tensor.cpp 72.2 KB
Newer Older
1
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
2
#include "megbrain/dtype.h"
3
#include "megbrain/imperative/backtrace.h"
4
#include "megbrain/imperative/cpp_cupti.h"
5
#include "megbrain/imperative/dispatch.h"
6
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
7
#include "megbrain/imperative/ops/backward_graph.h"
8
#include "megbrain/imperative/ops/opr_attr.h"
M
Megvii Engine Team 已提交
9
#include "megbrain/imperative/ops/utility.h"
10
#include "megbrain/imperative/profiler.h"
11
#include "megbrain/imperative/transformation.h"
12
#include "megbrain/imperative/transformations/complex.h"
13
#include "megbrain/imperative/transformations/dim_expansion.h"
14
#include "megbrain/imperative/transformations/dtype_promote.h"
15
#include "megbrain/imperative/transformations/eval.h"
16
#include "megbrain/imperative/transformations/format.h"
17
#include "megbrain/imperative/transformations/group_comm.h"
18 19 20 21 22
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
23
#include "megbrain/opr/io.h"
24
#include "megbrain/plugin/profiler.h"
25
#include "megbrain/utils/stats.h"
26
#include "megdnn/algorithm_cache.h"
27

28
#include "./common.h"
29 30
#include "./dlpack.h"
#include "./dlpack_convertor.h"
M
Megvii Engine Team 已提交
31
#include "./grad.h"
32
#include "./graph_rt.h"
33
#include "./helper.h"
M
Megvii Engine Team 已提交
34 35 36
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
37
#include "./tensor_utils.h"
38
#include "./transformation.h"
39

40
#include <object.h>
41 42
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
43 44
#include <pybind11/pytypes.h>
#include <pyerrors.h>
45
#include <iterator>
46
#include <range/v3/all.hpp>
47
#include <string>
48 49 50

#include <unordered_map>

51
#include "../../src/impl/mgb_cg_impl.h"
52
#include "./backtrace.h"
53

54 55
#include <iostream>

56
namespace py = pybind11;
57
namespace views = ranges::views;
58 59 60

namespace mgb::imperative::python {

61 62
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
63
PyTypeObject* py_varnode_type = nullptr;
64
pybind11::handle py_device_type = nullptr;
65
PyObject* cpp_use_symbolic_shape;
66 67 68 69 70 71 72

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
73

74 75 76
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
77 78
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
79 80 81 82 83
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
84
        if (nargs < 2) {
M
Megvii Engine Team 已提交
85 86 87 88
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
89 90
            return nullptr;
        }
91

92
        auto* py_op = args[0];
93

94 95 96
        ++args;
        --nargs;

97
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
98
        SmallVector<ValueRef, 8> tensors(nargs);
99

100 101 102 103 104 105 106 107 108 109
        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
110
            record_py_backtrace();
111 112 113 114
            //! operand in elemwise can't be None
            if (args[i] == Py_None) {
                throw py::type_error("the operand is None and is not supported.");
            } else if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
115
                // py_tuple is not allowed here because of tracing
116 117 118 119 120 121 122 123 124 125
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

126
        bool is_varnode_apply = false;
127
        for (size_t i = 0; i < nargs; ++i) {
128 129 130
            if (PyObject_TypeCheck(args[i], py_varnode_type)) {
                is_varnode_apply = true;
            }
131
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
132
                tensors[i] = tw->m_tensor->data();
133 134
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
135
                    (op->same_type<Elemwise>() || op->same_type<ElemwiseMultiType>())) {
136
                tensors[i] = convert_pyinput_to_tensor(i);
137 138 139
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
140 141
            }
        }
142
        record_py_backtrace();
143
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
144 145
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
146
        PyTypeObject* py_type = is_varnode_apply ? py_varnode_type : py_tensor_type;
147
        for (size_t i = 0; i < nout; ++i) {
148
            ret[i] = TensorWrapper::make(py_type, std::move(outputs[i]));
149 150
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
151 152
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
153
}
154 155 156 157 158
FrameInfoPtr get_current_frameinfo() {
    auto frame = PyEval_GetFrame();
    auto frameinfo = get_frameinfo_from_pyframe(frame);
    return frameinfo;
}
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173
namespace {

template <typename T>
py::handle py_type() {
    if constexpr (std::is_same_v<T, py::int_>) {
        return (PyObject*)&PyLong_Type;
    } else if constexpr (std::is_same_v<T, py::float_>) {
        return (PyObject*)&PyFloat_Type;
    } else if constexpr (std::is_same_v<T, py::tuple>) {
        return (PyObject*)&PyTuple_Type;
    } else if constexpr (std::is_same_v<T, py::list>) {
        return (PyObject*)&PyList_Type;
    } else {
        static_assert(std::is_same_v<T, T>);
174
    }
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

template <typename T>
auto scalar2storage(T val, CompNode cn, DType dtype) {
    using max_ctype_t = DTypeScalar::max_ctype;
    DTypeScalar scalar(dtype);
    scalar.set_retain_dtype(val);
    HostTensorStorage storage(cn);
    auto* raw_ptr = reinterpret_cast<dt_byte*>(new max_ctype_t());
    std::shared_ptr<dt_byte> raw_storage = {
            raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast<max_ctype_t*>(ptr); }};
    storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0);
    std::memcpy(storage.ptr(), scalar.storage(), dtype.size());
    return HostStorage::make(std::move(storage));
}

template <typename ctype>
auto vec2storage(Span<DTypeScalar> vec, CompNode cn, DType dtype) {
    mgb_assert(vec.size() <= MEGDNN_MAX_NDIM);
    // TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
    auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM];
    for (size_t i = 0; i < vec.size(); ++i) {
        raw_ptr[i] = vec[i].get_cast<ctype>();
198
    }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    mgb_assert(sizeof(ctype) == dtype.size());
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0);
    return HostStorage::make(std::move(storage));
}

struct HostTensorArgs {
    ValueShape shape;
    DType dtype;
    HostStorage::ref_t storage;

