(), item[1].cast<bool>(), item[2].cast<bool>(),
                 item[3].cast<bool>(), item[4].cast<bool>()});
    }
    static std::shared_ptr<OpDef> op;
    if (up[3].cast<bool>()) {
        op = Subtensor::make(cpp_items);
    } else {
        op = IndexingMultiAxisVec::make(cpp_items);
    }
    std::vector<PyObject*> p;
    p.resize(tensors.size() + 2);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        p[i + 2] = tensors[i].ptr();
    }
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    return ret[0];
}

py::object _setitem_cpp(py::handle inp_hdl, py::handle idx_hdl, py::handle val_hdl) {
    py::object org_shape = getattr(inp_hdl, "shape");
    py::object val = py::reinterpret_borrow<py::object>(val_hdl);
    if (!TensorWrapper::try_cast(val.ptr()) && !py::isinstance<PySymbolVar>(val)) {
        val =
                _Const(val_hdl, getattr(inp_hdl, "dtype"), getattr(inp_hdl, "device"),
                       inp_hdl);
    }

    py::tuple up = _unpack_indexes(inp_hdl, idx_hdl);
    py::object tensor = py::reinterpret_borrow<py::object>(up[0]);
    py::list tensors = py::reinterpret_borrow<py::list>(up[1]);
    py::list py_items = py::reinterpret_borrow<py::list>(up[2]);
    std::vector<std::tuple<int8_t, bool, bool, bool, bool>> cpp_items;
    for (size_t i = 0; i < py_items.size(); ++i) {
        py::list item = py::reinterpret_borrow<py::list>(py_items[i]);
        cpp_items.push_back(
                {item[0].cast<int8_t>(), item[1].cast<bool>(), item[2].cast<bool>(),
                 item[3].cast<bool>(), item[4].cast<bool>()});
    }
    static std::shared_ptr<OpDef> op, set_op;
    if (up[3].cast<bool>()) {
        op = Subtensor::make(cpp_items);
    } else {
        op = IndexingMultiAxisVec::make(cpp_items);
    }
    std::vector<PyObject*> p;
    p.resize(tensors.size() + 2);
    py::object Op = py::cast(op);
    p[0] = Op.ptr();
    p[1] = tensor.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        p[i + 2] = tensors[i].ptr();
    }
    py::tuple ret =
            py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size()));
    py::object tmp_result = ret[0];

    try {
        py::object value_tuple_shape = val.attr("_tuple_shape");
        py::object tmp_result_tuple_shape = tmp_result.attr("_tuple_shape");
        py::tuple value_shape = py::reinterpret_borrow<py::tuple>(value_tuple_shape);
        py::tuple tmp_result_shape =
                py::reinterpret_borrow<py::tuple>(tmp_result_tuple_shape);
        for (size_t i = 0; i < value_shape.size() && i < tmp_result_shape.size(); ++i) {
            size_t vs = value_shape[value_shape.size() - i - 1].cast<size_t>();
            size_t ts =
                    tmp_result_shape[tmp_result_shape.size() - i - 1].cast<size_t>();
            if (vs != 1 && vs != ts) {
                std::string lhs = "", rhs = "";
                for (size_t j = 0; j < tmp_result_shape.size(); ++j) {
                    lhs += std::to_string(tmp_result_shape[j].cast<size_t>());
                    if (j)
                        lhs += ",";
                }
                for (size_t j = 0; j < value_shape.size(); ++j) {
                    rhs += std::to_string(value_shape[j].cast<size_t>());
                    if (j)
                        rhs += ",";
                }
                throw py::value_error(
                        "cannot copy tensor with shape (" + rhs +
                        ") to subtensor with shape (" + lhs + ")");
            }
        }
    } catch (py::error_already_set& err) {
        ;
    }

    py::object broadcast_func = getattr(val, "_broadcast");
    PyObject* Args = PyTuple_New(1);
    PyTuple_SetItem(Args, 0, getattr(tmp_result, "shape").release().ptr());
    PyObject* new_val = PyObject_CallObject(broadcast_func.ptr(), Args);
    Py_XDECREF(Args);
    val = py::reinterpret_steal<py::object>(new_val);

