tensor.cpp 42.0 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/imperative/transformations/dim_expansion.h"
19
#include "megbrain/imperative/transformations/dtype_promote.h"
20 21 22 23 24 25
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
26
#include "megbrain/imperative/utils/stats.h"
27
#include "megbrain/opr/io.h"
28
#include "megbrain/plugin/profiler.h"
29

30
#include "./common.h"
M
Megvii Engine Team 已提交
31
#include "./grad.h"
32
#include "./graph_rt.h"
33
#include "./helper.h"
M
Megvii Engine Team 已提交
34 35 36
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
37
#include "./tensor_utils.h"
38
#include "./transformation.h"
39

40
#include <object.h>
41 42
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
43 44
#include <pybind11/pytypes.h>
#include <pyerrors.h>
45
#include <range/v3/all.hpp>
46
#include <string>
47 48 49

#include <unordered_map>

50 51
#include "../../src/impl/mgb_cg_impl.h"

52
namespace py = pybind11;
53
namespace views = ranges::views;
54 55 56

namespace mgb::imperative::python {

57 58
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
59 60 61

struct SymbolVarContext {
    TransformationContext context;
62 63
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
64
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
65
    std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf;
66

67 68 69
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
70
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
71
        dim_expansion_tsf = std::make_shared<DimExpansionTransformation>();
72 73 74 75
        Transformation::swap_context(context);
    }

    void init() {
76 77
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
78
        dtype_promote_tsf->register_at(Transformation::top());
79
        dim_expansion_tsf->register_at(Transformation::top());
80 81
    }

82 83 84 85 86 87 88 89
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
90

91 92 93 94 95 96 97 98 99 100 101
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
102 103
    }

104 105
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
106

107 108
}  // namespace

109 110
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
111
PyObject* cpp_use_symbolic_shape;
112 113 114 115 116 117 118

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
119

120 121 122
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
123 124
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
125 126 127 128 129
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
130
        if (nargs < 2) {
M
Megvii Engine Team 已提交
131 132 133 134
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
135 136
            return nullptr;
        }
137

138
        auto* py_op = args[0];
139

140 141 142
        ++args;
        --nargs;

143
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
144
        SmallVector<ValueRef, 8> tensors(nargs);
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
            if (PyArray_Check(args[i])) {  // non scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
184
            // swap to a special context to reuse scalar handle
185 186
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
187
            context.init();
188
            for (size_t i = 0; i < nargs; ++i) {
189 190 191 192 193 194
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
                } else {
                    tensors[i] = convert_pyinput_to_tensor(i);
                }
195
            }
196
            auto outputs = imperative::apply(*op, tensors);
197
            auto ret = pybind11::tuple(outputs.size());
198
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
199
            for (size_t i = 0; i < outputs.size(); ++i) {
200
                ret[i] = context.val2symvar(typeobj, outputs[i]);
201 202 203
            }
            return ret.release().ptr();
        }
204 205

        for (size_t i = 0; i < nargs; ++i) {
206
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
207
                tensors[i] = tw->m_tensor->data();
208
            } else {
209
                tensors[i] = convert_pyinput_to_tensor(i);
210 211 212
            }
        }

213
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
214 215 216
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
217
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
218 219
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
220 221
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
222 223 224 225 226 227 228 229 230 231 232
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
233
    if (auto* t = try_cast(tup[0].ptr())) {
234 235 236
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
237
        m_tensor = t->m_tensor->copy();
238
    } else {
239 240
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
241 242 243 244 245 246
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
247
            } else {
248 249
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
250
            }
251
        } else {
M
Megvii Engine Team 已提交
252
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
253 254
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
255
            }
256 257 258 259
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
260
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
261
            std::string name;
M
Megvii Engine Team 已提交
262 263
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
264 265

            // const op
266
            {
267 268 269
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
270
                HostTensorND ret(cn);
271 272 273 274 275 276 277 278 279 280 281
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
282 283
            }

284 285 286
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
287
            }
288 289
        }
    }
290
    mgb_assert(m_tensor->data());
291 292
}

293
PyObject* TensorWrapper::module_trace_info() {
294
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
295 296 297
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
298
    }
299 300 301 302 303
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
304 305 306
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
307
    // TODO: erase when obj == nullptr
308
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
309 310
}

311 312 313 314 315
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
316

317 318
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
319 320
}

321 322
void TensorWrapper::_watch() {
    m_tensor->data().watch();
323 324
}

325
PyObject* TensorWrapper::shape() {
326
    auto shape = m_tensor->shape();
327

328
    if (!shape) {
329 330
        Py_RETURN_NONE;
    }
331 332 333
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
334 335 336 337 338 339 340 341 342 343 344 345 346
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
347
    auto hv = m_tensor->numpy();
348
    if (!hv) {
349 350 351
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
352 353
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
354
    if (hv->shape().is_scalar()) {
355 356 357 358 359 360 361
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
362
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
363 364 365
    if (!t) {
        throw py::type_error("expect Tensor");
    }
366
    m_tensor->reset(t->m_tensor->data());
367 368
}

369
PyObject* TensorWrapper::detach() {
370 371
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
372 373
}

M
Megvii Engine Team 已提交
374
PyObject* TensorWrapper::_dev_tensor() {
375 376 377
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
378 379 380
}

void TensorWrapper::_drop() {
381
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
382 383
}

