tensor.cpp 42.3 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/imperative/transformations/dim_expansion.h"
19
#include "megbrain/imperative/transformations/dtype_promote.h"
20 21 22 23 24 25
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
26
#include "megbrain/imperative/utils/stats.h"
27
#include "megbrain/opr/io.h"
28
#include "megbrain/plugin/profiler.h"
29

30
#include "./common.h"
M
Megvii Engine Team 已提交
31
#include "./grad.h"
32
#include "./graph_rt.h"
33
#include "./helper.h"
M
Megvii Engine Team 已提交
34 35 36
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
37
#include "./tensor_utils.h"
38
#include "./transformation.h"
39

40
#include <object.h>
41 42
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
43 44
#include <pybind11/pytypes.h>
#include <pyerrors.h>
45
#include <range/v3/all.hpp>
46
#include <string>
47 48 49

#include <unordered_map>

50 51
#include "../../src/impl/mgb_cg_impl.h"

52
namespace py = pybind11;
53
namespace views = ranges::views;
54 55 56

namespace mgb::imperative::python {

57 58
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
59 60 61

struct SymbolVarContext {
    TransformationContext context;
62 63
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
64
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
65
    std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf;
66

67 68 69
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
70
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
71
        dim_expansion_tsf = std::make_shared<DimExpansionTransformation>();
72 73 74 75
        Transformation::swap_context(context);
    }

    void init() {
76 77
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
78
        dtype_promote_tsf->register_at(Transformation::top());
79
        dim_expansion_tsf->register_at(Transformation::top());
80 81
    }

82 83 84 85 86 87 88 89
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
90

91 92 93 94 95 96 97 98 99 100 101
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
102 103
    }

104 105
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
106

107 108
}  // namespace

109 110
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
111
PyObject* cpp_use_symbolic_shape;
112 113 114 115 116 117 118

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
119

120 121 122
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
123 124
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
125 126 127 128 129
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
130
        if (nargs < 2) {
M
Megvii Engine Team 已提交
131 132 133 134
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
135 136
            return nullptr;
        }
137

138
        auto* py_op = args[0];
139

140 141 142
        ++args;
        --nargs;

143
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
144
        SmallVector<ValueRef, 8> tensors(nargs);
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
172
            if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
173 174 175 176 177 178 179 180 181 182 183
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
184
            // swap to a special context to reuse scalar handle
185 186
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
187
            context.init();
188
            for (size_t i = 0; i < nargs; ++i) {
189 190 191 192 193 194
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
                } else {
                    tensors[i] = convert_pyinput_to_tensor(i);
                }
195
            }
196
            auto outputs = imperative::apply(*op, tensors);
197
            auto ret = pybind11::tuple(outputs.size());
198
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
199
            for (size_t i = 0; i < outputs.size(); ++i) {
200
                ret[i] = context.val2symvar(typeobj, outputs[i]);
201 202 203
            }
            return ret.release().ptr();
        }
204 205

        for (size_t i = 0; i < nargs; ++i) {
206
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
207
                tensors[i] = tw->m_tensor->data();
208 209 210
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
                    op->same_type<Elemwise>()) {
211
                tensors[i] = convert_pyinput_to_tensor(i);
212 213 214
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
215 216 217
            }
        }

218
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
219 220 221
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
222
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
223 224
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
225 226
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
227 228 229 230 231 232 233 234 235 236 237
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
238
    if (auto* t = try_cast(tup[0].ptr())) {
239 240 241
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
242
        m_tensor = t->m_tensor->copy();
243
    } else {
244 245
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
246 247 248 249 250 251
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
252
            } else {
253 254
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
255
            }
256
        } else {
M
Megvii Engine Team 已提交
257
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
258 259
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
260
            }
261 262 263 264
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
265
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
266
            std::string name;
M
Megvii Engine Team 已提交
267 268
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
269 270

            // const op
271
            {
272 273 274
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
275
                HostTensorND ret(cn);
276 277 278 279 280 281 282 283 284 285 286
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
287 288
            }

289 290 291
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
292
            }
293 294
        }
    }
295
    mgb_assert(m_tensor->data());
296 297
}

298
PyObject* TensorWrapper::module_trace_info() {
299
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
300 301 302
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
303
    }
304 305 306 307 308
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
309 310 311
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
312
    // TODO: erase when obj == nullptr
313
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
314 315
}

316 317 318 319 320
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
321

322 323
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
324 325
}

326 327
void TensorWrapper::_watch() {
    m_tensor->data().watch();
328 329
}

330
PyObject* TensorWrapper::shape() {
331
    auto shape = m_tensor->shape();
332

333
    if (!shape) {
334 335
        Py_RETURN_NONE;
    }
336 337 338
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
339 340 341 342 343 344 345 346 347 348 349 350 351
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
352
    auto hv = m_tensor->numpy();
353
    if (!hv) {
354 355 356
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
357 358
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
359
    if (hv->shape().is_scalar()) {
360 361 362 363 364 365 366
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
367
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
368 369 370
    if (!t) {
        throw py::type_error("expect Tensor");
    }
371
    m_tensor->reset(t->m_tensor->data());
372 373
}

374
PyObject* TensorWrapper::detach() {
375 376
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
377 378
}

M
Megvii Engine Team 已提交
379
PyObject* TensorWrapper::_dev_tensor() {
380 381 382
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
383 384 385
}

void TensorWrapper::_drop() {
386
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
387 388
}