    if (up[3].cast<bool>()) {
        set_op = SetSubtensor::make(cpp_items);
    } else {
        set_op = IndexingSetMultiAxisVec::make(cpp_items);
    }

    std::vector<PyObject*> q;
    q.resize(tensors.size() + 3);
    py::object Set_Op = py::cast(set_op);
    q[0] = Set_Op.ptr();
    q[1] = tensor.ptr();
    q[2] = val.ptr();
    for (size_t i = 0; i < tensors.size(); ++i) {
        q[i + 3] = tensors[i].ptr();
    }
    py::tuple result =
            py::reinterpret_steal<py::object>(py_apply(NULL, q.data(), q.size()));
    py::object res = result[0];

    if (up[4].cast<bool>()) {
        py::object reshape_func = getattr(res, "reshape");
        PyObject* Args = PyTuple_New(1);
        PyTuple_SetItem(Args, 0, org_shape.release().ptr());
        PyObject* new_tensor = PyObject_CallObject(reshape_func.ptr(), Args);
        Py_XDECREF(Args);
        res = py::reinterpret_steal<py::object>(new_tensor);
    }

    return res;
}

1098 1099
// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
M
Megvii Engine Team 已提交
1100
PyObject* dtype_promotion(PyObject* self, PyObject* const* args, size_t nargs) {
1101 1102 1103 1104 1105 1106 1107
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
M
Megvii Engine Team 已提交
1108 1109
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
1110 1111
}

M
Megvii Engine Team 已提交
1112
PyObject* get_device(PyObject* self, PyObject* const* args, size_t nargs) {
1113 1114 1115 1116 1117 1118 1119
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
M
Megvii Engine Team 已提交
1120 1121
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
1122
}
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
PyObject* make_shape_tuple(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _make_shape_tuple(py::handle(args[0])).release().ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

PyObject* getitem_cpp(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _getitem_cpp(py::handle(args[0]), py::handle(args[1])).release().ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

PyObject* setitem_cpp(PyObject* self, PyObject* const* args, size_t nargs) {
    try {
        return _setitem_cpp(
                       py::handle(args[0]), py::handle(args[1]), py::handle(args[2]))
                .release()
                .ptr();
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
1161 1162 1163
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
1164 1165 1166 1167 1168
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

1169
void init_tensor(py::module m) {
1170
    imperative::Tensor::static_initialize();
1171 1172 1173 1174 1175

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

1176 1177 1178 1179 1180 1181
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
1182 1183 1184
    interpreter_for_py = channel;
    transformations.register_at<Segment::Eval>(
            std::make_shared<InterpreterTransformation>(
1185
                    std::shared_ptr<Channel>(channel, [](Channel*) {})));
1186 1187
    transformations.register_at<Segment::Scalar>(
            std::make_shared<ScalarTransformation>());
1188

M
Megvii Engine Team 已提交
1189 1190
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
1191 1192
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
1193 1194
            if (p)
                std::rethrow_exception(p);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
1205 1206
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
1207
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
1208 1209 1210
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
1211 1212
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
1213 1214
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
1215 1216 1217 1218 1219 1220
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
1230
                    // TODO: remove this
M
Megvii Engine Team 已提交
1231 1232 1233
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
1234 1235 1236
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
1237 1238 1239 1240 1241 1242
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
1243 1244 1245
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
1246 1247 1248
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
1249

1250 1251 1252
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
1253 1254 1255
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
1256
            .def_property_readonly(
M
Megvii Engine Team 已提交
1257
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
1258
            .def_property_readonly(
M
Megvii Engine Team 已提交
1259
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
1260 1261 1262
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
1263
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
1264 1265
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
1281 1282 1283 1284 1285 1286
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

