tensor.cpp 56.2 KB
Newer Older
1
#include "megbrain/common.h"
M
Megvii Engine Team 已提交
2
#include "megbrain/dtype.h"
3
#include "megbrain/imperative/backtrace.h"
4
#include "megbrain/imperative/cpp_cupti.h"
5
#include "megbrain/imperative/dispatch.h"
6
#include "megbrain/imperative/ops/autogen.h"
M
Megvii Engine Team 已提交
7 8
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/utility.h"
9
#include "megbrain/imperative/profiler.h"
10
#include "megbrain/imperative/transformation.h"
11
#include "megbrain/imperative/transformations/complex.h"
12
#include "megbrain/imperative/transformations/dim_expansion.h"
13
#include "megbrain/imperative/transformations/dtype_promote.h"
14
#include "megbrain/imperative/transformations/eval.h"
15
#include "megbrain/imperative/transformations/format.h"
16
#include "megbrain/imperative/transformations/group_comm.h"
17 18 19 20 21
#include "megbrain/imperative/transformations/lazy.h"
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/transformations/symbol.h"
#include "megbrain/imperative/transformations/trace.h"
#include "megbrain/imperative/utils/map.h"
22
#include "megbrain/opr/io.h"
23
#include "megbrain/plugin/profiler.h"
24
#include "megbrain/utils/stats.h"
25
#include "megdnn/algorithm_cache.h"
26

27
#include "./common.h"
M
Megvii Engine Team 已提交
28
#include "./grad.h"
29
#include "./graph_rt.h"
30
#include "./helper.h"
M
Megvii Engine Team 已提交
31 32 33
#include "./module_trace.h"
#include "./numpy_dtypes.h"
#include "./tensor.h"
34
#include "./tensor_utils.h"
35
#include "./transformation.h"
36

37
#include <object.h>
38 39
#include <pybind11/numpy.h>
#include <pybind11/operators.h>
40 41
#include <pybind11/pytypes.h>
#include <pyerrors.h>
42
#include <iterator>
43
#include <range/v3/all.hpp>
44
#include <string>
45 46 47

#include <unordered_map>

48
#include "../../src/impl/mgb_cg_impl.h"
49
#include "./backtrace.h"
50

51
namespace py = pybind11;
52
namespace views = ranges::views;
53 54 55

namespace mgb::imperative::python {

56 57
interpreter::Interpreter::Channel* interpreter_for_py = nullptr;
PyTypeObject* py_tensor_type = nullptr;
58
PyTypeObject* py_varnode_type = nullptr;
59
pybind11::handle py_device_type = nullptr;
60
PyObject* cpp_use_symbolic_shape;
61 62 63 64 65 66 67

#define REGISTE_APPLY_FUNC(mode) \
    void set_##mode(py::object pyf) { mode = pyf.ptr(); }

REGISTE_APPLY_FUNC(cpp_use_symbolic_shape)

#undef REGISTE_APPLY_FUNC
68

69 70 71
PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs);
CompNode _get_device(PyObject* const* args, size_t nargs);

M
Megvii Engine Team 已提交
72 73
PyObject* py_apply(
        PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) {
74 75 76 77 78
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
79
        if (nargs < 2) {
M
Megvii Engine Team 已提交
80 81 82 83
            PyErr_SetString(
                    PyExc_TypeError,
                    "py_apply expects one Op and at least one tensor "
                    "as argument");
84 85
            return nullptr;
        }
86

87
        auto* py_op = args[0];
88

89 90 91
        ++args;
        --nargs;

92
        auto op = py::handle(py_op).cast<std::shared_ptr<OpDef>>();
93
        SmallVector<ValueRef, 8> tensors(nargs);
94

95 96 97 98 99 100 101 102 103 104
        mgb::CompNode target_cn;
        mgb::DType target_dtype;

        auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef {
            if (!target_dtype.valid()) {
                target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs));
                target_cn = _get_device(args, nargs);
            }
            HostTensorND ht(target_cn);
            ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype);
105
            record_py_backtrace();
106 107 108 109
            //! operand in elemwise can't be None
            if (args[i] == Py_None) {
                throw py::type_error("the operand is None and is not supported.");
            } else if (PyArray_Check(args[i]) || PyList_Check(args[i])) {  // non scaler
110
                // py_tuple is not allowed here because of tracing
111 112 113 114 115 116 117 118 119 120
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, ht.layout()),
                        HostStorage::make(ht.storage()))[0];
            } else {  // scaler
                return imperative::apply(
                        CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}),
                        HostStorage::make(ht.storage()))[0];
            }
        };

121
        bool is_varnode_apply = false;
122
        for (size_t i = 0; i < nargs; ++i) {
123 124 125
            if (PyObject_TypeCheck(args[i], py_varnode_type)) {
                is_varnode_apply = true;
            }
126
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
127
                tensors[i] = tw->m_tensor->data();
128 129
            } else if (
                    DTypePromoteCfg::convert_input_enabled &&
130
                    (op->same_type<Elemwise>() || op->same_type<ElemwiseMultiType>())) {
131
                tensors[i] = convert_pyinput_to_tensor(i);
132 133 134
            } else {
                PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs");
                return nullptr;
135 136
            }
        }
137
        record_py_backtrace();
138
        auto outputs = [&] { return imperative::apply(*op, tensors); }();
139 140
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
141
        PyTypeObject* py_type = is_varnode_apply ? py_varnode_type : py_tensor_type;
142
        for (size_t i = 0; i < nout; ++i) {
143
            ret[i] = TensorWrapper::make(py_type, std::move(outputs[i]));
144 145
        }
        return ret.release().ptr();
M
Megvii Engine Team 已提交
146 147
    }
    PYEXT17_TRANSLATE_EXC_RET(nullptr)
148
}
149 150 151 152 153
FrameInfoPtr get_current_frameinfo() {
    auto frame = PyEval_GetFrame();
    auto frameinfo = get_frameinfo_from_pyframe(frame);
    return frameinfo;
}
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168
namespace {

template <typename T>
py::handle py_type() {
    if constexpr (std::is_same_v<T, py::int_>) {
        return (PyObject*)&PyLong_Type;
    } else if constexpr (std::is_same_v<T, py::float_>) {
        return (PyObject*)&PyFloat_Type;
    } else if constexpr (std::is_same_v<T, py::tuple>) {
        return (PyObject*)&PyTuple_Type;
    } else if constexpr (std::is_same_v<T, py::list>) {
        return (PyObject*)&PyList_Type;
    } else {
        static_assert(std::is_same_v<T, T>);
169
    }
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
}

