tensor.cpp 43.2 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
13
#include "megbrain/dtype.h"
14
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
15 16
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/imperative/transformations/dim_expansion.h"
19
#include "megbrain/imperative/transformations/dtype_promote.h"
20 21 22 23 24 25
#include "megbrain/imperative/transformations/eval.h"
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
26
#include "megbrain/imperative/utils/stats.h"
27
#include "megbrain/opr/io.h"
28
#include "megbrain/plugin/profiler.h"
29

30
#include "./common.h"
M
Megvii Engine Team 已提交
31
#include "./grad.h"
32
#include "./graph_rt.h"
33
#include "./helper.h"
M
Megvii Engine Team 已提交
34 35 36
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
37
#include "./tensor_utils.h"
38
#include "./transformation.h"
39

40
#include <object.h>
41 42
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
43 44
#include <pybind11/pytypes.h>
#include <pyerrors.h>
45
#include <range/v3/all.hpp>
46
#include <string>
47 48 49

#include <unordered_map>

50 51
#include "../../src/impl/mgb_cg_impl.h"

52
namespace py = pybind11;
53
namespace views = ranges::views;
54 55 56

namespace mgb::imperative::python {

57 58
namespace {
WeakKeyMap<ValueWeakRef, py::object> module_trace_info_map;
59 60 61

struct SymbolVarContext {
    TransformationContext context;
62 63
    std::shared_ptr<SymbolTransformation> symbol_tsf;
    std::shared_ptr<ScalarTransformation> scalar_tsf;
64
    std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf;
65
    std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf;
66

67 68 69
    SymbolVarContext(cg::ComputingGraph* graph) {
        symbol_tsf = std::make_shared<SymbolTransformation>(graph);
        scalar_tsf = std::make_shared<ScalarTransformation>();
70
        dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>();
71
        dim_expansion_tsf = std::make_shared<DimExpansionTransformation>();
72 73 74 75
        Transformation::swap_context(context);
    }

    void init() {
76 77
        symbol_tsf->register_at(Transformation::top());
        scalar_tsf->register_at(Transformation::top());
78
        dtype_promote_tsf->register_at(Transformation::top());
79
        dim_expansion_tsf->register_at(Transformation::top());
80 81
    }

82 83 84 85 86 87 88 89
    ValueRef symvar2val(py::handle py_symbol_var) {
        auto* symbol_var = py_symbol_var.cast<PySymbolVar*>();
        ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node);
        if (symbol_var->is_scalar) {
            value = scalar_tsf->value_type().make(value);
        }
        return value;
    }
90

91 92 93 94 95 96 97 98 99 100 101
    py::object val2symvar(py::handle typeobj, ValueRef value) {
        bool is_scalar = false;
        if (auto* scalar_value = value.as(scalar_tsf->value_type())) {
            value = scalar_value->value();
            is_scalar = true;
        }
        auto* node = value.cast(symbol_tsf->value_type()).node();
        auto py_symbol_var =
                typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic));
        py_symbol_var.cast<PySymbolVar*>()->is_scalar = is_scalar;
        return py_symbol_var;
102 103
    }

104 105
    ~SymbolVarContext() { Transformation::swap_context(context); }
};
106

107 108
}  // namespace

109 110
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
111
PyObject* cpp_use_symbolic_shape;
112 113 114 115 116 117 118

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
119

120 121 122
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
123 124
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
125 126 127 128 129
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
130
        if (nargs < 2) {
M
Megvii Engine Team 已提交
131 132 133 134
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
135 136
            return nullptr;
        }
137

138
        auto* py_op = args[0];
139

140 141 142
        ++args;
        --nargs;

143
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
144
        SmallVector<ValueRef, 8> tensors(nargs);
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        SmallVector<bool, 8> is_symbol_var(nargs, false);
        ComputingGraph* cg = nullptr;
        for (size_t i = 0; i < nargs; ++i) {
            if ((!TensorWrapper::try_cast(args[i])) &&
                py::isinstance<PySymbolVar>(py::handle(args[i]))) {
                is_symbol_var[i] = true;
                ComputingGraph* cur_cg =
                        py::handle(args[i]).cast<PySymbolVar*>()->m_node->owner_graph();
                if (cg == nullptr) {
                    cg = cur_cg;
                } else {
                    mgb_assert(cg == cur_cg);
                }
            }
        }