1287
    static PyMethodDef method_defs[] = {
1288 1289 1290
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
1291 1292 1293
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
1294
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
1295
    for (auto&& def : method_defs) {
1296 1297
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
1298 1299
            if (!func)
                throw py::error_already_set();
1300 1301 1302
            py::setattr(m, def.ml_name, func);
        }
    }
1303

1304 1305 1306 1307
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
1308

1309
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
1310 1311
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
1312
    });
1313
    m.def("get_option",
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
1360 1361 1362 1363 1364 1365 1366 1367
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1368 1369 1370 1371
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1372 1373 1374
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1375
    py::setattr(m, "GradKey", grad_key_type);
1376
    m.def("backward", &GradKeyWrapper::backward);
1377
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1402 1403
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1404
            if (lvalue->shape() != rvalue->shape()) {
1405 1406
                return false;
            }
1407
            if (lvalue->shape().total_nr_elems() == 1) {
1408 1409 1410 1411
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1412
            auto larr = py::reinterpret_steal<py::array>(
1413
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1414
            auto rarr = py::reinterpret_steal<py::array>(
1415
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
                transformations.register_at<Segment::Trace>(self.compiled);
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
                transformations.register_at<Segment::Trace>(self.tracing);
                if (self.lazy_eval) {
                    transformations.register_at<Segment::Eval>(self.lazy_eval);
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
                transformations.unregister<Segment::Trace>(self.tracing);
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
                    transformations.unregister<Segment::Eval>(lazy_eval);
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
                transformations.unregister<Segment::Trace>(self.compiled);
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         transformations.unregister<Segment::Trace>(self.tracing);
                     } else if (self.compiled) {
                         transformations.unregister<Segment::Trace>(self.compiled);
                     }
M
Megvii Engine Team 已提交
1552
                 })
1553 1554 1555 1556 1557 1558 1559 1560 1561
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
                    transformations.register_at<Segment::Trace>(self.tracing);
                } else if (self.compiled) {
                    transformations.register_at<Segment::Trace>(self.compiled);
                }
            });

1562 1563 1564 1565 1566 1567 1568 1569
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
1570
        };
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), symvar2val(tensor));
            auto typeobj = tensor.get_type();
            return val2symvar(typeobj, output);
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
1585 1586
    });

1587 1588 1589 1590 1591 1592 1593
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1594
        SmallVector<ValueRef> values(tensors.size());
1595 1596
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1607
        SmallVector<ValueRef> values(tensors.size());
1608 1609
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1610
        }
1611 1612
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1613 1614
            return py::none();
        }
1615 1616
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1617 1618 1619 1620 1621 1622 1623 1624
    });

    m.def("set_grad", [](py::object py_key, py::function backward_fn,
                         std::vector<py::object> inputs,
                         std::vector<py::object> outputs) {
        mgb_assert(GradKeyWrapper::wrap_t::type().isinstance(py_key.ptr()));
        auto* key = reinterpret_cast<GradKeyWrapper::wrap_t*>(py_key.ptr())->inst();
        GenericFunction generic_backward_fn =
1625
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1636 1637 1638
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1639
                if (!input_grad_tw.is_none()) {
1640 1641
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1642
                } else {
1643
                    input_grads[i] = {};
1644 1645 1646 1647
                }
            }
            return input_grads;
        };
1648
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1649 1650
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1651
        }
1652 1653 1654
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        }
        auto wrapped_output_values = imperative::apply(
                SetGrad(key->m_key, generic_backward_fn, inputs.size()), values);
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

1669 1670
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1671 1672 1673 1674
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1675
            transformations.register_at<Segment::ModuleTrace>(
1676 1677
                    module_trace_transformation);
        }
1678 1679
        return module_trace_transformation;
    };
1680

1681 1682 1683 1684
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

    m.def("set_cpp_astensor1d", &set_cpp_astensor1d);

1685 1686 1687
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1688

1689
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1705 1706 1707 1708
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1709
    py::register_exception<TraceError>(m, "TraceError");
1710 1711
}

1712 1713
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1714
}  // namespace mgb::imperative::python