tensor.cpp 39.0 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16
#include "megbrain/imperative/ops/autogen.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/opr/io.h"
19

20 21
#include "./tensor.h"
#include "./grad.h"
22
#include "./trace.h"
23
#include "./module_trace.h"
24 25
#include "./common.h"
#include "./numpy_dtypes.h"
26
#include "./graph_rt.h"
27
#include "./helper.h"
28 29 30

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
31
#include <range/v3/all.hpp>
32
#include <string>
33 34 35

#include <unordered_map>

36
namespace py = pybind11;
37
namespace views = ranges::views;
38 39 40

namespace mgb::imperative::python {

41
interpreter::Interpreter::Channel* interpreter_for_py;
42

43
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing;
44
PyObject *cpp_apply_backward_varnode;
45
PyObject *cpp_apply_module_trace;
46

47 48
std::shared_ptr<Tensor> make_const(imperative::TensorPtr value) {
    if (!(ApplyContext::global_enable & Tensor::Flags::TRACE)) {
49
        return std::make_shared<Tensor>(interpreter_for_py->put(value->dev_tensor(), value->get_value()));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    }
    py::tuple tup(6);
    auto data = value->get_value();
    tup[0] = py::reinterpret_steal<py::array>(ndarray_from_tensor(data, npy::ShareType::MUST_SHARE));
    tup[1] = value->dtype();
    tup[2] = value->comp_node();
    tup[3] = true;
    tup[4] = false;
    tup[5] = py::none{};
    auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
    if (!py_ret) throw py::error_already_set();
    auto py_list = py::reinterpret_steal<py::list>(py_ret);
    auto* tensor_wrapper = TensorWrapper::try_cast(py_list[0].ptr());
    auto tensor = tensor_wrapper->m_tensor;
    return tensor_wrapper->m_tensor;
}

67 68 69
#define REGISTE_APPLY_FUNC(mode)            \
        void set_##mode(py::object pyf) {   \
            mode = pyf.ptr();               \
70 71 72 73 74
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)
75
REGISTE_APPLY_FUNC(cpp_apply_module_trace)
76 77 78

#undef REGISTE_APPLY_FUNC

79 80
Tensor::flags_t ApplyContext::global_disable = 0;
Tensor::flags_t ApplyContext::global_enable = 0;
81

82 83
void set_tracing() { ApplyContext::global_enable |= Tensor::Flags::TRACE; }
void unset_tracing() { ApplyContext::global_enable &= ~Tensor::Flags::TRACE; }
84

85 86 87 88 89 90 91 92
void set_module_tracing() { ApplyContext::global_enable |= Tensor::Flags::MODULE_TRACE; }
void unset_module_tracing() { ApplyContext::global_enable &= ~Tensor::Flags::MODULE_TRACE; }
bool is_tracing_module() {
    return ApplyContext::global_enable & Tensor::Flags::MODULE_TRACE;
}



93 94
bool skip_tracing = false;

95 96 97 98
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
99
    auto flags = ctx.flags & ~ApplyContext::global_disable;
100
    flags = flags | ApplyContext::global_enable;
101 102

    if (flags & Tensor::Flags::SCALAR) {
103 104 105
        // TODO: emulate scalar
    }

106
    if (flags & Tensor::Flags::GRAD) {
107 108 109
        return apply_grad(ctx);
    }

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

131 132 133 134 135
    if (flags & Tensor::Flags::MODULE_TRACE) {
        return apply_module_trace(ctx);
    }


136
    if (flags & Tensor::Flags::TRACE) {
137
        return apply_trace(ctx);
138 139 140 141 142 143
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

144 145 146 147 148 149 150 151 152 153
        apply_result_t outputs;

        // fast copy without really applying
        if (ctx.op->same_type<FastpathCopy>()) {
            mgb_assert(ctx.nargs == 1);
            outputs.reserve(ctx.nargs);
            outputs.emplace_back(std::make_shared<Tensor>(ctx.args[0]->m_handle));
            return outputs;
        }

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
172 173 174 175
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
176 177
            return nullptr;
        }
178