    HostTensorND as_tensor_nd() const {
        HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype);
        ret.only_reset_raw_storage(*storage);
        return ret;
    }
};

template <typename seq_type, typename ctype>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    ctype items[size];
    for (size_t i = 0; i < size; ++i) {
        py::handle item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (ctype)(dt_int32)item.template cast<py::int_>();
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (ctype)(dt_float32)item.template cast<py::float_>();
        } else {
            return false;
235
        }
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    }
    mgb_assert(sizeof(ctype) == dtype.size());
    auto* raw_ptr = new ctype[size];
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0);
    std::memcpy(storage.ptr(), items, sizeof(ctype) * size);
    ret.dtype = dtype;
    ret.shape = {size};
    ret.storage = HostStorage::make(std::move(storage));
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    DTypeScalar items[size];
    DType dtype;
    for (size_t i = 0; i < size; ++i) {
        auto&& item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (dt_int32)item.template cast<py::int_>();
            if (!dtype.valid()) {
                dtype = dtype::Int32();
            } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) {
                return false;
            }
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (dt_float32)item.template cast<py::float_>();
            if (!dtype.valid()) {
                dtype = dtype::Float32();
            } else if (dtype == dtype::Int32()) {
                dtype = dtype::Float32();
            } else if (dtype != dtype::Float32()) {
                return false;
276
            }
277
        } else {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            return false;
        }
    }
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.shape = {size};
    if (dtype == dtype::Int32()) {
        ret.storage = vec2storage<dt_int32>({items, size}, cn, dtype);
    } else if (dtype == dtype::Float32()) {
        ret.storage = vec2storage<dt_float32>({items, size}, cn, dtype);
    } else {
        mgb_assert(false);
    }
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (dtype == dtype::Int32()) {
        return pyseq2hval<seq_type, dt_int32>(obj, cn, dtype, ret);
    } else if (dtype == dtype::Float32()) {
        return pyseq2hval<seq_type, dt_float32>(obj, cn, dtype, ret);
    } else if (!dtype.valid()) {
        return pyseq2hval<seq_type>(obj, cn, ret);
    } else {
        return false;
    }
}

bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto data = obj.cast<py::array>();
    auto strides = data.strides();
    bool need_squeeze = false;
    for (size_t i = 0; i < data.ndim(); ++i) {
        if (strides[i] == 0) {
            need_squeeze = true;
            break;
        }
    }
    if (need_squeeze) {
        std::vector<size_t> shape;
        for (size_t i = 0; i < data.ndim(); ++i) {
            shape.push_back(data.shape(i));
        }
        data = data.squeeze();
        data.resize(shape);
    }
    HostTensorND retnd(cn);
    retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype);
    if (!dtype.valid()) {
        dtype = retnd.dtype();
    }
    mgb_assert(
            retnd.layout().is_empty() || retnd.layout().is_contiguous(),
            "host value should be continuous");
    for (size_t i = 0; i < data.ndim(); ++i) {
        ret.shape[ret.shape.ndim++] = data.shape(i);
    }
    ret.dtype = dtype;
    ret.storage = HostStorage::make(retnd.storage());
    return true;
}

bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Int32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_int32)obj, cn, dtype);
    return true;
}

bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_float32)obj, cn, dtype);
    return true;
}

HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) {
    HostTensorArgs ret;
    bool success = false;
    // check order: float -> int -> tuple(int -> float) -> list(int -> float)
    // only handle `exact` pytype, isinstance also accepts subtype
    // for example, isinstance(True, int) == True
    if (obj.get_type().is(py_type<py::float_>())) {
        success = pyfloat2hval(py::float_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::int_>())) {  // py::bool_ is py::int_
        success = pyint2hval(py::int_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::tuple>())) {
        success = pyseq2hval<py::tuple>(py::tuple(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::list>())) {
        success = pyseq2hval<py::list>(py::list(obj), cn, dtype, ret);
    } else if (obj.is_none()) {
        obj = py::list(0);
    }
    if (!success) {
        success = pyarr2hval(obj, cn, dtype, ret);
    }
    mgb_assert(success);
    return ret;
}

struct PyArgDesc {
    const char* name;
    py::object (*default_value)();
};

struct PyArgDescs {
    std::vector<PyArgDesc> items;
    ssize_t (*name2idx)(const char* name);
};

py::tuple parse_args(py::tuple args, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        ret[i] = descs.items[i].default_value();
    }
    return ret;
}

py::tuple parse_args_and_kwargs(
        py::tuple args, py::dict kwargs, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_kwargs = kwargs.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    bool has_value[nr_items - nr_args];
    for (size_t i = nr_args; i < nr_items; ++i) {
        has_value[i - nr_args] = false;
    }
    for (auto&& [k, v] : kwargs) {
        auto key = py::str(k).cast<std::string>();
        ssize_t index = descs.name2idx(key.c_str());
        mgb_assert(index >= nr_args);
        ret[index] = v;
        has_value[index - nr_args] = true;
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        if (!has_value[i - nr_args]) {
            ret[i] = descs.items[i].default_value();
        }
    }
    return ret;
}