389
PyObject* TensorWrapper::isscalar() {
390
    if (m_tensor->is_scalar()) {
391 392 393 394 395 396 397 398 399 400 401 402 403
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
404
            return TensorWrapper::make(py_tensor_type, p);
405 406 407
        }
        return py::none();
    }
408
    int _use_cnt() { return wptr.use_count(); }
409 410
};

411 412 413 414 415 416 417 418 419 420 421 422 423
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
424 425 426
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
427
WRAP_FUNC_PY35(split_cpp);
428
WRAP_FUNC_PY35(expand_dims_cpp);
429
WRAP_FUNC_PY35(squeeze_cpp);
430
WRAP_FUNC_PY35(transpose_cpp);
431 432
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
433
WRAP_FUNC_PY35(Const);
434 435 436
WRAP_FUNC_PY35(astype_cpp);
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
437
WRAP_FUNC_PY35(astensor1d_cpp);
438 439 440 441 442
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

443
void init_tensor(py::module m) {
444
    imperative::Tensor::static_initialize();
445 446 447 448 449

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

450 451 452 453 454 455
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
456
    interpreter_for_py = channel;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
475

M
Megvii Engine Team 已提交
476 477
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
478 479
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
480 481
            if (p)
                std::rethrow_exception(p);
482 483 484 485 486 487 488 489 490 491
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
492 493
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
494
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
495 496 497
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
498 499
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
500 501
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
502 503 504 505 506 507
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
508 509 510 511 512 513 514 515 516
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
517
                    // TODO: remove this
M
Megvii Engine Team 已提交
518 519 520
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
521 522 523
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
524 525 526 527 528 529
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
530 531 532
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
533 534 535
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
536

537 538 539
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
540 541 542
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
543
            .def_property_readonly(
M
Megvii Engine Team 已提交
544
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
545
            .def_property_readonly(
M
Megvii Engine Team 已提交
546
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
547 548 549
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
550
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
551 552
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
568 569 570 571 572 573
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

574
    static PyMethodDef method_defs[] = {
575 576 577
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
578 579 580
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
581
            MGE_PY_INTERFACE(split_cpp, split_cpp),
582
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
583
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
584
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
585 586
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
587
            MGE_PY_INTERFACE(Const, Const),
588 589 590
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
591
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
592
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
593
    for (auto&& def : method_defs) {
594 595
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
596 597
            if (!func)
                throw py::error_already_set();
598 599 600
            py::setattr(m, def.ml_name, func);
        }
    }
601

602 603 604 605
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
606

607
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
608 609
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
610
    });
611
    m.def("get_option",
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
658 659 660 661 662 663 664 665
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
666 667 668 669
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
670 671 672
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
673
    py::setattr(m, "GradKey", grad_key_type);
674
    m.def("backward", &GradKeyWrapper::backward);
675
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
676

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
698 699 700
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
701 702

        bool compare_value(ValueRef lhs, ValueRef rhs) {
703 704
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
705
            if (lvalue->shape() != rvalue->shape()) {
706 707
                return false;
            }
708
            if (lvalue->shape().total_nr_elems() == 1) {
709 710 711 712
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
713
            auto larr = py::reinterpret_steal<py::array>(
714
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
715
            auto rarr = py::reinterpret_steal<py::array>(
716
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
750 751
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
752 753 754
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
755 756
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
757
                if (self.lazy_eval) {
758 759
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
760 761 762 763 764 765 766 767 768
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
769
                tracing_guard.reset();
770 771 772 773
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
774
                    lazy_eval_guard.reset();
775 776 777
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
778
                compiled_guard.reset();
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
852
                         self.tracing_guard.reset();
853
                     } else if (self.compiled) {
854
                         self.compiled_guard.reset();
855
                     }
M
Megvii Engine Team 已提交
856
                 })
857 858 859
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
860 861
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
862
                } else if (self.compiled) {
863 864
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
865 866 867
                }
            });

868 869 870 871 872 873 874 875
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
876
        };
877 878 879 880 881
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
882
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
883
            auto typeobj = tensor.get_type();
884
            return context.val2symvar(typeobj, output);
885 886 887 888 889 890
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
891 892
    });

893 894 895 896 897 898 899
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
900
        SmallVector<ValueRef> values(tensors.size());
901 902
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
903 904 905 906 907 908 909 910 911 912
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
913
        SmallVector<ValueRef> values(tensors.size());
914 915
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
916
        }
917 918
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
919 920
            return py::none();
        }
921 922
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
923 924
    });

925
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
926 927
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
928
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
929 930 931 932 933 934 935 936 937 938
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
939 940 941
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
942
                if (!input_grad_tw.is_none()) {
943 944
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
945
                } else {
946
                    input_grads[i] = {};
947 948 949 950
                }
            }
            return input_grads;
        };
951
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
952 953
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
954
        }
955 956 957
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
958
        }
959 960
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
961 962 963 964 965 966 967 968 969 970 971
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

972 973
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
974 975 976 977
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
978 979 980 981
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
982
        }
983 984
        return module_trace_transformation;
    };
985

986 987
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

988 989 990
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
991

992
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1008 1009 1010 1011
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1069
    py::register_exception<TraceError>(m, "TraceError");
1070 1071
}

1072 1073
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1074
}  // namespace mgb::imperative::python