179 180 181
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
182 183 184 185 186 187

        // check if pytype is Parameter(and all other python Tensor's derived class),
        // if yes, using it's tp_base(python Tensor)
        if (TensorWrapper::wrap_t::type().same_pytype(pytype->tp_base->tp_base)) {
            pytype = pytype->tp_base;
        }
188 189 190 191 192 193 194 195 196
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
197
        ctx.pytype = pytype;
198 199 200 201

        if (py::isinstance<PySymbolVar>(py::handle(args[0]))){
            SmallVector<cg::VarNode*> vinputs(nargs);
            for (size_t i = 0; i < nargs; ++i) {
202
                vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node;
203 204 205 206 207 208 209 210 211 212
            }
            auto op = ctx.op.get();
            auto rst = OpDef::apply_on_var_node(*op, vinputs);
            auto ret = pybind11::tuple(rst.size());
            auto typeobj = py::handle(args[0]).get_type();
            for (size_t i = 0; i<rst.size(); ++i) {
                ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic));
            }
            return ret.release().ptr();
        }
213 214

        for (size_t i = 0; i < nargs; ++i) {
215
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
216 217 218
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
219 220 221
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
                return nullptr;
            }
        }

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
249
    if (auto* t = try_cast(tup[0].ptr())) {
250 251 252 253 254
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
255 256 257 258 259 260 261 262 263 264 265 266
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
267
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv, {});
268 269 270 271 272
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
273
        } else {
274
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
275 276
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
277
            }
278 279 280 281
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
282
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
283 284
            std::string name;
            if (tup[nargs - 1].ptr() != Py_None) name = tup[nargs - 1].cast<std::string>();
285 286

            // const op
287
            if (is_const && (ApplyContext::global_enable == Tensor::Flags::TRACE)) {
288
                auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
289 290 291
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
292 293 294 295 296 297
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
298
            {
299
                HostTensorND ret(cn);
300
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
301 302 303
            }

            m_tensor = std::make_shared<Tensor>(handle);
304
            m_tensor->user_custom_name = name;
305

306 307 308
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
309 310 311 312 313
        }
    }
}


314 315 316 317 318 319 320 321 322 323 324
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
325
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
326 327 328

#undef REGISTE_TENSORWRAPPER_FUNC

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
PyObject* TensorWrapper::module_trace_info() {
    if (!m_tensor->m_module_trace_info.ptr()) {
        PyErr_SetString(PyExc_AttributeError,
                        "Has no attribute named \'_NodeMixin__node\', please "
                        "set it first");
        return nullptr;
    }
    return m_tensor->m_module_trace_info.inc_ref().ptr();
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
    m_tensor->m_module_trace_info = py::reinterpret_borrow<py::object>(obj);
}


344

345 346
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
347 348 349 350 351
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
352 353
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
354 355 356 357 358 359 360
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
361 362 363 364 365 366 367 368
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


369 370 371 372 373 374 375 376 377 378 379 380
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME

381 382 383 384 385 386 387 388 389 390 391 392
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


393
PyObject* TensorWrapper::shape() {
394
    // if it's tracing compiled mode, get value from compiled_info 
395 396 397 398
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
399 400 401 402 403
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
404
    }
405 406

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
407 408
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
409
    }
410

411 412 413
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
414 415

    TensorShape shape;
416
    if (m_tensor->m_var) {      // get shape from m_var
417
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
418 419 420 421 422
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.shape & (InferType::CONST | InferType::RT_STATIC))) {
            Py_RETURN_NONE;
        }
423 424 425 426 427
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
428
    } else {
429
        py::gil_scoped_release _;
430 431 432
        shape = m_tensor->shape();
    }

433 434 435 436 437 438 439 440 441 442 443 444
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
445 446 447
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
448 449 450 451 452
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
453 454 455
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
456 457 458 459 460
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
461 462
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
463
        if (!np_val) throw py::error_already_set();
464 465 466
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
467
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
468 469 470
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
471 472 473
        }
        return np_val;
    }
474

