tensor.cpp 41.1 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/imperative/transformations/dtype_promote.h"
19 20 21 22 23 24
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
25
#include "megbrain/imperative/utils/stats.h"
26
#include "megbrain/opr/io.h"
27
#include "megbrain/plugin/profiler.h"
28

29
#include "./common.h"
M
Megvii Engine Team 已提交
30
#include "./grad.h"
31
#include "./graph_rt.h"
32
#include "./helper.h"
M
Megvii Engine Team 已提交
33 34 35
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
36
#include "./tensor_utils.h"
37
#include "./transformation.h"
38

39
#include <object.h>
40 41
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
42 43
#include <pybind11/pytypes.h>
#include <pyerrors.h>
44
#include <range/v3/all.hpp>
45
#include <string>
46 47 48

#include <unordered_map>

49 50
#include "../../src/impl/mgb_cg_impl.h"

51
namespace py = pybind11;
52
namespace views = ranges::views;
53 54 55

namespace mgb::imperative::python {

56 57
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
58 59 60

struct SymbolVarContext {
    TransformationContext context;
61 62
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
63
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
64

65 66 67
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
68
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
69 70 71 72
        Transformation::swap_context(context);
    }

    void init() {
73 74
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
75
        dtype_promote_tsf->register_at(Transformation::top());
76 77
    }

78 79 80 81 82 83 84 85
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
86

87 88 89 90 91 92 93 94 95 96 97
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
98 99
    }

100 101
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
102

103 104
}  // namespace

105 106
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
107 108 109 110 111 112 113 114 115
PyObject *cpp_use_symbolic_shape, *cpp_astensor1d;

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)
REGISTE_APPLY_FUNC(cpp_astensor1d)

#undef REGISTE_APPLY_FUNC
116

117 118 119
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
120 121
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
122 123 124 125 126
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
127
        if (nargs < 2) {
M
Megvii Engine Team 已提交
128 129 130 131
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
132 133
            return nullptr;
        }
134

135
        auto* py_op = args[0];
136

137 138 139
        ++args;
        --nargs;

140
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
141
        SmallVector<ValueRef, 8> tensors(nargs);
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
            if (PyArray_Check(args[i])) {  // non scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
181
            // swap to a special context to reuse scalar handle
182 183
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
184
            context.init();
185
            for (size_t i = 0; i < nargs; ++i) {
186 187 188 189 190 191
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
                } else {
                    tensors[i] = convert_pyinput_to_tensor(i);
                }
192
            }
193
            auto outputs = imperative::apply(*op, tensors);
194
            auto ret = pybind11::tuple(outputs.size());
195
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
196
            for (size_t i = 0; i < outputs.size(); ++i) {
197
                ret[i] = context.val2symvar(typeobj, outputs[i]);
198 199 200
            }
            return ret.release().ptr();
        }
201 202

        for (size_t i = 0; i < nargs; ++i) {
203
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
204
                tensors[i] = tw->m_tensor->data();
205
            } else {
206
                tensors[i] = convert_pyinput_to_tensor(i);
207 208 209
            }
        }

210
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
211 212 213
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
214
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
215 216
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
217 218
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
219 220 221 222 223 224 225 226 227 228 229
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
230
    if (auto* t = try_cast(tup[0].ptr())) {
231 232 233
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
234
        m_tensor = t->m_tensor->copy();
235
    } else {
236 237
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
238 239 240 241 242 243
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
244
            } else {
245 246
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
247
            }
248
        } else {
M
Megvii Engine Team 已提交
249
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
250 251
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
252
            }
253 254 255 256
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
257
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
258
            std::string name;
M
Megvii Engine Team 已提交
259 260
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
261 262

            // const op
263
            {
264 265 266
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
267
                HostTensorND ret(cn);
268 269 270 271 272 273 274 275 276 277 278
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
279 280
            }

281 282 283
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
284
            }
285 286
        }
    }
287
    mgb_assert(m_tensor->data());
288 289
}

