tensor.cpp 42.9 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18 19 20 21 22 23
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
24
#include "megbrain/imperative/utils/stats.h"
25
#include "megbrain/opr/io.h"
26
#include "megbrain/plugin/profiler.h"
27

28
#include "./common.h"
M
Megvii Engine Team 已提交
29
#include "./grad.h"
30
#include "./graph_rt.h"
31
#include "./helper.h"
M
Megvii Engine Team 已提交
32 33 34
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
35
#include "./tensor_utils.h"
36
#include "./transformation.h"
37

38
#include <object.h>
39 40
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
41 42
#include <pybind11/pytypes.h>
#include <pyerrors.h>
43
#include <range/v3/all.hpp>
44
#include <string>
45 46 47

#include <unordered_map>

48 49
#include "../../src/impl/mgb_cg_impl.h"

50
namespace py = pybind11;
51
namespace views = ranges::views;
52 53 54

namespace mgb::imperative::python {

55 56
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
57 58 59

struct SymbolVarContext {
    TransformationContext context;
60 61
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
62

63 64 65
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
66 67 68 69
        Transformation::swap_context(context);
    }

    void init() {
70 71
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
72 73
    }

74 75 76 77 78 79 80 81
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
82

83 84 85 86 87 88 89 90 91 92 93
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
94 95
    }

96 97
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
98

99 100
}  // namespace

101 102
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
103 104 105 106 107 108 109 110 111
PyObject *cpp_use_symbolic_shape, *cpp_astensor1d;

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)
REGISTE_APPLY_FUNC(cpp_astensor1d)

#undef REGISTE_APPLY_FUNC
112

M
Megvii Engine Team 已提交
113 114
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
115 116 117 118 119
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
120
        if (nargs < 2) {
M
Megvii Engine Team 已提交
121 122 123 124
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
125 126
            return nullptr;
        }
127

128
        auto* py_op = args[0];
129

130 131 132
        ++args;
        --nargs;

133
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
134
        SmallVector<ValueRef, 8> tensors(nargs);
135

136 137 138
        bool is_symbol_var = (!TensorWrapper::try_cast(args[0])) &&
                             py::isinstance<PySymbolVar>(py::handle(args[0]));
        if (is_symbol_var) {
139
            // swap to a special context to reuse scalar handle
140 141 142
            SymbolVarContext context(
                    py::handle(args[0]).cast<PySymbolVar*>()->m_node->owner_graph());
            context.init();
143
            for (size_t i = 0; i < nargs; ++i) {
144
                tensors[i] = context.symvar2val(args[i]);
145
            }
146
            auto outputs = imperative::apply(*op, tensors);
147
            auto ret = pybind11::tuple(outputs.size());
148
            auto typeobj = py::handle(args[0]).get_type();
149
            for (size_t i = 0; i < outputs.size(); ++i) {
150
                ret[i] = context.val2symvar(typeobj, outputs[i]);
151 152 153
            }
            return ret.release().ptr();
        }
154 155

        for (size_t i = 0; i < nargs; ++i) {
156
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
157
                tensors[i] = tw->m_tensor->data();
158
            } else {
M
Megvii Engine Team 已提交
159 160 161 162
                PyErr_SetString(
                        PyExc_TypeError,
                        ssprintf(
                                "op %s expect type Tensor as inputs, got %s actually",
163
                                op->make_name().c_str(), Py_TYPE(args[i])->tp_name)
M
Megvii Engine Team 已提交
164
                                .c_str());
165 166 167 168
                return nullptr;
            }
        }

169
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
170 171 172
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
173
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
174 175
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
176 177
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
178 179 180 181 182 183 184 185 186 187 188
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
189
    if (auto* t = try_cast(tup[0].ptr())) {
190 191 192
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
193
        m_tensor = t->m_tensor->copy();
194
    } else {
195 196
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
197 198 199 200 201 202
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
203
            } else {
204 205
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
206
            }
207
        } else {
M
Megvii Engine Team 已提交
208
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
209 210
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
211
            }
212 213 214 215
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
216
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
217
            std::string name;
M
Megvii Engine Team 已提交
218 219
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
220 221

            // const op
222
            {
223 224 225
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
226
                HostTensorND ret(cn);
227 228 229 230 231 232 233 234 235 236 237
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
238 239
            }

240 241 242
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
243
            }
244 245
        }
    }
246
    mgb_assert(m_tensor->data());
247 248
}

249
PyObject* TensorWrapper::module_trace_info() {
250
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
251 252 253
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
254
    }
255 256 257 258 259
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
260 261 262
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
263
    // TODO: erase when obj == nullptr
264
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
265 266
}