template <typename T>
auto scalar2storage(T val, CompNode cn, DType dtype) {
    using max_ctype_t = DTypeScalar::max_ctype;
    DTypeScalar scalar(dtype);
    scalar.set_retain_dtype(val);
    HostTensorStorage storage(cn);
    auto* raw_ptr = reinterpret_cast<dt_byte*>(new max_ctype_t());
    std::shared_ptr<dt_byte> raw_storage = {
            raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast<max_ctype_t*>(ptr); }};
    storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0);
    std::memcpy(storage.ptr(), scalar.storage(), dtype.size());
    return HostStorage::make(std::move(storage));
}

template <typename ctype>
auto vec2storage(Span<DTypeScalar> vec, CompNode cn, DType dtype) {
    mgb_assert(vec.size() <= MEGDNN_MAX_NDIM);
    // TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
    auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM];
    for (size_t i = 0; i < vec.size(); ++i) {
        raw_ptr[i] = vec[i].get_cast<ctype>();
193
    }
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    mgb_assert(sizeof(ctype) == dtype.size());
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0);
    return HostStorage::make(std::move(storage));
}

struct HostTensorArgs {
    ValueShape shape;
    DType dtype;
    HostStorage::ref_t storage;

    HostTensorND as_tensor_nd() const {
        HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype);
        ret.only_reset_raw_storage(*storage);
        return ret;
    }
};

template <typename seq_type, typename ctype>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    ctype items[size];
    for (size_t i = 0; i < size; ++i) {
        py::handle item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (ctype)(dt_int32)item.template cast<py::int_>();
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (ctype)(dt_float32)item.template cast<py::float_>();
        } else {
            return false;
230
        }
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    }
    mgb_assert(sizeof(ctype) == dtype.size());
    auto* raw_ptr = new ctype[size];
    std::shared_ptr<dt_byte> raw_storage = {
            reinterpret_cast<dt_byte*>(raw_ptr),
            [](dt_byte* ptr) { delete[] reinterpret_cast<ctype*>(ptr); }};
    HostTensorStorage storage(cn);
    storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0);
    std::memcpy(storage.ptr(), items, sizeof(ctype) * size);
    ret.dtype = dtype;
    ret.shape = {size};
    ret.storage = HostStorage::make(std::move(storage));
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) {
    auto size = obj.size();
    if (size > MEGDNN_MAX_NDIM) {
        return false;
    }
    DTypeScalar items[size];
    DType dtype;
    for (size_t i = 0; i < size; ++i) {
        auto&& item = obj[i];
        if (item.get_type().is(py_type<py::int_>())) {
            items[i] = (dt_int32)item.template cast<py::int_>();
            if (!dtype.valid()) {
                dtype = dtype::Int32();
            } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) {
                return false;
            }
        } else if (item.get_type().is(py_type<py::float_>())) {
            items[i] = (dt_float32)item.template cast<py::float_>();
            if (!dtype.valid()) {
                dtype = dtype::Float32();
            } else if (dtype == dtype::Int32()) {
                dtype = dtype::Float32();
            } else if (dtype != dtype::Float32()) {
                return false;
271
            }
272
        } else {
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            return false;
        }
    }
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.shape = {size};
    if (dtype == dtype::Int32()) {
        ret.storage = vec2storage<dt_int32>({items, size}, cn, dtype);
    } else if (dtype == dtype::Float32()) {
        ret.storage = vec2storage<dt_float32>({items, size}, cn, dtype);
    } else {
        mgb_assert(false);
    }
    return true;
}

template <typename seq_type>
bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (dtype == dtype::Int32()) {
        return pyseq2hval<seq_type, dt_int32>(obj, cn, dtype, ret);
    } else if (dtype == dtype::Float32()) {
        return pyseq2hval<seq_type, dt_float32>(obj, cn, dtype, ret);
    } else if (!dtype.valid()) {
        return pyseq2hval<seq_type>(obj, cn, ret);
    } else {
        return false;
    }
}

bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    auto data = obj.cast<py::array>();
    auto strides = data.strides();
    bool need_squeeze = false;
    for (size_t i = 0; i < data.ndim(); ++i) {
        if (strides[i] == 0) {
            need_squeeze = true;
            break;
        }
    }
    if (need_squeeze) {
        std::vector<size_t> shape;
        for (size_t i = 0; i < data.ndim(); ++i) {
            shape.push_back(data.shape(i));
        }
        data = data.squeeze();
        data.resize(shape);
    }
    HostTensorND retnd(cn);
    retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype);
    if (!dtype.valid()) {
        dtype = retnd.dtype();
    }
    mgb_assert(
            retnd.layout().is_empty() || retnd.layout().is_contiguous(),
            "host value should be continuous");
    for (size_t i = 0; i < data.ndim(); ++i) {
        ret.shape[ret.shape.ndim++] = data.shape(i);
    }
    ret.dtype = dtype;
    ret.storage = HostStorage::make(retnd.storage());
    return true;
}

bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Int32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_int32)obj, cn, dtype);
    return true;
}

bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) {
    if (!dtype.valid()) {
        dtype = dtype::Float32();
    }
    ret.dtype = dtype;
    ret.storage = scalar2storage((dt_float32)obj, cn, dtype);
    return true;
}

HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) {
    HostTensorArgs ret;
    bool success = false;
    // check order: float -> int -> tuple(int -> float) -> list(int -> float)
    // only handle `exact` pytype, isinstance also accepts subtype
    // for example, isinstance(True, int) == True
    if (obj.get_type().is(py_type<py::float_>())) {
        success = pyfloat2hval(py::float_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::int_>())) {  // py::bool_ is py::int_
        success = pyint2hval(py::int_(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::tuple>())) {
        success = pyseq2hval<py::tuple>(py::tuple(obj), cn, dtype, ret);
    } else if (obj.get_type().is(py_type<py::list>())) {
        success = pyseq2hval<py::list>(py::list(obj), cn, dtype, ret);
    } else if (obj.is_none()) {
        obj = py::list(0);
    }
    if (!success) {
        success = pyarr2hval(obj, cn, dtype, ret);
    }
    mgb_assert(success);
    return ret;
}

struct PyArgDesc {
    const char* name;
    py::object (*default_value)();
};

struct PyArgDescs {
    std::vector<PyArgDesc> items;
    ssize_t (*name2idx)(const char* name);
};

py::tuple parse_args(py::tuple args, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        ret[i] = descs.items[i].default_value();
    }
    return ret;
}

py::tuple parse_args_and_kwargs(
        py::tuple args, py::dict kwargs, const PyArgDescs& descs) {
    size_t nr_args = args.size();
    size_t nr_kwargs = kwargs.size();
    size_t nr_items = descs.items.size();
    mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args");
    if (nr_args == nr_items) {
        return args;
    }
    py::tuple ret(nr_items);
    for (size_t i = 0; i < nr_args; ++i) {
        ret[i] = args[i];
    }
    bool has_value[nr_items - nr_args];
    for (size_t i = nr_args; i < nr_items; ++i) {
        has_value[i - nr_args] = false;
    }
    for (auto&& [k, v] : kwargs) {
        auto key = py::str(k).cast<std::string>();
        ssize_t index = descs.name2idx(key.c_str());
        mgb_assert(index >= nr_args);
        ret[index] = v;
        has_value[index - nr_args] = true;
    }
    for (size_t i = nr_args; i < nr_items; ++i) {
        if (!has_value[i - nr_args]) {
            ret[i] = descs.items[i].default_value();
        }
    }
    return ret;
}