CompNode as_comp_node(const std::string& name) {
    thread_local struct {
        std::string name;
        CompNode cn;
    } cached;
    if (cached.name != name) {
        cached.name = name;
        cached.cn = CompNode::load(name);
    }
    return cached.cn;
}

CompNode as_comp_node(py::object py_device) {
    std::optional<std::string> device_name;
    if (py_device.is_none() || py::str::check_(py_device)) {
        auto cls = py::handle(reinterpret_cast<PyObject*>(py_tensor_type));
        auto dmap_callback = cls.attr("dmap_callback");
        std::string name;
        if (dmap_callback.is_none() && py_device.is_none()) {
            name = get_default_device();
        } else {
            if (py_device.is_none()) {
                py_device = py::str(get_default_device());
467
            }
468 469
            if (!dmap_callback.is_none()) {
                py_device = dmap_callback(py_device);
470
            }
471 472 473 474 475 476 477 478 479 480 481
            name = py::str(py_device).cast<std::string>();
        }
        return as_comp_node(name);
    } else {
        if (py::isinstance(py_device, py_device_type)) {
            py_device = py_device.attr("_cn");
        }
        mgb_assert(py::isinstance(py_device, py_comp_node_type));
        return py_device.cast<CompNode>();
    }
}
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
template <char... Chars>
bool compare_cstr(const char* cstr) {
    return (((*cstr++) == Chars) && ...) && *cstr == '\0';
}

ssize_t name2idx(const char* name) {
    const char* ch = name;
    // TODO: trie
    // clang-format off
    switch (*ch++) {
    case 'd':
        switch (*ch++) {
        // data
        case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1;
        // dtype
        case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1;
        // device
        case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1;
        }
    case 'i':
        // is_const
        return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1;
    case 'n':
        switch (*ch++) {
        // no_cache
        case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1;
        // name
        case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1;
        }
512 513 514
    case 'f':
        // format
        return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    }
    // clang-format on
    return -1;
}

}  // namespace

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    static PyArgDescs descs = {
            {
                    {"data", []() -> py::object { return py::none(); }},
                    {"dtype", []() -> py::object { return py::none(); }},
                    {"device", []() -> py::object { return py::none(); }},
                    {"is_const", []() -> py::object { return py::bool_(false); }},
                    {"no_cache", []() -> py::object { return py::bool_(false); }},
                    {"name", []() -> py::object { return py::none(); }},
531
                    {"format", []() -> py::object { return py::none(); }},
532 533 534 535 536 537 538 539 540 541
            },
            name2idx};
    py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (kwargs) {
        tup = parse_args_and_kwargs(
                tup, py::reinterpret_borrow<py::dict>(kwargs), descs);
    } else {
        tup = parse_args(tup, descs);
    }
542
    mgb_assert(tup.size() == 7);
543
    if (auto* t = try_cast(tup[0].ptr())) {
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        m_tensor = t->m_tensor;
        // TODO: merge two path in arg parse
        if (!tup[1].is_none()) {
            auto dtype = tup[1].cast<DType>();
            mgb_assert(
                    dtype == m_tensor->dtype(), "dtype mismatch: %s vs %s",
                    dtype.name(), m_tensor->dtype().name());
        }
        if (!tup[2].is_none()) {
            auto device = as_comp_node(tup[2]);
            mgb_assert(
                    device == m_tensor->comp_node(), "device mismatch: %s vs %s",
                    device.to_string().c_str(),
                    m_tensor->comp_node().to_string().c_str());
        }
        mgb_assert(!tup[3].cast<bool>(), "expect is_const == False, got True");
        bool no_cache = tup[4].cast<bool>();
        if (no_cache) {
            // always copy because it's hard to tell whether this tensor is cached
            m_tensor = m_tensor->copy();
        }
        // ignore name
        if (!tup[6].is_none()) {
            Format format = tup[6].cast<std::string>();
            mgb_assert(
                    format == m_tensor->format(), "format mismatch: %s vs %s",
                    format.to_string().c_str(), m_tensor->format().to_string().c_str());
        }
572 573 574
    } else {
        auto data = tup[0];
        DType dtype = tup[1].cast<DType>();
575
        CompNode cn = as_comp_node(tup[2]);
576 577 578 579 580 581
        bool is_const = tup[3].cast<bool>();
        bool no_cache = tup[4].cast<bool>();
        std::string name;
        if (!tup[5].is_none()) {
            name = tup[5].cast<std::string>();
        }
582 583 584 585
        Format format;
        if (!tup[6].is_none()) {
            format = tup[6].cast<std::string>();
        }
586 587 588 589 590

        {
            CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                    : no_cache ? CreateTensor::Unique
                                               : CreateTensor::Common;
591 592 593 594 595 596 597 598
            ValueRef val;
            if (py::isinstance(data, Py_Varnode)) {
                cg::VarNode* m_node = py::handle(data).cast<cg::VarNode*>();
                val = imperative::apply(
                        CreateNode(m_node), Span<ValueRef>(nullptr, nullptr))[0];
            } else {
                auto&& hval = pyobj2hval(data, cn, dtype);
                val = imperative::apply(
599
                        CreateTensor(kind, cn, hval.dtype, hval.shape, format),
600 601
                        hval.storage)[0];
            }
602 603 604 605 606
            m_tensor.emplace(val);
        }

        if (!name.empty()) {
            m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]);
607 608
        }
    }
609
    mgb_assert(m_tensor->data());
610 611
}