290
PyObject* TensorWrapper::module_trace_info() {
291
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
292 293 294
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
295
    }
296 297 298 299 300
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
301 302 303
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
304
    // TODO: erase when obj == nullptr
305
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
306 307
}

308 309 310 311 312
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
313

314 315
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
316 317
}

318 319
void TensorWrapper::_watch() {
    m_tensor->data().watch();
320 321
}

322
PyObject* TensorWrapper::shape() {
323
    auto shape = m_tensor->shape();
324

325
    if (!shape) {
326 327
        Py_RETURN_NONE;
    }
328 329 330
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
331 332 333 334 335 336 337 338 339 340 341 342 343
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
344
    auto hv = m_tensor->numpy();
345
    if (!hv) {
346 347 348
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
349 350
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
351
    if (hv->shape().is_scalar()) {
352 353 354 355 356 357 358
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
359
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
360 361 362
    if (!t) {
        throw py::type_error("expect Tensor");
    }
363
    m_tensor->reset(t->m_tensor->data());
364 365
}

366
PyObject* TensorWrapper::detach() {
367 368
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
369 370
}

M
Megvii Engine Team 已提交
371
PyObject* TensorWrapper::_dev_tensor() {
372 373 374
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
375 376 377
}

void TensorWrapper::_drop() {
378
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
379 380
}

381
PyObject* TensorWrapper::isscalar() {
382
    if (m_tensor->is_scalar()) {
383 384 385 386 387 388 389 390 391 392 393 394 395
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
396
            return TensorWrapper::make(py_tensor_type, p);
397 398 399
        }
        return py::none();
    }
400
    int _use_cnt() { return wptr.use_count(); }
401 402
};

403 404 405 406 407 408 409 410 411 412 413 414 415
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
416 417 418
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
419
WRAP_FUNC_PY35(split_cpp);
420
WRAP_FUNC_PY35(expand_dims_cpp);
421
WRAP_FUNC_PY35(squeeze_cpp);
422
WRAP_FUNC_PY35(transpose_cpp);
423 424
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
425
WRAP_FUNC_PY35(Const);
426 427 428
WRAP_FUNC_PY35(astype_cpp);
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
429 430 431 432 433
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

434
void init_tensor(py::module m) {
435
    imperative::Tensor::static_initialize();
436 437 438 439 440

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

441 442 443 444 445 446
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
447 448 449
    interpreter_for_py = channel;
    transformations.register_at<Segment::Eval>(
            std::make_shared<InterpreterTransformation>(
450
                    std::shared_ptr<Channel>(channel, [](Channel*) {})));
451 452
    transformations.register_at<Segment::Scalar>(
            std::make_shared<ScalarTransformation>());
453 454
    transformations.register_at<Segment::DTypePromote>(
            std::make_shared<DTypePromoteTransformation>());
455

M
Megvii Engine Team 已提交
456 457
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
458 459
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
460 461
            if (p)
                std::rethrow_exception(p);
462 463 464 465 466 467 468 469 470 471
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
472 473
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
474
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
475 476 477
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
478 479
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
480 481
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
482 483 484 485 486 487
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
488 489 490 491 492 493 494 495 496
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
497
                    // TODO: remove this
M
Megvii Engine Team 已提交
498 499 500
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
501 502 503
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
504 505 506 507 508 509
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
510 511 512
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
513 514 515
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
516

517 518 519
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
520 521 522
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
523
            .def_property_readonly(
M
Megvii Engine Team 已提交
524
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
525
            .def_property_readonly(
M
Megvii Engine Team 已提交
526
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
527 528 529
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
530
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
531 532
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
548 549 550 551 552 553
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

554
    static PyMethodDef method_defs[] = {
555 556 557
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
558 559 560
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
561
            MGE_PY_INTERFACE(split_cpp, split_cpp),
562
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
563
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
564
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
565 566
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
567
            MGE_PY_INTERFACE(Const, Const),
568 569 570
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
571
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
572
    for (auto&& def : method_defs) {
573 574
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
575 576
            if (!func)
                throw py::error_already_set();
577 578 579
            py::setattr(m, def.ml_name, func);
        }
    }
580