CompNode as_comp_node(const std::string& name) {
    thread_local struct {
        std::string name;
        CompNode cn;
    } cached;
    if (cached.name != name) {
        cached.name = name;
        cached.cn = CompNode::load(name);
    }
    return cached.cn;
}

CompNode as_comp_node(py::object py_device) {
    std::optional<std::string> device_name;
    if (py_device.is_none() || py::str::check_(py_device)) {
        auto cls = py::handle(reinterpret_cast<PyObject*>(py_tensor_type));
        auto dmap_callback = cls.attr("dmap_callback");
        std::string name;
        if (dmap_callback.is_none() && py_device.is_none()) {
            name = get_default_device();
        } else {
            if (py_device.is_none()) {
                py_device = py::str(get_default_device());
462
            }
463 464
            if (!dmap_callback.is_none()) {
                py_device = dmap_callback(py_device);
465
            }
466 467 468 469 470 471 472 473 474 475 476
            name = py::str(py_device).cast<std::string>();
        }
        return as_comp_node(name);
    } else {
        if (py::isinstance(py_device, py_device_type)) {
            py_device = py_device.attr("_cn");
        }
        mgb_assert(py::isinstance(py_device, py_comp_node_type));
        return py_device.cast<CompNode>();
    }
}
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
template <char... Chars>
bool compare_cstr(const char* cstr) {
    return (((*cstr++) == Chars) && ...) && *cstr == '\0';
}

ssize_t name2idx(const char* name) {
    const char* ch = name;
    // TODO: trie
    // clang-format off
    switch (*ch++) {
    case 'd':
        switch (*ch++) {
        // data
        case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1;
        // dtype
        case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1;
        // device
        case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1;
        }
    case 'i':
        // is_const
        return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1;
    case 'n':
        switch (*ch++) {
        // no_cache
        case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1;
        // name
        case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1;
        }
507 508 509
    case 'f':
        // format
        return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    }
    // clang-format on
    return -1;
}

}  // namespace

TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    static PyArgDescs descs = {
            {
                    {"data", []() -> py::object { return py::none(); }},
                    {"dtype", []() -> py::object { return py::none(); }},
                    {"device", []() -> py::object { return py::none(); }},
                    {"is_const", []() -> py::object { return py::bool_(false); }},
                    {"no_cache", []() -> py::object { return py::bool_(false); }},
                    {"name", []() -> py::object { return py::none(); }},
526
                    {"format", []() -> py::object { return py::none(); }},
527 528 529 530 531 532 533 534 535 536
            },
            name2idx};
    py::detail::loader_life_support life_sup;  // FIXME!!!required to cast DType
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (kwargs) {
        tup = parse_args_and_kwargs(
                tup, py::reinterpret_borrow<py::dict>(kwargs), descs);
    } else {
        tup = parse_args(tup, descs);
    }
537
    mgb_assert(tup.size() == 7);
538
    if (auto* t = try_cast(tup[0].ptr())) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        m_tensor = t->m_tensor;
        // TODO: merge two path in arg parse
        if (!tup[1].is_none()) {
            auto dtype = tup[1].cast<DType>();
            mgb_assert(
                    dtype == m_tensor->dtype(), "dtype mismatch: %s vs %s",
                    dtype.name(), m_tensor->dtype().name());
        }
        if (!tup[2].is_none()) {
            auto device = as_comp_node(tup[2]);
            mgb_assert(
                    device == m_tensor->comp_node(), "device mismatch: %s vs %s",
                    device.to_string().c_str(),
                    m_tensor->comp_node().to_string().c_str());
        }
        mgb_assert(!tup[3].cast<bool>(), "expect is_const == False, got True");
        bool no_cache = tup[4].cast<bool>();
        if (no_cache) {
            // always copy because it's hard to tell whether this tensor is cached
            m_tensor = m_tensor->copy();
        }
        // ignore name
        if (!tup[6].is_none()) {
            Format format = tup[6].cast<std::string>();
            mgb_assert(
                    format == m_tensor->format(), "format mismatch: %s vs %s",
                    format.to_string().c_str(), m_tensor->format().to_string().c_str());
        }
567 568 569
    } else {
        auto data = tup[0];
        DType dtype = tup[1].cast<DType>();
570
        CompNode cn = as_comp_node(tup[2]);
571 572 573 574 575 576
        bool is_const = tup[3].cast<bool>();
        bool no_cache = tup[4].cast<bool>();
        std::string name;
        if (!tup[5].is_none()) {
            name = tup[5].cast<std::string>();
        }
577 578 579 580
        Format format;
        if (!tup[6].is_none()) {
            format = tup[6].cast<std::string>();
        }
581 582 583 584 585

        {
            CreateTensor::Kind kind = is_const ? CreateTensor::Const
                                    : no_cache ? CreateTensor::Unique
                                               : CreateTensor::Common;
586 587 588 589 590 591 592 593
            ValueRef val;
            if (py::isinstance(data, Py_Varnode)) {
                cg::VarNode* m_node = py::handle(data).cast<cg::VarNode*>();
                val = imperative::apply(
                        CreateNode(m_node), Span<ValueRef>(nullptr, nullptr))[0];
            } else {
                auto&& hval = pyobj2hval(data, cn, dtype);
                val = imperative::apply(
594
                        CreateTensor(kind, cn, hval.dtype, hval.shape, format),
595 596
                        hval.storage)[0];
            }
597 598 599 600 601
            m_tensor.emplace(val);
        }

        if (!name.empty()) {
            m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]);
602 603
        }
    }
604
    mgb_assert(m_tensor->data());
605 606
}