612
PyObject* TensorWrapper::module_trace_info() {
613 614 615
    if (auto module_trace_info =
                ModuleTraceTransformation::module_trace_info_map.try_get(
                        m_tensor->data())) {
616 617 618
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
619
    }
620 621 622 623 624
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
625 626 627
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
628
    // TODO: erase when obj == nullptr
629 630
    ModuleTraceTransformation::module_trace_info_map[m_tensor->data()] =
            py::reinterpret_borrow<py::object>(obj);
631 632
}

633 634 635 636 637 638
void TensorWrapper::_set_format(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto format = py_dest.cast<std::string>();
    m_tensor->set_format(format);
}

639 640 641
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
642

643 644
    m_tensor->set_name(name);
}
645

646 647
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
648 649
}

650 651
void TensorWrapper::_watch() {
    m_tensor->data().watch();
652 653
}

654
PyObject* TensorWrapper::shape() {
655
    auto shape = m_tensor->shape();
656

657
    if (!shape) {
658 659
        Py_RETURN_NONE;
    }
660 661 662
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
663 664 665 666 667 668 669 670 671 672 673 674
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

675 676 677 678
PyObject* TensorWrapper::format() {
    return py::cast(m_tensor->format().to_string()).release().ptr();
}

679
PyObject* TensorWrapper::numpy() {
680
    auto hv = m_tensor->numpy();
681
    if (!hv) {
682 683 684 685 686 687 688 689 690 691 692
        if (TransformationManager::get_instance()
                    .segments[TransformationManager::Segment::Eval]
                    .size() > 1) {
            PyErr_SetString(
                    PyExc_ValueError,
                    "tensor invalid, can not infer value of this tensor under "
                    "trace(symbolic=True). You can try to use trace(symbolic=False) to "
                    "avoid this issue.");
        } else {
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
        }
693 694
        return nullptr;
    }
695 696
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
697
    if (hv->shape().is_scalar()) {
698 699 700 701 702 703 704
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
705
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
706 707 708
    if (!t) {
        throw py::type_error("expect Tensor");
    }
709
    m_tensor->reset(t->m_tensor->data());
710 711
}

712
PyObject* TensorWrapper::detach() {
713 714
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
715 716
}

M
Megvii Engine Team 已提交
717
PyObject* TensorWrapper::_dev_tensor() {
718 719 720
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
721 722 723
}

void TensorWrapper::_drop() {
724
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
725 726
}

727
PyObject* TensorWrapper::isscalar() {
728
    if (m_tensor->is_scalar()) {
729 730 731 732 733 734
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

735 736 737 738
PyObject* TensorWrapper::value_id() {
    return py::cast(m_tensor->value_id()).release().ptr();
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752
PyObject* TensorWrapper::_var() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* node = value->node();
    return py::cast(node).release().ptr();
}

PyObject* TensorWrapper::_graph() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* graph = value->graph();
    return py::cast(graph).release().ptr();
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
void dlpack_capsule_destructor(PyObject* data) {
    if (!PyCapsule_IsValid(data, "dltensor")) {
        // early out, see DLPack spec: if a consuming library sets the capsule
        // name to something else, they own it and we don't need to do anything
        return;
    }
    DLManagedTensor* dlMTensor =
            (DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
    dlMTensor->deleter(const_cast<DLManagedTensor*>(dlMTensor));
}

PyObject* tensor_to_dlpack(PyObject* tensor) {
    TensorWrapper* wrapper = TensorWrapper::try_cast(tensor);
    DLManagedTensor* dlMTensor = to_dlpack(wrapper->m_tensor->data());
    return PyCapsule_New(dlMTensor, "dltensor", dlpack_capsule_destructor);
}

PyObject* tensor_from_dlpack(PyObject* data, PyObject* stream) {
    DLManagedTensor* dlMTensor =
            (DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
    if (!PyLong_Check(stream)) {
        throw py::type_error("expect int");
    }
    int sid = PyLong_AsLong(stream);
    PyCapsule_SetName(data, "used_dltensor");
    auto tensor = from_dlpack(dlMTensor, sid);
    return TensorWrapper::make(py_tensor_type, std::move(tensor)).release().ptr();
}

782
struct TensorWeakRef {
783
    ValueWeakRef data;
784

785
    TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {}
786 787

    py::object operator()() {
788
        if (auto p = data.lock()) {
789
            return TensorWrapper::make(py_tensor_type, p);
790 791 792 793 794
        }
        return py::none();
    }
};

795 796 797 798 799 800 801 802 803 804
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
805

806 807 808
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
809 810 811
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
812
WRAP_FUNC_PY35(split_cpp);
813
WRAP_FUNC_PY35(expand_dims_cpp);
814
WRAP_FUNC_PY35(squeeze_cpp);
815
WRAP_FUNC_PY35(transpose_cpp);
816 817
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
818
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
819
WRAP_FUNC_PY35(Const);
820
WRAP_FUNC_PY35(astype_cpp);
821 822
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
823 824
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
825
WRAP_FUNC_PY35(astensor1d_cpp);
826
WRAP_FUNC_PY35(pixel_shuffle_cpp);
827 828 829 830 831
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

832
void init_tensor(py::module m) {
833
    imperative::Tensor::static_initialize();
834
    init_backtrace_tss_key();
835
    // Transformations
836 837 838 839
    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

840 841 842 843 844 845
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
846
    interpreter_for_py = channel;
847 848 849 850 851 852 853 854 855 856
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
857 858 859 860
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Symbol>(
                                      std::make_shared<SymbolTransformation>())
                              .release());
861 862 863 864 865 866 867 868
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
869 870 871 872
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Complex>(
                                      std::make_shared<ComplexTransformation>())
                              .release());
873 874 875 876
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Grad>(
                                      std::make_shared<GradTransformationGuard>())
                              .release());
877 878 879
    auto format_trans = std::make_shared<FormatTransformation>();
    MGB_MARK_USED_VAR(
            transformations.register_at<Segment::Format>(format_trans).release());
880