        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
172
            if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
173
                // py_tuple is not allowed here because of tracing
174 175 176 177 178 179 180 181 182 183 184
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

        if (cg != nullptr) {
185
            // swap to a special context to reuse scalar handle
186 187
            size_t symbol_var_idx = 8;
            SymbolVarContext context(cg);
188
            context.init();
189
            for (size_t i = 0; i < nargs; ++i) {
190 191 192
                if (is_symbol_var[i]) {
                    symbol_var_idx = i;
                    tensors[i] = context.symvar2val(args[i]);
193 194 195
                } else if (
                        DTypePromoteCfg::convert_input_enabled &&
                        op->same_type<Elemwise>()) {
196
                    tensors[i] = convert_pyinput_to_tensor(i);
197 198 199 200
                } else {
                    PyErr_SetString(
                            PyExc_TypeError, "py_apply expects tensor as inputs");
                    return nullptr;
201
                }
202
            }
203
            auto outputs = imperative::apply(*op, tensors);
204
            auto ret = pybind11::tuple(outputs.size());
205
            auto typeobj = py::handle(args[symbol_var_idx]).get_type();
206
            for (size_t i = 0; i < outputs.size(); ++i) {
207
                ret[i] = context.val2symvar(typeobj, outputs[i]);
208 209 210
            }
            return ret.release().ptr();
        }
211 212

        for (size_t i = 0; i < nargs; ++i) {
213
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
214
                tensors[i] = tw->m_tensor->data();
215 216 217
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
                    op->same_type<Elemwise>()) {
218
                tensors[i] = convert_pyinput_to_tensor(i);
219 220 221
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
222 223 224
            }
        }

225
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
226 227 228
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
229
            ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i]));
230 231
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
232 233
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
234 235 236 237 238 239 240 241 242 243 244
}

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
245
    if (auto* t = try_cast(tup[0].ptr())) {
246 247 248
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
249
        m_tensor = t->m_tensor->copy();
250
    } else {
251 252
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
253 254 255 256 257 258
            // for DeviceTensorND
            if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                auto dv = py::handle(arg0).cast<DeviceTensorND>();
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(CreateTensor::Common, dv.comp_node(), dv.layout()),
                        DeviceStorage::make(dv.storage()))[0]);
259
            } else {
260 261
                throw py::type_error(
                        "single argument is not tensor, varnode or devicetensor");
262
            }
263
        } else {
M
Megvii Engine Team 已提交
264
            py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
265 266
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
267
            }
268 269 270 271
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
272
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
273
            std::string name;
M
Megvii Engine Team 已提交
274 275
            if (tup[nargs - 1].ptr() != Py_None)
                name = tup[nargs - 1].cast<std::string>();
276 277

            // const op
278
            {
279 280 281
                CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                        : no_cache ? CreateTensor::Unique
                                                   : CreateTensor::Common;
282
                HostTensorND ret(cn);
283 284 285 286 287 288 289 290 291 292 293
                ret = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype);
                mgb_assert(
                        ret.layout().is_empty() || ret.layout().is_contiguous(),
                        "host value should be continuous");
                ValueShape shape;
                for (size_t i = 0; i < data.ndim(); ++i) {
                    shape[shape.ndim++] = data.shape(i);
                }
                m_tensor = std::make_shared<Tensor>(imperative::apply(
                        CreateTensor(kind, cn, ret.dtype(), shape),
                        HostStorage::make(ret.storage()))[0]);
294 295
            }

296 297 298
            if (!name.empty()) {
                m_tensor->reset(
                        imperative::apply(RenameValue(name), m_tensor->data())[0]);
299
            }
300 301
        }
    }
302
    mgb_assert(m_tensor->data());
303 304
}

305
PyObject* TensorWrapper::module_trace_info() {
306
    if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) {
307 308 309
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
310
    }
311 312 313 314 315
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
316 317 318
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
319
    // TODO: erase when obj == nullptr
320
    module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj);
321 322
}

323 324 325 326 327
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
    m_tensor->set_name(name);
}
328

329 330
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
331 332
}

333 334
void TensorWrapper::_watch() {
    m_tensor->data().watch();
335 336
}

337
PyObject* TensorWrapper::shape() {
338
    auto shape = m_tensor->shape();
339

340
    if (!shape) {
341 342
        Py_RETURN_NONE;
    }
343 344 345
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
346 347 348 349 350 351 352 353 354 355 356 357 358
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