581 582 583 584
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
585

586
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
587 588
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
589
    });
590
    m.def("get_option",
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
637 638 639 640 641 642 643 644
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
645 646 647 648
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
649 650 651
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
652
    py::setattr(m, "GradKey", grad_key_type);
653
    m.def("backward", &GradKeyWrapper::backward);
654
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;

        bool compare_value(ValueRef lhs, ValueRef rhs) {
679 680
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
681
            if (lvalue->shape() != rvalue->shape()) {
682 683
                return false;
            }
684
            if (lvalue->shape().total_nr_elems() == 1) {
685 686 687 688
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
689
            auto larr = py::reinterpret_steal<py::array>(
690
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
691
            auto rarr = py::reinterpret_steal<py::array>(
692
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
                transformations.register_at<Segment::Trace>(self.compiled);
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
                transformations.register_at<Segment::Trace>(self.tracing);
                if (self.lazy_eval) {
                    transformations.register_at<Segment::Eval>(self.lazy_eval);
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
                transformations.unregister<Segment::Trace>(self.tracing);
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
                    transformations.unregister<Segment::Eval>(lazy_eval);
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
                transformations.unregister<Segment::Trace>(self.compiled);
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         transformations.unregister<Segment::Trace>(self.tracing);
                     } else if (self.compiled) {
                         transformations.unregister<Segment::Trace>(self.compiled);
                     }
M
Megvii Engine Team 已提交
829
                 })
830 831 832 833 834 835 836 837 838
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
                    transformations.register_at<Segment::Trace>(self.tracing);
                } else if (self.compiled) {
                    transformations.register_at<Segment::Trace>(self.compiled);
                }
            });

839 840 841 842 843 844 845 846
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
847
        };
848 849 850 851 852
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
853
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
854
            auto typeobj = tensor.get_type();
855
            return context.val2symvar(typeobj, output);
856 857 858 859 860 861
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
862 863
    });

864 865 866 867 868 869 870
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
871
        SmallVector<ValueRef> values(tensors.size());
872 873
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
874 875 876 877 878 879 880 881 882 883
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
884
        SmallVector<ValueRef> values(tensors.size());
885 886
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
887
        }
888 889
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
890 891
            return py::none();
        }
892 893
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
894 895 896 897 898 899 900 901
    });

    m.def("set_grad", [](py::object py_key, py::function backward_fn,
                         std::vector<py::object> inputs,
                         std::vector<py::object> outputs) {
        mgb_assert(GradKeyWrapper::wrap_t::type().isinstance(py_key.ptr()));
        auto* key = reinterpret_cast<GradKeyWrapper::wrap_t*>(py_key.ptr())->inst();
        GenericFunction generic_backward_fn =
902
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
903 904 905 906 907 908 909 910 911 912
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
913 914 915
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
916
                if (!input_grad_tw.is_none()) {
917 918
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
919
                } else {
920
                    input_grads[i] = {};
921 922 923 924
                }
            }
            return input_grads;
        };
925
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
926 927
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
928
        }
929 930 931
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
932 933 934 935 936 937 938 939 940 941 942 943 944 945
        }
        auto wrapped_output_values = imperative::apply(
                SetGrad(key->m_key, generic_backward_fn, inputs.size()), values);
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

946 947
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
948 949 950 951
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
952
            transformations.register_at<Segment::ModuleTrace>(
953 954
                    module_trace_transformation);
        }
955 956
        return module_trace_transformation;
    };
957

958 959 960 961
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

    m.def("set_cpp_astensor1d", &set_cpp_astensor1d);

962 963 964
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
965

966
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

982 983 984 985
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1043
    py::register_exception<TraceError>(m, "TraceError");
1044 1045
}

1046 1047
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1048
}  // namespace mgb::imperative::python