M
Megvii Engine Team 已提交
881 882
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
883 884
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
885 886
            if (p)
                std::rethrow_exception(p);
887 888 889 890 891 892 893 894 895 896
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
897 898
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
899
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
900 901 902
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
903 904
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
905 906
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
907 908 909 910 911 912
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

913
    // Tensor
M
Megvii Engine Team 已提交
914 915 916 917 918 919
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
920
                    .def<&TensorWrapper::format>("format")
M
Megvii Engine Team 已提交
921 922 923
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
924
                    // TODO: remove this
M
Megvii Engine Team 已提交
925 926
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
927
                    .def<&TensorWrapper::_detail>("_detail")
928
                    .def<&TensorWrapper::_set_format>("_set_format")
929 930
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
931 932
                    .def<&TensorWrapper::_var>("var")
                    .def<&TensorWrapper::_graph>("graph")
933
                    .def<&TensorWrapper::value_id>("value_id")
M
Megvii Engine Team 已提交
934 935 936 937 938 939
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
940
    py::setattr(m, "Tensor", tensor_type);
941 942 943 944

    auto* tracekey_type = TraceKeyWrapper::wrap_t::type().finalize();
    py::setattr(m, "tracekey", tracekey_type);

945 946 947 948 949
    py::enum_<Format::Type>(m, "FormatType")
            .value("DEFAULT", Format::Type::DEFAULT)
            .value("NCHW", Format::Type::NCHW)
            .value("NHWC", Format::Type::NHWC)
            .export_values();
950 951

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
952
            .def(py::init<const TensorWrapper&>())
953
            .def("__call__", &TensorWeakRef::operator());
954

955
    static PyMethodDef method_defs[] = {
956 957 958
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
959 960 961
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
962
            MGE_PY_INTERFACE(split_cpp, split_cpp),
963
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
964
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
965
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
966 967
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
968
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
969
            MGE_PY_INTERFACE(Const, Const),
970
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
971 972
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
973 974
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
975
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
976
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
977
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
978
    for (auto&& def : method_defs) {
979 980
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
981 982
            if (!func)
                throw py::error_already_set();
983 984 985
            py::setattr(m, def.ml_name, func);
        }
    }
986

987 988 989 990
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
991

992
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
993 994
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
995
    });
996
    m.def("get_option",
997 998 999 1000 1001
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
1002 1003 1004 1005
    m.def("record_scope", [](py::object frame, std::string name) {
        mgb_assert(PyFrame_Check(frame.ptr()));
        record_scope((PyFrameObject*)frame.ptr(), std::move(name));
    });
1006 1007 1008 1009
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    std::unordered_map<std::string, ScopeType> str2scopetype = {
            {"default", ScopeType::DEFAULT},
            {"module", ScopeType::MODULE},
            {"tensor_method", ScopeType::TENSOR_METHOD},
            {"functional", ScopeType::FUNCTIONAL},
            {"backward", ScopeType::BACKWARD}};

    m.def("push_scope_with_type",
          [channel, str2scopetype](std::string name, std::string type) {
              if (str2scopetype.find(type) == str2scopetype.end()) {
                  throw py::value_error("unsupport scope type");
              } else {
                  channel->push_scope(name, str2scopetype.find(type)->second);
              }
          });
    m.def("pop_scope_with_type",
          [channel, str2scopetype](std::string name, std::string type) {
              if (str2scopetype.find(type) == str2scopetype.end()) {
                  throw py::value_error("unsupport scope type");
              } else {
                  channel->pop_scope(name, str2scopetype.find(type)->second);
              }
          });
1033 1034 1035 1036 1037 1038 1039 1040 1041
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
1042
        CompNode::sync_all();
1043 1044 1045 1046 1047 1048 1049 1050
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
1051 1052 1053 1054
    m.def("stop_step", [channel]() {
        imperative::Profiler::stop_step();
        channel->stop_step();
    });
1055 1056 1057
    m.def("enable_cupti", &cupti::enable);
    m.def("disable_cupti", &cupti::disable);
    m.def("cupti_available", &cupti::available);
1058 1059 1060 1061 1062 1063 1064

    static std::unique_ptr<CleanupGuard<>> group_comm_guard;
    m.def("group_start", []() {
        auto commtrans = std::make_shared<GroupCommTransformation>();
        group_comm_guard = transformations.register_at<Segment::GroupComm>(commtrans);
    });
    m.def("group_end", []() { group_comm_guard.reset(); });
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
1083 1084 1085 1086 1087 1088 1089 1090 1091
        // sync channel and compnode before close to ensure all tasks have been completed
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
1092 1093
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
1094 1095
    });

1096 1097 1098 1099 1100 1101 1102 1103
    py::class_<GradSlotPtr>(m, "GradSlot")
            .def_property_readonly("grad", [](GradSlotPtr& self) -> py::object {
                if (self->grad())
                    return TensorWrapper::make(py_tensor_type, self->grad());
                else
                    return py::none();
            });