607
PyObject* TensorWrapper::module_trace_info() {
608 609 610
    if (auto module_trace_info =
                ModuleTraceTransformation::module_trace_info_map.try_get(
                        m_tensor->data())) {
611 612 613
        if (module_trace_info->ptr()) {
            return module_trace_info->inc_ref().ptr();
        }
614
    }
615 616 617 618 619
    PyErr_SetString(
            PyExc_AttributeError,
            "Has no attribute named \'_NodeMixin__node\', please "
            "set it first");
    return nullptr;
620 621 622
}

void TensorWrapper::set_module_trace_info(PyObject* obj) {
623
    // TODO: erase when obj == nullptr
624 625
    ModuleTraceTransformation::module_trace_info_map[m_tensor->data()] =
            py::reinterpret_borrow<py::object>(obj);
626 627
}

628 629 630 631 632 633
void TensorWrapper::_set_format(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto format = py_dest.cast<std::string>();
    m_tensor->set_format(format);
}

634 635 636
void TensorWrapper::_set_name(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    auto name = py_dest.cast<std::string>();
637

638 639
    m_tensor->set_name(name);
}
640

641 642
PyObject* TensorWrapper::_detail() {
    return py::str(m_tensor->data().unwrap().to_string()).release().ptr();
643 644
}

645 646
void TensorWrapper::_watch() {
    m_tensor->data().watch();
647 648
}

649
PyObject* TensorWrapper::shape() {
650
    auto shape = m_tensor->shape();
651

652
    if (!shape) {
653 654
        Py_RETURN_NONE;
    }
655 656 657
    py::tuple ret(shape->ndim);
    for (size_t i = 0; i < shape->ndim; ++i) {
        ret[i] = shape->at(i);
658 659 660 661 662 663 664 665 666 667 668 669
    }
    return ret.release().ptr();
}

PyObject* TensorWrapper::dtype() {
    return py::cast(m_tensor->dtype()).release().ptr();
}

PyObject* TensorWrapper::device() {
    return py::cast(m_tensor->comp_node()).release().ptr();
}

670 671 672 673
PyObject* TensorWrapper::format() {
    return py::cast(m_tensor->format().to_string()).release().ptr();
}

674
PyObject* TensorWrapper::numpy() {
675
    auto hv = m_tensor->numpy();
676
    if (!hv) {
677 678 679 680 681 682 683 684 685 686 687
        if (TransformationManager::get_instance()
                    .segments[TransformationManager::Segment::Eval]
                    .size() > 1) {
            PyErr_SetString(
                    PyExc_ValueError,
                    "tensor invalid, can not infer value of this tensor under "
                    "trace(symbolic=True). You can try to use trace(symbolic=False) to "
                    "avoid this issue.");
        } else {
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
        }
688 689
        return nullptr;
    }
690 691
    auto arr = py::reinterpret_steal<py::array>(
            npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE));
692
    if (hv->shape().is_scalar()) {
693 694 695 696 697 698 699
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

void TensorWrapper::reset(PyObject* tensor) {
700
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
701 702 703
    if (!t) {
        throw py::type_error("expect Tensor");
    }
704
    m_tensor->reset(t->m_tensor->data());
705 706
}

707
PyObject* TensorWrapper::detach() {
708 709
    auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0];
    return TensorWrapper::make(py_tensor_type, detached).release().ptr();
710 711
}

M
Megvii Engine Team 已提交
712
PyObject* TensorWrapper::_dev_tensor() {
713 714 715
    auto dv = m_tensor->data().dev_tensor();
    // TODO: handle scalar
    return py::cast(dv->as_nd(true)).release().ptr();
716 717 718
}

void TensorWrapper::_drop() {
719
    imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data());
720 721
}

722
PyObject* TensorWrapper::isscalar() {
723
    if (m_tensor->is_scalar()) {
724 725 726 727 728 729
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743
PyObject* TensorWrapper::_var() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* node = value->node();
    return py::cast(node).release().ptr();
}

PyObject* TensorWrapper::_graph() {
    TypedValueRef<NodeValue> value =
            imperative::apply(GetVarVal(), m_tensor->data())[0].as_ref<NodeValue>();
    auto* graph = value->graph();
    return py::cast(graph).release().ptr();
}

744
struct TensorWeakRef {
745
    ValueWeakRef data;
746

747
    TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {}
748 749

    py::object operator()() {
750
        if (auto p = data.lock()) {
751
            return TensorWrapper::make(py_tensor_type, p);
752 753 754 755 756
        }
        return py::none();
    }
};

757 758 759 760 761 762 763 764 765 766
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
767

768 769 770
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
771 772 773
WRAP_FUNC_PY35(make_shape_tuple);
WRAP_FUNC_PY35(getitem_cpp);
WRAP_FUNC_PY35(setitem_cpp);
774
WRAP_FUNC_PY35(split_cpp);
775
WRAP_FUNC_PY35(expand_dims_cpp);
776
WRAP_FUNC_PY35(squeeze_cpp);
777
WRAP_FUNC_PY35(transpose_cpp);
778 779
WRAP_FUNC_PY35(broadcast_cpp);
WRAP_FUNC_PY35(reshape_cpp);
780
WRAP_FUNC_PY35(adaptive_pool2d_cpp);
781
WRAP_FUNC_PY35(Const);
782
WRAP_FUNC_PY35(astype_cpp);
783 784
WRAP_FUNC_PY35(matmul_cpp);
WRAP_FUNC_PY35(batched_matmul_cpp);
785 786
WRAP_FUNC_PY35(convert_single_value_cpp);
WRAP_FUNC_PY35(convert_inputs_cpp);
787
WRAP_FUNC_PY35(astensor1d_cpp);
788
WRAP_FUNC_PY35(pixel_shuffle_cpp);
789 790 791 792 793
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

794
void init_tensor(py::module m) {
795
    imperative::Tensor::static_initialize();
796
    init_backtrace_tss_key();
797
    // Transformations
798 799 800 801
    static auto& transformations = TransformationManager::get_instance();

    using Segment = TransformationManager::Segment;

802 803 804 805 806 807
    using Channel = interpreter::Interpreter::Channel;

    auto* channel =
            imperative::ResourceManager::create_global<std::unique_ptr<Channel>>(
                    interpreter::Interpreter::inst().create_channel())
                    ->get();
808
    interpreter_for_py = channel;
809 810 811 812 813 814 815 816 817 818
    MGB_MARK_USED_VAR(
            transformations
                    .register_at<Segment::Eval>(
                            std::make_shared<InterpreterTransformation>(
                                    std::shared_ptr<Channel>(channel, [](Channel*) {})))
                    .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Scalar>(
                                      std::make_shared<ScalarTransformation>())
                              .release());
819 820 821 822
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Symbol>(
                                      std::make_shared<SymbolTransformation>())
                              .release());
823 824 825 826 827 828 829 830
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DTypePromote>(
                                      std::make_shared<DTypePromoteTransformation>())
                              .release());
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::DimExpansion>(
                                      std::make_shared<DimExpansionTransformation>())
                              .release());
831 832 833 834
    MGB_MARK_USED_VAR(transformations
                              .register_at<Segment::Complex>(
                                      std::make_shared<ComplexTransformation>())
                              .release());
835 836 837
    auto format_trans = std::make_shared<FormatTransformation>();
    MGB_MARK_USED_VAR(
            transformations.register_at<Segment::Format>(format_trans).release());
838