PyObject* TensorWrapper::numpy() {
359
    auto hv = m_tensor->numpy();
360
    if (!hv) {
361 362 363
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
364 365
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
366
    if (hv->shape().is_scalar()) {
367 368 369 370 371 372 373
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
374
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
375 376 377
    if (!t) {
        throw py::type_error("expect Tensor");
    }
378
    m_tensor->reset(t->m_tensor->data());
379 380
}

381
PyObject* TensorWrapper::detach() {
382 383
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
384 385
}

M
Megvii Engine Team 已提交
386
PyObject* TensorWrapper::_dev_tensor() {
387 388 389
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
390 391 392
}

void TensorWrapper::_drop() {
393
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
394 395
}

396
PyObject* TensorWrapper::isscalar() {
397
    if (m_tensor->is_scalar()) {
398 399 400 401 402 403 404 405 406 407 408 409 410
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
411
            return TensorWrapper::make(py_tensor_type, p);
412 413 414
        }
        return py::none();
    }
415
    int _use_cnt() { return wptr.use_count(); }
416 417
};

418 419 420 421 422 423 424 425 426 427 428 429 430
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
431 432 433
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
434
WRAP_FUNC_PY35(split_cpp);
435
WRAP_FUNC_PY35(expand_dims_cpp);
436
WRAP_FUNC_PY35(squeeze_cpp);
437
WRAP_FUNC_PY35(transpose_cpp);
438 439
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
440
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
441
WRAP_FUNC_PY35(Const);
442
WRAP_FUNC_PY35(astype_cpp);
443 444
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
445 446
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
447
WRAP_FUNC_PY35(astensor1d_cpp);
448
WRAP_FUNC_PY35(pixel_shuffle_cpp);
449 450 451 452 453
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

454
void init_tensor(py::module m) {
455
    imperative::Tensor::static_initialize();
456 457 458 459 460

    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

461 462 463 464 465 466
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
467
    interpreter_for_py = channel;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
486

M
Megvii Engine Team 已提交
487 488
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
489 490
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
491 492
            if (p)
                std::rethrow_exception(p);
493 494 495 496 497 498 499 500 501 502
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
503 504
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
505
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
506 507 508
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
509 510
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
511 512
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
513 514 515 516 517 518
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

M
Megvii Engine Team 已提交
519 520 521 522 523 524 525 526 527
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
528
                    // TODO: remove this
M
Megvii Engine Team 已提交
529 530 531
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
                    .def<&TensorWrapper::_use_cnt>("_use_cnt")
532 533 534
                    .def<&TensorWrapper::_detail>("_detail")
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
M
Megvii Engine Team 已提交
535 536 537 538 539 540
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
541 542 543
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
544 545 546
            .def(py::init<const TensorWrapper&>())
            .def("__call__", &TensorWeakRef::operator())
            .def("_use_cnt", &TensorWeakRef::_use_cnt);
547

548 549 550
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
M
Megvii Engine Team 已提交
551 552 553
            .def_property(
                    "var", [](PySymbolVar* v) { return v->m_node; },
                    [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
554
            .def_property_readonly(
M
Megvii Engine Team 已提交
555
                    "device", [](PySymbolVar* v) { return v->m_node->comp_node(); })
556
            .def_property_readonly(
M
Megvii Engine Team 已提交
557
                    "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); })
558 559 560
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
M
Megvii Engine Team 已提交
561
                        auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
562 563
                        return mgr.infer_shape_fallible(v->m_node);
                    })
M
Megvii Engine Team 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            .def("numpy",
                 [](PySymbolVar* v) {
                     auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                     auto&& type = mgr.get_infer_type(v->m_node);
                     using InferType = cg::static_infer::InferType;
                     if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                         throw py::value_error("value invalid!");
                     }
                     auto* val = mgr.infer_value_fallible(v->m_node);
                     if (!val) {
                         throw py::value_error("value invalid!");
                     }
                     auto np_val = py::cast(*val).attr("numpy")();
                     return np_val;
                 })
579 580 581 582 583 584
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