475 476
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
477
    }
478

479 480 481 482 483
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
484
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
485 486 487 488
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
489
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
490 491
            return nullptr;
        }
492 493 494 495 496
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
497
    }
498 499 500 501
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
502
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
503 504 505 506
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
507

508 509 510 511 512 513 514
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

515 516 517 518
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
519
    Py_RETURN_NONE;
520 521
}

522
void TensorWrapper::reset(PyObject* tensor) {
523
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
524 525 526
    if (!t) {
        throw py::type_error("expect Tensor");
    }
527 528
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
529
    auto module_trace_info = m_tensor->m_module_trace_info;
530
    m_tensor = t->m_tensor;
531
    m_tensor->m_module_trace_info = module_trace_info;
532 533
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
534 535
}

536 537 538 539
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

540 541 542
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
543 544 545 546 547 548 549

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
550
    new_tensor->m_trace_info = m_tensor->m_trace_info;
551 552

    new_tensor->m_flags = m_tensor->m_flags;
553 554 555 556
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();
}

557
PyObject* TensorWrapper::_dev_tensor(){
558 559
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
560
        if (!dev_tensor) throw py::error_already_set();
561 562 563
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
564 565

        // set m_handle to make it a real tensor
566
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
567
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>(), {});
568
        m_tensor->m_handle = std::move(SharedHandle(sh));
569 570

        // compiled info is useless after m_handle is set
571 572
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
573 574

        return dev_tensor;
575 576 577
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
578
    }
579 580 581 582
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


599 600 601 602 603 604 605 606
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

607

608 609 610 611 612
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


613 614 615 616 617
void TensorWrapper::unsetscalar() {
    m_tensor->m_flags &= ~Tensor::Flags::SCALAR;
}


618 619 620 621 622 623 624 625 626 627 628
struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
629
    int _use_cnt() { return wptr.use_count(); }
630 631
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

658
// Returns the data type with sufficient size to hold all types of
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
704
    PyObject* tuple = nullptr;
705 706 707 708 709 710 711 712 713 714 715 716 717 718
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
719
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
720 721 722 723 724 725 726 727 728 729 730
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
731

732 733 734
            if (py::isinstance<PySymbolVar>(py::handle(handle))){
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
735 736 737 738 739 740
                auto && descr = npy::dtype_mgb2np_descr(type);
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
763
    Py_XDECREF(tuple);
764 765 766 767 768
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
769
    PyObject* tuple = nullptr;
770 771 772 773 774 775 776 777 778 779 780 781 782
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
783
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
784
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
785

786 787
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
788
            if (!valid) {
789 790 791 792
                cn = tw ? tw->m_tensor->comp_node()
                        : py::handle(handle)
                                     .cast<PySymbolVar*>()
                                     ->m_node->comp_node();
793 794
                valid = true;
            } else {
795 796 797 798
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
799 800
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
801 802
                                                   cn.to_string().c_str(),
                                                   cn1.to_string().c_str()));
803 804 805 806 807
                }
            }
        }
    }
    if (!valid) {
808
        return CompNode::load(get_default_device());
809
    }
810
    Py_XDECREF(tuple);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

862

863
void init_tensor(py::module m) {
864 865 866
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
867 868 869 870 871 872 873