M
Megvii Engine Team 已提交
839 840
    static py::exception<interpreter::AsyncError> py_async_error(
            m, "AsyncError", PyExc_RuntimeError);
841 842
    py::register_exception_translator([](std::exception_ptr p) {
        try {
M
Megvii Engine Team 已提交
843 844
            if (p)
                std::rethrow_exception(p);
845 846 847 848 849 850 851 852 853 854
        } catch (const interpreter::AsyncError& e) {
            pyext17::pybind11_translate_exception(e.nested_ptr());
            if (PyErr_Occurred()) {
                PyObject *exc, *val, *tb;
                PyErr_Fetch(&exc, &val, &tb);
                PyErr_NormalizeException(&exc, &val, &tb);
                if (tb) {
                    PyException_SetTraceback(val, tb);
                }
                auto val2 = py_async_error.py::object::operator()(
M
Megvii Engine Team 已提交
855 856
                        "An async error is reported. See above for the actual cause."
                        " Hint: This is where it is reported, not where it happened."
857
                        " You may call `megengine.config.async_level = 0 "
M
Megvii Engine Team 已提交
858 859 860
                        "to get better error reporting.");
                PyException_SetCause(
                        val2.ptr(), val);  // PyException_SetCause steals reference
861 862
                Py_XDECREF(exc);
                Py_XDECREF(tb);
M
Megvii Engine Team 已提交
863 864
                PyErr_Restore(
                        py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr);
865 866 867 868 869 870
            } else {
                py_async_error("Unkown async error");
            }
        }
    });

871
    // Tensor
M
Megvii Engine Team 已提交
872 873 874 875 876 877
    auto* tensor_type =
            TensorWrapper::wrap_t::type()
                    .def<&TensorWrapper::numpy>("numpy")
                    .def_getset<&TensorWrapper::shape>("shape")
                    .def_getset<&TensorWrapper::dtype>("dtype")
                    .def_getset<&TensorWrapper::device>("device")
878
                    .def<&TensorWrapper::format>("format")
M
Megvii Engine Team 已提交
879 880 881
                    .def<&TensorWrapper::reset>("_reset")
                    .def<&TensorWrapper::isscalar>("_isscalar")
                    .def<&TensorWrapper::detach>("detach")
882
                    // TODO: remove this
M
Megvii Engine Team 已提交
883 884
                    .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
                    .def<&TensorWrapper::_drop>("_drop")
885
                    .def<&TensorWrapper::_detail>("_detail")
886
                    .def<&TensorWrapper::_set_format>("_set_format")
887 888
                    .def<&TensorWrapper::_set_name>("_set_name")
                    .def<&TensorWrapper::_watch>("_watch")
889 890
                    .def<&TensorWrapper::_var>("var")
                    .def<&TensorWrapper::_graph>("graph")
M
Megvii Engine Team 已提交
891 892 893 894 895 896
                    .def_getset<
                            &TensorWrapper::module_trace_info,
                            &TensorWrapper::set_module_trace_info>("_NodeMixin__node")
                    .finalize();
    if (!tensor_type)
        throw py::error_already_set();
897
    py::setattr(m, "Tensor", tensor_type);
898 899 900 901

    auto* tracekey_type = TraceKeyWrapper::wrap_t::type().finalize();
    py::setattr(m, "tracekey", tracekey_type);

902 903 904 905 906
    py::enum_<Format::Type>(m, "FormatType")
            .value("DEFAULT", Format::Type::DEFAULT)
            .value("NCHW", Format::Type::NCHW)
            .value("NHWC", Format::Type::NHWC)
            .export_values();
907 908

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
M
Megvii Engine Team 已提交
909
            .def(py::init<const TensorWrapper&>())
910
            .def("__call__", &TensorWeakRef::operator());
911

912
    static PyMethodDef method_defs[] = {
913 914 915
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
916 917 918
            MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple),
            MGE_PY_INTERFACE(getitem_cpp, getitem_cpp),
            MGE_PY_INTERFACE(setitem_cpp, setitem_cpp),
919
            MGE_PY_INTERFACE(split_cpp, split_cpp),
920
            MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp),
921
            MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp),
922
            MGE_PY_INTERFACE(transpose_cpp, transpose_cpp),
923 924
            MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp),
            MGE_PY_INTERFACE(reshape_cpp, reshape_cpp),
925
            MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp),
926
            MGE_PY_INTERFACE(Const, Const),
927
            MGE_PY_INTERFACE(astype_cpp, astype_cpp),
928 929
            MGE_PY_INTERFACE(matmul_cpp, matmul_cpp),
            MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp),
930 931
            MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp),
            MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp),
932
            MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp),
933
            MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp),
934
            {nullptr, nullptr, 0, nullptr}};
M
Megvii Engine Team 已提交
935
    for (auto&& def : method_defs) {
936 937
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
M
Megvii Engine Team 已提交
938 939
            if (!func)
                throw py::error_already_set();
940 941 942
            py::setattr(m, def.ml_name, func);
        }
    }
943

944 945 946 947
    static constexpr auto sync_py_task_q = [] {
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };
948

949
    m.def("clear_candidates", [channel]() { channel->clear_candidates(); });
950 951
    m.def("set_option", [channel](std::string name, size_t value) {
        channel->set_option(name, value);
M
Megvii Engine Team 已提交
952
    });
953
    m.def("get_option",
954 955 956 957 958
          [channel](std::string name) { return channel->get_option(name); });
    m.def("push_scope", [channel](std::string name) {
        Transformation::push_scope(name);
        channel->push_scope(name);
    });
959 960 961 962
    m.def("record_scope", [](py::object frame, std::string name) {
        mgb_assert(PyFrame_Check(frame.ptr()));
        record_scope((PyFrameObject*)frame.ptr(), std::move(name));
    });
963 964 965 966
    m.def("pop_scope", [channel](std::string name) {
        channel->pop_scope(name);
        Transformation::pop_scope(name);
    });
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    std::unordered_map<std::string, ScopeType> str2scopetype = {
            {"default", ScopeType::DEFAULT},
            {"module", ScopeType::MODULE},
            {"tensor_method", ScopeType::TENSOR_METHOD},
            {"functional", ScopeType::FUNCTIONAL},
            {"backward", ScopeType::BACKWARD}};