1104
    // GradTransformation
M
Megvii Engine Team 已提交
1105 1106 1107 1108 1109 1110
    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1111 1112 1113 1114
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1115 1116 1117
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1118
    py::setattr(m, "GradKey", grad_key_type);
1119
    m.def("backward", &GradKeyWrapper::backward);
1120
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    m.def("get_grad_slot", [](py::object tensor) -> py::object {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        if (tw) {
            auto rst = imperative::apply(GetGradSlot(), tw->m_tensor->data());
            if (rst.size() == 1) {
                GradSlotPtr slot = rst[0].cast<GradSlotValue>();
                return py::cast(slot);
            } else {
                return py::none();
            }
        }

        return py::none();
    });
    m.def("get_handle_id", [](py::object tensor) -> py::object {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        if (tw) {
            auto rst = imperative::apply(GetId(), tw->m_tensor->data());
            int id = rst[0].cast<IntegerValue>();
            return py::cast(id);
        }
        return py::none();
    });
1144

1145 1146 1147 1148
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1149 1150 1151 1152
    m.def("set_py_varnode_type", [](py::object type_obj) {
        py_varnode_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1153 1154 1155
    m.def("set_py_device_type",
          [](py::object type_obj) { py_device_type = type_obj.inc_ref(); });

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
1166 1167 1168
        bool without_host = false;
        bool check_external = true;
        bool remove_unused_data_required = true;
1169 1170 1171 1172 1173 1174 1175
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
1176 1177 1178
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
1179 1180
        std::unordered_map<size_t, size_t> inpmark_to_id;
        std::unordered_map<size_t, size_t> outmark_to_id;
1181 1182

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1183 1184
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1185
            if (lvalue->shape() != rvalue->shape()) {
1186 1187
                return false;
            }
1188
            if (lvalue->shape().total_nr_elems() == 1) {
1189 1190 1191 1192
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1193
            auto larr = py::reinterpret_steal<py::array>(
1194
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1195
            auto rarr = py::reinterpret_steal<py::array>(
1196
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1197 1198 1199
            return array_comparator(larr, rarr);
        }

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        void mark_input(size_t mark, size_t id) {
            trace_result->vars[id].inp_marker.insert(mark);
            mgb_assert(inpmark_to_id.find(mark) == inpmark_to_id.end());
            inpmark_to_id[mark] = id;
        }
        void mark_output(size_t mark, size_t id) {
            trace_result->vars[id].out_marker.insert(mark);
            mgb_assert(outmark_to_id.find(mark) == outmark_to_id.end());
            outmark_to_id[mark] = id;
        }
1210 1211 1212 1213 1214
        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
1215 1216
                if (self.without_host)
                    self.tracing->enable_record_all_shapes();
1217 1218 1219 1220 1221 1222 1223 1224 1225
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
1226 1227 1228
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
1229 1230 1231
                try {
                    self.compiled->compile();
                } catch (const std::exception& e) {
1232
                    mgb_log_error("error in trace: %s", e.what());
1233
                }
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
1246 1247 1248 1249 1250
                if (!without_host)
                    compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
                else
                    self.compiled->set_pc_to_end();
1251 1252 1253
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
1254 1255
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
1256
                if (self.lazy_eval) {
1257 1258
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
1259 1260 1261 1262 1263 1264 1265 1266 1267
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
1268
                tracing_guard.reset();
1269 1270 1271 1272 1273
                if (self.without_host) {
                    self.tracing->postprocess_trace_result();
                    self.inpmark_to_id = self.tracing->inpmark_to_id;
                    self.outmark_to_id = self.tracing->outmark_to_id;
                }
1274
                self.trace_result = self.tracing->get_result();
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
                if (self.without_host) {
                    for (auto&& var : self.trace_result->vars) {
                        var.shape_required = false;
                        var.value_required = false;
                        if (var.data_required && var.out_marker.empty() &&
                            remove_unused_data_required)
                            var.data_required = false;
                        if (var.inp_marker.empty() &&
                            var.kind == TraceResult::VarInfo::Kind::External) {
                            if (var.bound_data) {
                                var.kind = TraceResult::VarInfo::Kind::Constant;
                            } else if (self.check_external) {
                                throw std::runtime_error(
                                        "have some unknown input tensors in trace "
                                        "result");
                            }
                        }
                    }
                }
1294 1295 1296
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
1297
                    lazy_eval_guard.reset();
1298 1299 1300
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
1301 1302
                if (!without_host)
                    compiled_guard.reset();
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
1346 1347 1348 1349
            .def_readwrite("without_host", &Trace::without_host)
            .def_readwrite("check_external", &Trace::check_external)
            .def_readwrite(
                    "remove_unused_data_required", &Trace::remove_unused_data_required)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
            .def("set_execption",
                 [](Trace& self, std::string error) {
                     if (self.compiled) {
                         auto exc = std::make_exception_ptr(TraceError(error));
                         self.compiled->set_exception(exc);
                     }
                 })
            .def("compiled", [](Trace& self) { return bool(self.compiled); })
            .def("put_data",
                 [](Trace& self, int mark, py::object tensor) {
                     auto id = self.inpmark_to_id[mark];
                     auto&& varinfo = self.trace_result->vars[id];
                     mgb_assert(varinfo.kind == TraceResult::VarInfo::Kind::External);
                     auto&& accessor = self.compiled->get_accessor_by_id(id);
                     auto* tw = TensorWrapper::try_cast(tensor.ptr());
                     mgb_assert(tw);
                     accessor.data_setter(
                             tw->m_tensor->data().dev_tensor()->as_nd(true));
                 })
            .def("put_datas",
                 [](Trace& self, std::unordered_map<int, py::object> inps) {
                     for (auto&& inp : inps) {
                         auto&& mark = inp.first;
                         auto&& tensor = inp.second;
                         auto id = self.inpmark_to_id[mark];
                         auto&& varinfo = self.trace_result->vars[id];
                         mgb_assert(
                                 varinfo.kind == TraceResult::VarInfo::Kind::External);
                         auto&& accessor = self.compiled->get_accessor_by_id(id);
                         auto* tw = TensorWrapper::try_cast(tensor.ptr());
                         mgb_assert(tw);
                         accessor.data_setter(
                                 tw->m_tensor->data().dev_tensor()->as_nd(true));
                     }
                 })
            .def("get_data",
                 [](Trace& self, int mark) {
                     auto id = self.outmark_to_id[mark];
                     auto&& varinfo = self.trace_result->vars[id];
                     mgb_assert(varinfo.data_required);
                     auto&& accessor = self.compiled->get_accessor_by_id(id);
                     mgb_assert(accessor.data_getter);
                     auto dev_value = DeviceValue::make(accessor.data_getter());
                     return TensorWrapper::make(
                             py_tensor_type,
                             imperative::apply(
                                     CreateTensor(
                                             CreateTensor::Common, dev_value->device(),
                                             dev_value->dtype(), dev_value->shape()),
                                     DeviceStorage::make(dev_value->storage()))[0]);
                 })
            .def_property_readonly(
                    "ops", [](Trace& self) { return self.trace_result->seq; })
            .def_property_readonly(
                    "vars", [](Trace& self) { return self.trace_result->vars; })
            .def_property_readonly(
                    "inpmark_to_id", [](Trace& self) { return self.inpmark_to_id; })
            .def_property_readonly(
                    "outmark_to_id", [](Trace& self) { return self.outmark_to_id; })
1435 1436 1437 1438
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
1439
                         self.tracing_guard.reset();
1440
                     } else if (self.compiled) {
1441
                         self.compiled_guard.reset();
1442
                     }
M
Megvii Engine Team 已提交
1443
                 })
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
            .def("end_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
                         self.tracing_guard =
                                 transformations.register_at<Segment::Trace>(
                                         self.tracing);
                     } else if (self.compiled) {
                         self.compiled_guard =
                                 transformations.register_at<Segment::Trace>(
                                         self.compiled);
                     }
                 })
            .def("mark_output", &Trace::mark_output)
            .def("mark_input", &Trace::mark_input);
    using VarInfo = TraceResult::VarInfo;
    using OpKind = TraceResult::SeqItem::OpKind;
    std::unordered_map<VarInfo::Kind, std::string> kind2str = {
            {VarInfo::Kind::Internal, "internal"},
            {VarInfo::Kind::External, "external"},
            {VarInfo::Kind::Constant, "const"},
    };
    std::unordered_map<OpKind, std::string> opkind2str = {
            {OpKind::Unknown, "unknown"},
            {OpKind::TraceMarkVar, "trace_mark_var"},
            {OpKind::IOMarkVar, "io_mark_var"},
            {OpKind::CreateTensor, "create_tensor"},
            {OpKind::Rename, "rename"}