384
PyObject* TensorWrapper::isscalar() {
385
    if (m_tensor->is_scalar()) {
386 387 388 389 390 391 392 393 394 395 396 397 398
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
399
            return TensorWrapper::make(py_tensor_type, p);
400 401 402
        }
        return py::none();
    }
403
    int _use_cnt() { return wptr.use_count(); }
404 405
};

406 407 408 409 410 411 412 413 414 415 416 417 418
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
419 420 421
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
422
WRAP_FUNC_PY35(split_cpp);
423
WRAP_FUNC_PY35(expand_dims_cpp);
424
WRAP_FUNC_PY35(squeeze_cpp);
425
WRAP_FUNC_PY35(transpose_cpp);
426 427
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
428
WRAP_FUNC_PY35(Const);
429 430 431
WRAP_FUNC_PY35(astype_cpp);
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
432
WRAP_FUNC_PY35(astensor1d_cpp);
433 434 435 436 437
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

438
void init_tensor(py::module m) {
439
    imperative::Tensor::static_initialize();
440 441 442 443 444

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

445 446 447 448 449 450
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
451
    interpreter_for_py = channel;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
470

M
Megvii Engine Team 已提交
471 472
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
473 474
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
475 476
            if (p)
                std::rethrow_exception(p);
477 478 479 480 481 482 483 484 485 486
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
487 488
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
489
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
490 491 492
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
493 494
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
495 496
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
497 498 499 500 501 502
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
503 504 505 506 507 508 509 510 511
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
512
                    // TODO: remove this
M
Megvii Engine Team 已提交
513 514 515
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
516 517 518
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
519 520 521 522 523 524
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
525 526 527
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
528 529 530
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
531

532 533 534
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
535 536 537
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
538
            .def_property_readonly(
M
Megvii Engine Team 已提交
539
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
540
            .def_property_readonly(
M
Megvii Engine Team 已提交
541
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
542 543 544
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
545
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
546 547
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
563 564 565 566 567 568
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

569
    static PyMethodDef method_defs[] = {
570 571 572
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
573 574 575
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
576
            MGE_PY_INTERFACE(split_cpp, split_cpp),
577
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
578
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
579
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
580 581
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
582
            MGE_PY_INTERFACE(Const, Const),
583 584 585
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
586
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
587
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
588
    for (auto&& def : method_defs) {
589 590
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
591 592
            if (!func)
                throw py::error_already_set();
593 594 595
            py::setattr(m, def.ml_name, func);
        }
    }
596

597 598 599 600
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
601

602
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
603 604
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
605
    });
606
    m.def("get_option",
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
653 654 655 656 657 658 659 660
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
661 662 663 664
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
665 666 667
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
668
    py::setattr(m, "GradKey", grad_key_type);
669
    m.def("backward", &GradKeyWrapper::backward);
670
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
671

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
693 694 695
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
696 697

        bool compare_value(ValueRef lhs, ValueRef rhs) {
698 699
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
700
            if (lvalue->shape() != rvalue->shape()) {
701 702
                return false;
            }
703
            if (lvalue->shape().total_nr_elems() == 1) {
704 705 706 707
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
708
            auto larr = py::reinterpret_steal<py::array>(
709
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
710
            auto rarr = py::reinterpret_steal<py::array>(
711
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
745 746
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
747 748 749
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
750 751
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
752
                if (self.lazy_eval) {
753 754
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
755 756 757 758 759 760 761 762 763
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
764
                tracing_guard.reset();
765 766 767 768
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
769
                    lazy_eval_guard.reset();
770 771 772
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
773
                compiled_guard.reset();
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
847
                         self.tracing_guard.reset();
848
                     } else if (self.compiled) {
849
                         self.compiled_guard.reset();
850
                     }
M
Megvii Engine Team 已提交
851
                 })
852 853 854
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
855 856
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
857
                } else if (self.compiled) {
858 859
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
860 861 862
                }
            });

863 864 865 866 867 868 869 870
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
871
        };
872 873 874 875 876
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
877
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
878
            auto typeobj = tensor.get_type();
879
            return context.val2symvar(typeobj, output);
880 881 882 883 884 885
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
886 887
    });

888 889 890 891 892 893 894
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
895
        SmallVector<ValueRef> values(tensors.size());
896 897
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
898 899 900 901 902 903 904 905 906 907
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
908
        SmallVector<ValueRef> values(tensors.size());
909 910
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
911
        }
912 913
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
914 915
            return py::none();
        }
916 917
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
918 919
    });

920
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
921 922
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
923
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
924 925 926 927 928 929 930 931 932 933
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
934 935 936
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
937
                if (!input_grad_tw.is_none()) {
938 939
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
940
                } else {
941
                    input_grads[i] = {};
942 943 944 945
                }
            }
            return input_grads;
        };
946
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
947 948
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
949
        }
950 951 952
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
953
        }
954 955
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
956 957 958 959 960 961 962 963 964 965 966
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

967 968
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
969 970 971 972
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
973 974 975 976
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
977
        }
978 979
        return module_trace_transformation;
    };
980

981 982
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

983 984 985
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
986

987
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    m.def("set_module_trace_hook",
          [](py::function function) { module_trace_hook = function; });

    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1003 1004 1005 1006
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1064
    py::register_exception<TraceError>(m, "TraceError");
1065 1066
}

1067 1068
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1069
}  // namespace mgb::imperative::python