    m.def("push_scope_with_type",
          [channel, str2scopetype](std::string name, std::string type) {
              if (str2scopetype.find(type) == str2scopetype.end()) {
                  throw py::value_error("unsupport scope type");
              } else {
                  channel->push_scope(name, str2scopetype.find(type)->second);
              }
          });
    m.def("pop_scope_with_type",
          [channel, str2scopetype](std::string name, std::string type) {
              if (str2scopetype.find(type) == str2scopetype.end()) {
                  throw py::value_error("unsupport scope type");
              } else {
                  channel->pop_scope(name, str2scopetype.find(type)->second);
              }
          });
990 991 992 993 994 995 996 997 998
    m.def("start_profile", [channel](imperative::Profiler::options_t options) {
        channel->sync();
        imperative::Profiler::load_options(std::move(options));
        imperative::Profiler::start_profile();
        channel->start_profile();
    });
    m.def("stop_profile", [channel]() -> std::function<void(std::string, std::string)> {
        channel->stop_profile();
        channel->sync();
999
        CompNode::sync_all();
1000 1001 1002 1003 1004 1005 1006 1007
        imperative::Profiler::stop_profile();
        auto results = std::make_shared<imperative::Profiler::bundle_t>(
                imperative::Profiler::collect());
        return [results = results](std::string basename, std::string format) mutable {
            imperative::Profiler::dump_profile(basename, format, std::move(*results));
            results = nullptr;
        };
    });
1008 1009 1010 1011
    m.def("stop_step", [channel]() {
        imperative::Profiler::stop_step();
        channel->stop_step();
    });
1012 1013 1014
    m.def("enable_cupti", &cupti::enable);
    m.def("disable_cupti", &cupti::disable);
    m.def("cupti_available", &cupti::available);
1015 1016 1017 1018 1019 1020 1021

    static std::unique_ptr<CleanupGuard<>> group_comm_guard;
    m.def("group_start", []() {
        auto commtrans = std::make_shared<GroupCommTransformation>();
        group_comm_guard = transformations.register_at<Segment::GroupComm>(commtrans);
    });
    m.def("group_end", []() { group_comm_guard.reset(); });
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    m.def("sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        sync_py_task_q();
    });
    m.def("full_sync", [channel]() {
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
        sync_py_task_q();
    });
    m.def("close", [channel]() {
1040 1041 1042 1043 1044 1045 1046 1047 1048
        // sync channel and compnode before close to ensure all tasks have been completed
        if (channel->check_available()) {
            channel->sync();
        }
        CompNode::sync_all();
        CompNode::foreach ([](CompNode cn) {
            auto err = cn.check_async_error();
            mgb_assert(!err, "%s", err->what());
        });
1049 1050
        channel->close();
        sync_py_task_q();
M
Megvii Engine Team 已提交
1051 1052
    });

1053
    // GradTransformation
M
Megvii Engine Team 已提交
1054 1055 1056 1057 1058 1059
    py::handle grad_key_type =
            GradKeyWrapper::wrap_t::type()
                    .def<&GradKeyWrapper::attach>("attach")
                    .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
                    .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>(
                            "name")
1060 1061 1062 1063
                    .def<&GradKeyWrapper::enter>("enter")
                    .def<&GradKeyWrapper::exit>("exit")
                    .def<&GradKeyWrapper::suppress>("suppress")
                    .def<&GradKeyWrapper::resume>("resume")
M
Megvii Engine Team 已提交
1064 1065 1066
                    .finalize();
    if (!grad_key_type)
        throw py::error_already_set();
1067
    py::setattr(m, "GradKey", grad_key_type);
1068
    m.def("backward", &GradKeyWrapper::backward);
1069
    m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure);
1070

1071 1072 1073 1074
    m.def("set_py_tensor_type", [](py::object type_obj) {
        py_tensor_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1075 1076 1077 1078
    m.def("set_py_varnode_type", [](py::object type_obj) {
        py_varnode_type = reinterpret_cast<PyTypeObject*>(type_obj.inc_ref().ptr());
    });

1079 1080 1081
    m.def("set_py_device_type",
          [](py::object type_obj) { py_device_type = type_obj.inc_ref(); });

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    /**
     * \brief trace proxy
     *
     */
    struct Trace {
        bool symbolic = false;
        bool no_exec = false;
        bool capture_as_const = false;
        bool profile = false;
        bool record_input_shapes = false;
        py::function options_visitor;
        std::shared_ptr<TracingTransformation> tracing;
        std::shared_ptr<CompiledTransformation> compiled;
        std::shared_ptr<LazyEvalTransformation> lazy_eval;
        std::pair<size_t, std::shared_ptr<GraphProfiler>> profiler;
        std::optional<TraceResult> trace_result;
        std::function<bool(py::object, py::object)> array_comparator;
1099 1100 1101
        std::unique_ptr<CleanupGuard<>> tracing_guard;
        std::unique_ptr<CleanupGuard<>> compiled_guard;
        std::unique_ptr<CleanupGuard<>> lazy_eval_guard;
1102 1103

        bool compare_value(ValueRef lhs, ValueRef rhs) {
1104 1105
            auto lvalue = lhs.cast_ref<HostValue>();
            auto rvalue = rhs.cast_ref<HostValue>();
1106
            if (lvalue->shape() != rvalue->shape()) {
1107 1108
                return false;
            }
1109
            if (lvalue->shape().total_nr_elems() == 1) {
1110 1111 1112 1113
                return lvalue->item() == rvalue->item();
            }
            HostTensorND lnd = lvalue->as_nd(true);
            HostTensorND rnd = rvalue->as_nd(true);
1114
            auto larr = py::reinterpret_steal<py::array>(
1115
                    npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE));
1116
            auto rarr = py::reinterpret_steal<py::array>(
1117
                    npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE));
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            return array_comparator(larr, rarr);
        }