    };
    py::class_<VarInfo>(m, "VarInfo")
            .def_property_readonly("shape", [](VarInfo& self) { return self.shape; })
            .def_property_readonly(
                    "value_required", [](VarInfo& self) { return self.value_required; })
            .def_property_readonly(
                    "shape_required", [](VarInfo& self) { return self.shape_required; })
            .def_readwrite("data_required", &VarInfo::data_required)
            .def("set_external",
                 [](VarInfo& self) { self.kind = VarInfo::Kind::External; })
            .def_property_readonly(
                    "bound_data",
                    [](VarInfo& self) -> py::object {
                        if (self.bound_data)
                            return py::reinterpret_steal<py::array>(
                                    npy::ndarray_from_tensor(
                                            self.bound_data.numpy()->as_nd(true),
                                            npy::ShareType::TRY_SHARE));
                        return py::none();
                    })
            .def_property_readonly(
                    "dtype",
                    [](VarInfo& self) {
                        auto ret = static_cast<DType>(*self.dtype);
                        if (ret == dtype::Byte()) {
                            ret = dtype::Uint8();
                        }
                        return ret;
                    })
            .def_property_readonly(
                    "device",
                    [](VarInfo& self) { return static_cast<CompNode>(*self.device); })
            .def_property_readonly("id", [](VarInfo& self) { return self.id; })
            .def_property_readonly(
                    "handle_id", [](VarInfo& self) { return self.handle_id; })
            .def_property_readonly("name", [](VarInfo& self) { return self.name; })
            .def_property_readonly("mark", [](VarInfo& self) { return self.mark; })
            .def_property_readonly(
                    "inp_mark", [](VarInfo& self) { return self.inp_marker; })
            .def_property_readonly(
                    "out_mark", [](VarInfo& self) { return self.out_marker; })
            .def_property_readonly("kind", [kind2str](VarInfo& self) {
                return kind2str.find(self.kind)->second;
            });
    using SeqItem = TraceResult::SeqItem;
    auto json = py::module::import("json");