267 268 269 270 271
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
272

273 274
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
275 276
}

277 278
void TensorWrapper::_watch() {
    m_tensor->data().watch();
279 280
}

281
PyObject* TensorWrapper::shape() {
282
    auto shape = m_tensor->shape();
283

284
    if (!shape) {
285 286
        Py_RETURN_NONE;
    }
287 288 289
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
290 291 292 293 294 295 296 297 298 299 300 301 302
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
303
    auto hv = m_tensor->numpy();
304
    if (!hv) {
305 306 307
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
308 309
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
310
    if (hv->shape().is_scalar()) {
311 312 313 314 315 316 317
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
318
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
319 320 321
    if (!t) {
        throw py::type_error("expect Tensor");
    }
322
    m_tensor->reset(t->m_tensor->data());
323 324
}

325
PyObject* TensorWrapper::detach() {
326 327
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
328 329
}

M
Megvii Engine Team 已提交
330
PyObject* TensorWrapper::_dev_tensor() {
331 332 333
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
334 335 336
}

void TensorWrapper::_drop() {
337
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
338 339
}

340
PyObject* TensorWrapper::isscalar() {
341
    if (m_tensor->is_scalar()) {
342 343 344 345 346 347 348 349 350 351 352 353 354
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
355
            return TensorWrapper::make(py_tensor_type, p);
356 357 358
        }
        return py::none();
    }
359
    int _use_cnt() { return wptr.use_count(); }
360 361
};

362 363 364 365 366
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
M
Megvii Engine Team 已提交
367 368 369 370 371 372 373 374 375 376
        case 'f':
            return 3;  // floating-point
        case 'i':
            return 2;  // signed integer
        case 'u':
            return 2;  // unsigned integer
        case 'b':
            return 1;  // boolean
        default:
            return 0;
377 378 379 380 381 382 383 384 385
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
M
Megvii Engine Team 已提交
386
        for (auto&& desc : types) {
387 388 389 390 391 392
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

393
// Returns the data type with sufficient size to hold all types of
394 395 396 397
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
M
Megvii Engine Team 已提交
398
    for (auto&& desc : types) {
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

M
Megvii Engine Team 已提交
433
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs) {
434 435 436 437 438
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
439
    PyObject* tuple = nullptr;
440 441 442 443 444 445 446 447 448 449 450 451
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
M
Megvii Engine Team 已提交
452 453 454
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
        if (handle == Py_None)
            continue;
455
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
456 457 458 459 460
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
M
Megvii Engine Team 已提交
461
        } else {
462 463 464 465 466
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
467

M
Megvii Engine Team 已提交
468
            if (py::isinstance<PySymbolVar>(py::handle(handle))) {
469 470
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
M
Megvii Engine Team 已提交
471
                auto&& descr = npy::dtype_mgb2np_descr(type);
472 473 474 475 476
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
M
Megvii Engine Team 已提交
494
    } else {
495 496
        res = promote_types(tensors, max_pri_tensors);
    }
M
Megvii Engine Team 已提交
497 498 499 500 501 502
    for (auto* p : tensors) {
        Py_DECREF(p);
    }
    for (auto* p : scalars) {
        Py_DECREF(p);
    }
503
    Py_XDECREF(tuple);
504 505 506
    return res;
}

M
Megvii Engine Team 已提交
507
CompNode _get_device(PyObject* const* args, size_t nargs) {
508
    bool is_tuple = false;
509
    PyObject* tuple = nullptr;
510 511 512 513 514 515 516 517 518 519 520 521 522
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
523
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
524
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
525

526 527
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
528
            if (!valid) {
529
                cn = tw ? tw->m_tensor->comp_node()
M
Megvii Engine Team 已提交
530
                        : py::handle(handle).cast<PySymbolVar*>()->m_node->comp_node();
531 532
                valid = true;
            } else {
533 534 535 536
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
537
                if (cn1 != cn) {
M
Megvii Engine Team 已提交
538
                    throw py::value_error(ssprintf(
539 540 541
                            "ambiguous device: %s (from %s) vs %s (from %s)",
                            cn.to_string().c_str(), cn.to_string_logical().c_str(),
                            cn1.to_string().c_str(), cn1.to_string_logical().c_str()));
542 543 544 545 546
                }
            }
        }
    }
    if (!valid) {
547
        return CompNode::load(get_default_device());
548
    }
549
    Py_XDECREF(tuple);
550 551 552 553 554
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
M
Megvii Engine Team 已提交
555
PyObject* dtype_promotion(PyObject* self, PyObject* const* args, size_t nargs) {
556 557 558 559 560 561 562
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
M
Megvii Engine Team 已提交
563 564
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
565 566
}

M
Megvii Engine Team 已提交
567
PyObject* get_device(PyObject* self, PyObject* const* args, size_t nargs) {
568 569 570 571 572 573 574
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
M
Megvii Engine Team 已提交
575 576
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
577
}
578

579 580 581 582 583 584 585 586 587 588 589 590 591
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
592 593 594
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
595 596 597 598 599
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

600
void init_tensor(py::module m) {
601
    imperative::Tensor::static_initialize();
602 603 604 605 606

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

607 608 609 610 611 612
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
613 614 615
    interpreter_for_py = channel;
    transformations.register_at<Segment::Eval>(
            std::make_shared<InterpreterTransformation>(
616
                    std::shared_ptr<Channel>(channel, [](Channel*) {})));
617 618
    transformations.register_at<Segment::Scalar>(
            std::make_shared<ScalarTransformation>());
619