        void enter() {
            auto& self = *this;
            if (!self.trace_result) {  // untraced
                self.tracing = std::make_shared<TracingTransformation>(
                        self.capture_as_const, self.record_input_shapes);
                if (self.symbolic) {
                    self.lazy_eval =
                            std::make_shared<LazyEvalTransformation>(self.no_exec);
                    self.options_visitor(py::cast(&self.lazy_eval->options()));
                }
            } else if (!self.compiled) {  // traced but not compiled
                using namespace std::placeholders;
                self.compiled = std::make_shared<CompiledTransformation>(
                        *self.trace_result, self.record_input_shapes);
1135 1136 1137
                self.compiled->set_value_comparator(
                        std::bind(&Trace::compare_value, this, _1, _2));
                self.options_visitor(py::cast(&self.compiled->options()));
1138 1139 1140
                try {
                    self.compiled->compile();
                } catch (const std::exception& e) {
1141
                    mgb_log_error("error in trace: %s", e.what());
1142
                }
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            }
            // register transformations
            if (self.compiled) {
                if (self.profile) {
                    auto& current_graph = self.compiled->graph();
                    if (self.profiler.first != self.compiled->graph().id()) {
                        // graph changed
                        self.profiler = std::make_pair(
                                current_graph.id(),
                                std::make_shared<GraphProfiler>(&current_graph));
                    }
                }
1155 1156
                compiled_guard =
                        transformations.register_at<Segment::Trace>(self.compiled);
1157 1158 1159
                // start execute because InputCallback depends
                self.compiled->execute();
            } else if (self.tracing) {
1160 1161
                tracing_guard =
                        transformations.register_at<Segment::Trace>(self.tracing);
1162
                if (self.lazy_eval) {
1163 1164
                    lazy_eval_guard =
                            transformations.register_at<Segment::Eval>(self.lazy_eval);
1165 1166 1167 1168 1169 1170 1171 1172 1173
                }
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        void exit() {
            auto& self = *this;
            if (self.tracing) {
1174
                tracing_guard.reset();
1175 1176 1177 1178
                self.trace_result = self.tracing->get_result();
                self.tracing.reset();
                if (self.lazy_eval) {
                    auto lazy_eval = std::move(self.lazy_eval);
1179
                    lazy_eval_guard.reset();
1180 1181 1182
                    lazy_eval->check_exception();
                }
            } else if (self.compiled) {
1183
                compiled_guard.reset();
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
                self.compiled->wait();
            } else {
                mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled");
            }
        }

        VarNodeArray dump(
                std::shared_ptr<ComputingGraph> graph,
                std::vector<std::tuple<std::string, std::string, TensorShape>> inputs,
                std::vector<std::pair<std::string, std::string>> outputs,
                bool prefer_input_names) {
            auto& self = *this;
            mgb_assert(self.trace_result);
            // mark is like "arg_0", "kwarg_xxx", "output_0" ...
            std::unordered_map<std::string, size_t> mark2var;
            for (size_t i = 0; i < self.trace_result->vars.size(); ++i) {
                auto& name = self.trace_result->vars[i].mark;
                if (!name.empty()) {
                    mark2var[name] = i;
                }
            }
            std::vector<std::tuple<size_t, std::string, TensorShape>> input_vars;
            std::vector<std::pair<size_t, std::string>> output_vars;
            for (auto&& [input_mark, input_name, input_shape] : inputs) {
                mgb_assert(input_shape.ndim, "input shape invalid");
                input_vars.push_back(
                        {mark2var.at(input_mark), input_name, input_shape});
            }
            for (auto&& [output_name, repr] : outputs) {
                output_vars.push_back({mark2var.at(output_name), repr});
            }
            self.options_visitor(py::cast(&graph->options()));
            auto vars = self.trace_result->dump(
                    *graph, input_vars, output_vars, prefer_input_names);
            return vars;
        }
    };

    py::class_<Trace>(m, "Trace")
            .def(py::init<>())
            .def_readwrite("record_input_shapes", &Trace::record_input_shapes)
            .def_readwrite("array_comparator", &Trace::array_comparator)
            .def_readwrite("profile", &Trace::profile)
            .def_property_readonly(
                    "options",
                    [](Trace& self) {
                        if (self.compiled) {
                            return &self.compiled->options();
                        } else {
                            return (ComputingGraph::Options*)nullptr;
                        }
                    })
            .def("get_profile",
                 [](Trace& self) -> py::object {
                     if (self.profiler.second && self.compiled) {
                         auto json = self.profiler.second->to_json_full(
                                 self.compiled->graph().current_comp_seq());
                         return py::str(json->to_string());
                     } else {
                         return py::none();
                     }
                 })
            .def_readwrite("symbolic", &Trace::symbolic)
            .def_readwrite("capture_as_const", &Trace::capture_as_const)
            .def_readwrite("no_exec", &Trace::no_exec)
            .def_readwrite("options_visitor", &Trace::options_visitor)
            .def("enter", &Trace::enter)
            .def("exit", &Trace::exit)
            .def("dump", &Trace::dump)
            .def("begin_excluded_region",
                 [](Trace& self) {
                     mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                     if (self.tracing) {
1257
                         self.tracing_guard.reset();
1258
                     } else if (self.compiled) {
1259
                         self.compiled_guard.reset();
1260
                     }
M
Megvii Engine Team 已提交
1261
                 })
1262 1263 1264
            .def("end_excluded_region", [](Trace& self) {
                mgb_assert(bool(self.tracing) ^ bool(self.compiled));
                if (self.tracing) {
1265 1266
                    self.tracing_guard =
                            transformations.register_at<Segment::Trace>(self.tracing);
1267
                } else if (self.compiled) {
1268 1269
                    self.compiled_guard =
                            transformations.register_at<Segment::Trace>(self.compiled);
1270 1271 1272 1273 1274
                }
            });

    m.def("name_tensor", [](std::string name, py::object tensor) {
        auto* tw = TensorWrapper::try_cast(tensor.ptr());
1275
        mgb_assert(tw, "Arg_1 shoud be Tensor!");
1276 1277 1278 1279 1280
        auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0];
        tw->m_tensor->reset(output);
    });

    m.def("is_grad_attached", [](std::vector<py::object> tensors) -> bool {
1281
        SmallVector<ValueRef> values(tensors.size());
1282 1283
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        }
        auto outputs = imperative::apply(GetGradKey(), values);
        if (outputs[0].is<GradKeyValue>()) {
            return true;
        } else {
            return false;
        }
    });

    m.def("get_grad_key", [](std::vector<py::object> tensors) -> py::object {
1294
        SmallVector<ValueRef> values(tensors.size());
1295 1296
        for (size_t i = 0; i < tensors.size(); ++i) {
            values[i] = tensors[i].cast<TensorWrapper>().m_tensor->data();
1297
        }
1298 1299
        auto output = imperative::apply(GetGradKey(), values)[0];
        if (!output) {
1300 1301
            return py::none();
        }
1302 1303
        return py::reinterpret_borrow<py::object>(GradKeyWrapper::wrap_t::pycast(
                GradKeyWrapper::get(output.cast<GradKeyValue>())));
1304 1305
    });