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
874 875 876
        .def<&TensorWrapper::isscalar>("_isscalar")
        .def<&TensorWrapper::setscalar>("_setscalar")
        .def<&TensorWrapper::unsetscalar>("_unsetscalar")
877
        .def<&TensorWrapper::detach>("detach")
878 879 880 881
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
882
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
883
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
884
        .def_getset<&TensorWrapper::varnode>("_varnode")
885 886
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
887
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
888 889
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
890 891
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
892
        .def_getset<&TensorWrapper::module_trace_info, &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
893 894 895 896 897 898
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
899 900
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
            .def_property("var", [](PySymbolVar* v) { return v->m_node; },
                          [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
            .def_property_readonly(
                    "device",
                    [](PySymbolVar* v) { return v->m_node->comp_node(); })
            .def_property_readonly(
                    "graph",
                    [](PySymbolVar* v) { return v->m_node->owner_graph(); })
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
                        auto&& mgr = v->m_node->owner_graph()
                                             ->static_infer_manager();
                        return mgr.infer_shape_fallible(v->m_node);
                    })
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            .def("numpy", [](PySymbolVar* v){
                auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                auto&& type = mgr.get_infer_type(v->m_node);
                using InferType = cg::static_infer::InferType;
                if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                    throw py::value_error("value invalid!");
                }
                auto* val = mgr.infer_value_fallible(v->m_node);
                if (!val) {
                    throw py::value_error("value invalid!");
                }
                auto np_val = py::cast(*val).attr("numpy")();
                if (v->is_scalar) {
                    return py::object(py::array(np_val).squeeze());
                }
                return np_val; 

            })
938 939 940 941 942 943 944 945
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def("_setscalar",
                 [](PySymbolVar* v) { return v->is_scalar = true; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

946
    static PyMethodDef method_defs[] = {
947 948 949 950
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
951 952 953 954 955 956 957
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
958

959 960 961 962
    static constexpr auto sync_py_task_q = []{
        py_task_q.wait_all_task_finish();
    };

963
    m.def("set_option",
964
          [](std::string name, size_t value){ interpreter_for_py->set_option(name, value); });
965 966
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
967
    m.def("_set_swap_flag",
968
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
969
    m.def("_set_drop_flag",
970
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
971
    m.def("config_async_level",
972 973 974 975
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
976
    m.def("get_async_level",
977
          []() { return interpreter_for_py->get_option("async_level"); });
978
    m.def("set_buffer_length",
979 980 981 982 983 984 985 986 987
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
988 989 990 991 992
          [](imperative::Profiler::options_t options) {
              interpreter_for_py->sync();
              imperative::Profiler::load_options(std::move(options));
              imperative::Profiler::start_profile();
              interpreter_for_py->start_profile();
993
          }, py::call_guard<py::gil_scoped_release>());
994
    m.def("stop_profile",
995 996 997 998 999 1000 1001 1002 1003
          []() -> std::function<void(std::string, std::string)> {
              interpreter_for_py->stop_profile();
              interpreter_for_py->sync();
              imperative::Profiler::stop_profile();
              auto results = imperative::Profiler::collect();
              auto options = imperative::Profiler::get_options();
              return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){
                  imperative::Profiler::dump_profile(basename, format, results, options);
              };
1004
          }, py::call_guard<py::gil_scoped_release>());
1005 1006 1007
    m.def("sync",
          []() {
              interpreter_for_py->sync();
1008
              sync_py_task_q();
1009
          }, py::call_guard<py::gil_scoped_release>());
1010 1011 1012 1013
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
1014
              sync_py_task_q();
1015
          }, py::call_guard<py::gil_scoped_release>());
1016 1017 1018 1019
    m.def("close",
          []() {
              interpreter_for_py->close();
              sync_py_task_q();
1020
          }, py::call_guard<py::gil_scoped_release>());
1021

1022 1023
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
1024 1025
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
1026
        .def_getset<&GradKeyWrapper::get_priority, &GradKeyWrapper::set_priority>("priority")
1027 1028 1029
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
1030 1031
    m.def("backward", &GradKeyWrapper::backward);

1032 1033 1034
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);
1035
    m.def("set_cpp_apply_module_trace", &set_cpp_apply_module_trace);
1036 1037 1038
    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
1039 1040 1041 1042 1043 1044 1045 1046
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
1047 1048 1049

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
1050 1051 1052
    m.def("set_allow_higher_order_directive", [](bool value){
        GradKey::allow_higher_order_directive = value;
    });
1053 1054 1055
    m.def("set_module_tracing", &set_module_tracing);
    m.def("unset_module_tracing", &unset_module_tracing);
    m.def("is_tracing_module", &is_tracing_module);
1056 1057
}

1058 1059
#undef MGE_PY_INTERFACE

1060
} // namespace mgb::imperative::python