    py::class_<SeqItem>(m, "OpInfo")
            .def(py::init([opkind2str](
                                  std::shared_ptr<OpDef> op,
                                  const SmallVector<size_t>& inputs,
                                  const SmallVector<size_t>& outputs,
                                  const std::string& op_kind) {
                SeqItem::OpKind enum_op_kind = SeqItem::OpKind::Unknown;
                for (auto&& kv : opkind2str) {
                    if (op_kind == kv.second) {
                        enum_op_kind = kv.first;
                    }
                }
                return SeqItem{op, inputs, outputs, enum_op_kind};
            }))
            .def_property_readonly(
                    "op",
                    [opkind2str](SeqItem& self) -> py::object {
                        if (self.op) {
                            if (auto* op = self.op->try_cast_final<OprAttr>()) {
                                return py::cast(op->type);
                            }
                            return py::cast(self.op);
                        } else
                            return py::cast(opkind2str.find(self.kind)->second);
                    })
            .def_property_readonly("inputs", [](SeqItem& self) { return self.inputs; })
            .def_property_readonly(
                    "outputs", [](SeqItem& self) { return self.outputs; })
            .def_property_readonly(
                    "type",
                    [opkind2str](SeqItem& self) -> py::object {
                        if (self.op)
                            return py::cast(self.op->type_name());
                        else
                            return py::cast(opkind2str.find(self.kind)->second);
                    })
            .def_property_readonly(
                    "kind",
                    [opkind2str](SeqItem& self) {
                        return opkind2str.find(self.kind)->second;
                    })
            .def_property_readonly("param", [json](SeqItem& self) -> py::object {
                if (self.op) {
                    if (auto* op = self.op->try_cast_final<OprAttr>()) {
                        auto param =
                                op->mgb_param(_imperative_sm_opr_footprint_ptr.get())
                                        ->to_string();
                        return json.attr("loads")(py::cast(param));
                    } else {
                        auto pyop = py::cast(self.op);
                        return pyop.attr("__getstate__")();
                    }
1572
                }
1573
                return py::dict();
1574 1575 1576
            });
    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
1577
        mgb_assert(tw, "Arg_1 shoud be Tensor!");
1578 1579 1580 1581
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    m.def("get_marked_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        return TensorWrapper::make(py_tensor_type, output);
    });

    m.def("get_marked_input_tensor", [](int mark, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(
                IOMarkVar(mark, IOMarkVar::Kind::Input), tw->m_tensor->data())[0];
        return TensorWrapper::make(py_tensor_type, output);
    });

    m.def("marked_input_tensor", [](int mark, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(
                IOMarkVar(mark, IOMarkVar::Kind::Input), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("get_marked_output_tensor", [](int mark, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
        auto output = imperative::apply(
                IOMarkVar(mark, IOMarkVar::Kind::Output), tw->m_tensor->data())[0];
        return TensorWrapper::make(py_tensor_type, output);
    });

1609
    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1610
        SmallVector<ValueRef> values(tensors.size());
1611 1612
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1623
        SmallVector<ValueRef> values(tensors.size());
1624 1625
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1626
        }
1627 1628
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1629 1630
            return py::none();
        }
1631 1632
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1633 1634
    });

1635
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
1636 1637
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
1638
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1649 1650 1651
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1652
                if (!input_grad_tw.is_none()) {
1653 1654
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1655
                } else {
1656
                    input_grads[i] = {};
1657 1658 1659 1660
                }
            }
            return input_grads;
        };
1661
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1662 1663
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1664
        }
1665 1666 1667
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1668
        }
1669 1670
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
1671 1672 1673 1674 1675 1676 1677 1678 1679
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    m.def("add_backward_callback", [](py::function callback) {
        ValueRef id = IntegerValue::make(0);
        GenericFunction generic_function =
                [callback](Span<ValueRef> inputs) -> ValueRefList {
            callback();
            return {};
        };
        auto output_values =
                imperative::apply(InsertGradCallback(generic_function), id);
    });

1691
    // ModuleTraceTransformation
1692 1693
    static py::function module_trace_hook;

1694 1695
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1696 1697 1698 1699
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1700 1701 1702 1703
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
1704
        }
1705 1706
        return module_trace_transformation;
    };
1707

1708 1709
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1710 1711 1712
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1713

1714
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1715 1716 1717 1718 1719 1720
    m.def("set_python_backtrace_enabled", &set_python_backtrace_enabled);
    m.def("set_transformation_backtrace_enabled",
          &set_transformation_backtrace_enabled);
    m.def("_mge_backtrace", &get_py_backtrace);
    m.def("_get_frame_cache_id",
          []() { return (size_t)FrameInfoCache::get_instance(); });
1721 1722 1723 1724
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1725

1726 1727
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1739
    m.def("print_stats", [] { Stats::print(); });
1740

1741
    m.def("reset_stats", [] { Stats::reset(); });
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1800 1801
    m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); });

1802 1803 1804 1805 1806 1807
    // FormatTransformation
    m.def("set_auto_format_convert",
          [format_trans](bool enabled) { format_trans->set_auto_convert(enabled); });
    m.def("get_auto_format_convert",
          [format_trans]() { return format_trans->get_auto_convert(); });

1808 1809 1810 1811 1812 1813 1814 1815
    m.def("_to_dlpack", [](py::object tensor) {
        return py::reinterpret_steal<py::object>(tensor_to_dlpack(tensor.ptr()));
    });

    m.def("_from_dlpack", [](py::object data, py::object stream) {
        return py::reinterpret_steal<py::object>(
                tensor_from_dlpack(data.ptr(), stream.ptr()));
    });
1816
    py::register_exception<TraceError>(m, "TraceError");
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    m.def("create_complex", [](py::object real, py::object imag) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        CreateComplex(),
                        TensorWrapper::try_cast(real.ptr())->m_tensor->data(),
                        TensorWrapper::try_cast(imag.ptr())->m_tensor->data())[0]);
    });

    m.def("get_real", [](py::object complex) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        GetReal(),
                        TensorWrapper::try_cast(complex.ptr())->m_tensor->data())[0]);
    });

    m.def("get_imag", [](py::object complex) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        GetImag(),
                        TensorWrapper::try_cast(complex.ptr())->m_tensor->data())[0]);
    });
1842 1843
}

1844 1845
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1846
}  // namespace mgb::imperative::python