585
    static PyMethodDef method_defs[] = {
586 587 588
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
589 590 591
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
592
            MGE_PY_INTERFACE(split_cpp, split_cpp),
593
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
594
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
595
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
596 597
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
598
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
599
            MGE_PY_INTERFACE(Const, Const),
600
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
601 602
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
603 604
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
605
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
606
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
607
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
608
    for (auto&& def : method_defs) {
609 610
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
611 612
            if (!func)
                throw py::error_already_set();
613 614 615
            py::setattr(m, def.ml_name, func);
        }
    }
616

617 618 619 620
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
621

622
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
623 624
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
625
    });
626
    m.def("get_option",
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
673 674 675 676 677 678 679 680
    });

    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
681 682 683 684
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
685 686 687
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
688
    py::setattr(m, "GradKey", grad_key_type);
689
    m.def("backward", &GradKeyWrapper::backward);
690
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
713 714 715
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
716 717

        bool compare_value(ValueRef lhs, ValueRef rhs) {
718 719
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
720
            if (lvalue->shape() != rvalue->shape()) {
721 722
                return false;
            }
723
            if (lvalue->shape().total_nr_elems() == 1) {
724 725 726 727
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
728
            auto larr = py::reinterpret_steal<py::array>(
729
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
730
            auto rarr = py::reinterpret_steal<py::array>(
731
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
                self.compiled->compile();
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
765 766
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
767 768 769
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
770 771
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
772
                if (self.lazy_eval) {
773 774
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
775 776 777 778 779 780 781 782 783
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
784
                tracing_guard.reset();
785 786 787 788
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
789
                    lazy_eval_guard.reset();
790 791 792
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
793
                compiled_guard.reset();
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
867
                         self.tracing_guard.reset();
868
                     } else if (self.compiled) {
869
                         self.compiled_guard.reset();
870
                     }
M
Megvii Engine Team 已提交
871
                 })
872 873 874
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
875 876
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
877
                } else if (self.compiled) {
878 879
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
880 881 882
                }
            });

883 884 885 886 887 888 889 890
    m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object {
        auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) {
            auto make_scalar_shape = [&](CompNode device) {
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}),
                        HostStorage::make(device))[0];
            };
            return imperative::apply(op, input, make_scalar_shape(*input.device()))[0];
891
        };
892 893 894 895 896
        if (py::isinstance<PySymbolVar>(tensor)) {
            auto* graph = tensor.cast<PySymbolVar*>()->m_node->owner_graph();
            SymbolVarContext context(graph);
            context.init();
            auto output = reduce_to_scalar(
897
                    *op.cast<std::shared_ptr<OpDef>>(), context.symvar2val(tensor));
898
            auto typeobj = tensor.get_type();
899
            return context.val2symvar(typeobj, output);
900 901 902 903 904 905
        } else {
            auto* tw = TensorWrapper::try_cast(tensor.ptr());
            auto output = reduce_to_scalar(
                    *op.cast<std::shared_ptr<OpDef>>(), tw->m_tensor->data());
            return TensorWrapper::make(py_tensor_type, output);
        }
906 907
    });

908 909 910 911 912 913 914
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
915
        SmallVector<ValueRef> values(tensors.size());
916 917
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
918 919 920 921 922 923 924 925 926 927
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
928
        SmallVector<ValueRef> values(tensors.size());
929 930
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
931
        }
932 933
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
934 935
            return py::none();
        }
936 937
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
938 939
    });

940
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
941 942
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
943
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
944 945 946 947 948 949 950 951 952 953
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
954 955 956
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
957
                if (!input_grad_tw.is_none()) {
958 959
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
960
                } else {
961
                    input_grads[i] = {};
962 963 964 965
                }
            }
            return input_grads;
        };
966
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
967 968
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
969
        }
970 971 972
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
973
        }
974 975
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
976 977 978 979 980 981 982 983 984 985 986
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

    static py::function module_trace_hook;

987 988
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
989 990 991 992
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
993 994 995 996
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
997
        }
998 999
        return module_trace_transformation;
    };
1000

1001 1002
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1003 1004 1005
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1006

1007
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1008

1009 1010 1011 1012
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1013

1014 1015 1016
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1028 1029 1030 1031
    m.def("print_stats", [] { imperative::Stats::print(); });

    m.def("reset_stats", [] { imperative::Stats::reset(); });

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1089
    py::register_exception<TraceError>(m, "TraceError");
1090 1091
}

1092 1093
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1094
}  // namespace mgb::imperative::python