M
Megvii Engine Team 已提交
620 621
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
622 623
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
624 625
            if (p)
                std::rethrow_exception(p);
626 627 628 629 630 631 632 633 634 635
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
636 637
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
638
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
639 640 641
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
642 643
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
644 645
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
646 647 648 649 650 651
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
652 653 654 655 656 657 658 659 660
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
661
                    // TODO: remove this
M
Megvii Engine Team 已提交
662 663 664
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
665 666 667
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
668 669 670 671 672 673
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
674 675 676
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
677 678 679
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
680

681 682 683
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
684 685 686
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
687
            .def_property_readonly(
M
Megvii Engine Team 已提交
688
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
689
            .def_property_readonly(
M
Megvii Engine Team 已提交
690
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
691 692 693
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
694
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
695 696
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
712 713 714 715 716 717
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

718
    static PyMethodDef method_defs[] = {
719 720 721
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
722 723 724
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
725
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
726
    for (auto&& def : method_defs) {
727 728
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
729 730
            if (!func)
                throw py::error_already_set();
731 732 733
            py::setattr(m, def.ml_name, func);
        }
    }
734

735 736 737 738
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
739

740
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
741 742
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
743
    });
744
    m.def("get_option",
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
791 792 793 794 795 796 797 798
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
799 800 801 802
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
803 804 805
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
806
    py::setattr(m, "GradKey", grad_key_type);
807
    m.def("backward", &GradKeyWrapper::backward);
808
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;

        bool compare_value(ValueRef lhs, ValueRef rhs) {
833 834
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
835
            if (lvalue->shape() != rvalue->shape()) {
836 837
                return false;
            }
838
            if (lvalue->shape().total_nr_elems() == 1) {
839 840 841 842
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
843
            auto larr = py::reinterpret_steal<py::array>(
844
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
845
            auto rarr = py::reinterpret_steal<py::array>(
846
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
                transformations.register_at<Segment::Trace>(self.compiled);
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
                transformations.register_at<Segment::Trace>(self.tracing);
                if (self.lazy_eval) {
                    transformations.register_at<Segment::Eval>(self.lazy_eval);
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
                transformations.unregister<Segment::Trace>(self.tracing);
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
                    transformations.unregister<Segment::Eval>(lazy_eval);
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
                transformations.unregister<Segment::Trace>(self.compiled);
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         transformations.unregister<Segment::Trace>(self.tracing);
                     } else if (self.compiled) {
                         transformations.unregister<Segment::Trace>(self.compiled);
                     }
M
Megvii Engine Team 已提交
983
                 })
984 985 986 987 988 989 990 991 992
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
                    transformations.register_at<Segment::Trace>(self.tracing);
                } else if (self.compiled) {
                    transformations.register_at<Segment::Trace>(self.compiled);
                }
            });

993 994 995 996 997 998 999 1000
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
1001
        };
1002 1003 1004 1005 1006
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
1007
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
1008
            auto typeobj = tensor.get_type();
1009
            return context.val2symvar(typeobj, output);
1010 1011 1012 1013 1014 1015
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
1016 1017
    });

1018 1019 1020 1021 1022 1023 1024
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1025
        SmallVector<ValueRef> values(tensors.size());
1026 1027
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1038
        SmallVector<ValueRef> values(tensors.size());
1039 1040
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1041
        }
1042 1043
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1044 1045
            return py::none();
        }
1046 1047
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1048 1049 1050 1051 1052 1053 1054 1055
    });

    m.def("set_grad", [](py::object py_key, py::function backward_fn,
                         std::vector<py::object> inputs,
                         std::vector<py::object> outputs) {
        mgb_assert(GradKeyWrapper::wrap_t::type().isinstance(py_key.ptr()));
        auto* key = reinterpret_cast<GradKeyWrapper::wrap_t*>(py_key.ptr())->inst();
        GenericFunction generic_backward_fn =
1056
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1067 1068 1069
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1070
                if (!input_grad_tw.is_none()) {
1071 1072
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1073
                } else {
1074
                    input_grads[i] = {};
1075 1076 1077 1078
                }
            }
            return input_grads;
        };
1079
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1080 1081
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1082
        }
1083 1084 1085
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        }
        auto wrapped_output_values = imperative::apply(
                SetGrad(key->m_key, generic_backward_fn, inputs.size()), values);
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

1100 1101
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1102 1103 1104 1105
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1106
            transformations.register_at<Segment::ModuleTrace>(
1107 1108
                    module_trace_transformation);
        }
1109 1110
        return module_trace_transformation;
    };
1111

1112 1113 1114 1115
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

    m.def("set_cpp_astensor1d", &set_cpp_astensor1d);

1116 1117 1118
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1119

1120
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1136 1137 1138 1139
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1140
    py::register_exception<TraceError>(m, "TraceError");
1141 1142
}

1143 1144
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1145
}  // namespace mgb::imperative::python