1306
    m.def("set_grad", [](py::function backward_fn, std::vector<py::object> inputs,
1307 1308
                         std::vector<py::object> outputs) {
        GenericFunction generic_backward_fn =
1309
                [backward_fn](Span<ValueRef> output_grads) -> ValueRefList {
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
            py::list output_grad_tws;
            for (auto&& output_grad : output_grads) {
                if (output_grad) {
                    output_grad_tws.append(
                            TensorWrapper::make(py_tensor_type, output_grad));
                } else {
                    output_grad_tws.append(py::none());
                }
            }
            py::tuple input_grad_tws = backward_fn(*output_grad_tws);
1320 1321 1322
            ValueRefList input_grads(input_grad_tws.size());
            for (size_t i = 0; i < input_grad_tws.size(); ++i) {
                auto input_grad_tw = input_grad_tws[i];
1323
                if (!input_grad_tw.is_none()) {
1324 1325
                    input_grads[i] =
                            py::cast<TensorWrapper>(input_grad_tw).m_tensor->data();
1326
                } else {
1327
                    input_grads[i] = {};
1328 1329 1330 1331
                }
            }
            return input_grads;
        };
1332
        SmallVector<ValueRef> values(inputs.size() + outputs.size());
1333 1334
        for (size_t i = 0; i < inputs.size(); ++i) {
            values[i] = inputs[i].cast<TensorWrapper>().m_tensor->data();
1335
        }
1336 1337 1338
        for (size_t i = 0; i < outputs.size(); ++i) {
            values[i + inputs.size()] =
                    outputs[i].cast<TensorWrapper>().m_tensor->data();
1339
        }
1340 1341
        auto wrapped_output_values =
                imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values);
1342 1343 1344 1345 1346 1347 1348 1349 1350
        std::vector<py::object> wrapped_outputs;
        mgb_assert(wrapped_output_values.size() == outputs.size());
        for (auto&& output_value : wrapped_output_values) {
            wrapped_outputs.push_back(
                    TensorWrapper::make(py_tensor_type, output_value));
        }
        return wrapped_outputs;
    });

1351
    // ModuleTraceTransformation
1352 1353
    static py::function module_trace_hook;

1354 1355
    static auto get_module_trace = [] {
        static std::shared_ptr<ModuleTraceTransformation> module_trace_transformation;
1356 1357 1358 1359
        if (!module_trace_transformation) {
            mgb_assert(module_trace_hook);
            module_trace_transformation =
                    std::make_shared<ModuleTraceTransformation>(module_trace_hook);
1360 1361 1362 1363
            MGB_MARK_USED_VAR(transformations
                                      .register_at<Segment::ModuleTrace>(
                                              module_trace_transformation)
                                      .release());
1364
        }
1365 1366
        return module_trace_transformation;
    };
1367

1368 1369
    m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape);

1370 1371 1372
    m.def("set_module_tracing", [=] { get_module_trace()->enable(); });

    m.def("unset_module_tracing", [=] { get_module_trace()->disable(); });
1373

1374
    m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); });
1375 1376 1377 1378 1379 1380
    m.def("set_python_backtrace_enabled", &set_python_backtrace_enabled);
    m.def("set_transformation_backtrace_enabled",
          &set_transformation_backtrace_enabled);
    m.def("_mge_backtrace", &get_py_backtrace);
    m.def("_get_frame_cache_id",
          []() { return (size_t)FrameInfoCache::get_instance(); });
1381 1382 1383 1384
    m.def("set_module_trace_hook", [](py::function function) {
        module_trace_hook = function;
        module_trace_hook.inc_ref();
    });
1385

1386 1387
    auto atexit = py::module::import("atexit");
    atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; }));
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    m.def("begin_record_values", [] { Value::begin_record_values(); });

    m.def("end_record_values", [] {
        std::vector<std::pair<size_t, std::string>> reprs;
        auto values = Value::end_record_values();
        for (auto&& value : values) {
            reprs.push_back({value.id(), value.to_string()});
        }
        return reprs;
    });

1399
    m.def("print_stats", [] { Stats::print(); });
1400

1401
    m.def("reset_stats", [] { Stats::reset(); });
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    m.def("_get_convert_inputs",
          []() -> bool { return DTypePromoteCfg::convert_input_enabled; });
    m.def("_set_convert_inputs", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::convert_input_enabled;
        DTypePromoteCfg::convert_input_enabled = flag;
        return ret;
    });
    m.def("_get_amp_dtype_autocast",
          []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; });
    m.def("_set_amp_dtype_autocast", [](bool flag) -> bool {
        bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled;
        DTypePromoteCfg::amp_dtype_autocast_enabled = flag;
        return ret;
    });

    static auto get_amp_prec_dtype = [](bool is_high) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        mgb_assert(target.category() == DTypeCategory::FLOAT);
        std::string ret = target.name();
        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    static auto set_amp_prec_dtype = [](bool is_high,
                                        std::string dtype_name) -> std::string {
        DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype
                                : DTypePromoteCfg::amp_low_prec_dtype;
        std::string ret = target.name();

        if (dtype_name == "float32") {
            target = dtype::Float32();
        } else if (dtype_name == "float16") {
            target = dtype::Float16();
        } else if (dtype_name == "bfloat16") {
            target = dtype::BFloat16();
        } else {
            mgb_assert(
                    false, "casted type of amp should be float, but you give %s\n",
                    dtype_name.c_str());
        }

        transform(ret.begin(), ret.end(), ret.begin(), ::tolower);
        return ret;
    };

    m.def("_get_amp_high_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(true); });
    m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(true, dtype_name);
    });
    m.def("_get_amp_low_prec_dtype",
          []() -> std::string { return get_amp_prec_dtype(false); });
    m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string {
        return set_amp_prec_dtype(false, dtype_name);
    });

1460 1461
    m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); });

1462 1463 1464 1465 1466 1467
    // FormatTransformation
    m.def("set_auto_format_convert",
          [format_trans](bool enabled) { format_trans->set_auto_convert(enabled); });
    m.def("get_auto_format_convert",
          [format_trans]() { return format_trans->get_auto_convert(); });

1468
    py::register_exception<TraceError>(m, "TraceError");
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

    m.def("create_complex", [](py::object real, py::object imag) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        CreateComplex(),
                        TensorWrapper::try_cast(real.ptr())->m_tensor->data(),
                        TensorWrapper::try_cast(imag.ptr())->m_tensor->data())[0]);
    });

    m.def("get_real", [](py::object complex) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        GetReal(),
                        TensorWrapper::try_cast(complex.ptr())->m_tensor->data())[0]);
    });

    m.def("get_imag", [](py::object complex) {
        return TensorWrapper::make(
                py_tensor_type,
                imperative::apply(
                        GetImag(),
                        TensorWrapper::try_cast(complex.ptr())->m_tensor->data())[0]);
    });
1494 1495
}

1496 1497
#undef MGE_PY_INTERFACE

M
Megvii Engine Team 已提交
1498
}  // namespace mgb::imperative::python