distribute_transpiler.py 112.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
109 110
        min_block_size (int): Minimum splitted block size.
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
143
    A configuration class that provide support for transpiler distributed jobs.
144 145 146
    Some important parameters are explained as follows:


H
haowang101779990 已提交
147 148
    .. py:attribute:: slice_var_up (bool)

149
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
150 151 152

    .. py:attribute:: split_method (PSDispatcher)

153 154 155 156
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: min_block_size (int)

160
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
161 162

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
163
          We can use bandwidth effiently when data size is larger than 2MB.If you
164 165 166 167
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
168

169 170 171
    Examples:
        .. code-block:: python

172 173 174
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

175 176
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
177 178
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
179 180 181 182 183
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
184
    enable_dc_asgd = False
185
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
186
    mode = "pserver"
187
    print_log = False
W
Wu Yi 已提交
188
    wait_port = True
Q
Qiao Longfei 已提交
189
    # split the send recv var in runtime
1
123malin 已提交
190 191
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
192

193 194 195
    # half_async
    half_async = False

196 197 198 199
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

200 201 202 203 204 205 206
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

207
    # if mode is collective
208
    # supported modes: grad_allreduce, local_sgd
209 210
    collective_mode = None

211 212 213 214 215
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
216
        return self.__runtime_split_send_recv
217 218 219 220 221

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
222
        if value and self.__sync_mode:
223 224 225
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
226
        self.__runtime_split_send_recv = value
227 228 229

    @property
    def sync_mode(self):
1
123malin 已提交
230
        return self.__sync_mode
231 232 233 234 235

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
236
        if value and self.__runtime_split_send_recv:
237 238 239
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
240 241 242 243 244 245 246 247 248 249 250
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
251

G
gongweibao 已提交
252

Y
gen rst  
yi.wu 已提交
253
class DistributeTranspiler(object):
Y
yi.wu 已提交
254 255 256 257
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
258
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
259

W
Wu Yi 已提交
260 261 262 263 264 265 266 267 268
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
269 270 271 272

    Examples:
        .. code-block:: python

273 274
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
275 276 277 278 279 280 281 282
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
283 284 285 286 287 288
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
289
            role = "PSERVER"
T
Tink_Y 已提交
290 291 292 293 294 295
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
296
                                                                pserver_program)
T
Tink_Y 已提交
297 298 299 300
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
301 302
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
303 304
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
305
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
306
            t = fluid.DistributeTranspiler(config=config)
307
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
308
            exe = fluid.ParallelExecutor(
309 310 311
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
312 313
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
314
    """
Y
Yancey1989 已提交
315

G
gongweibao 已提交
316 317 318 319 320
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
321
        self._set_server_config()
G
gongweibao 已提交
322 323 324 325

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

326 327 328 329 330 331 332
        if self.config.sync_mode:
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

333 334 335
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
336 337
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
338
        self.counter_var = None
G
gongweibao 已提交
339

1
123malin 已提交
340 341 342 343 344 345 346 347 348 349
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
350 351 352 353
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
354 355
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
356 357 358 359 360 361
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
362 363
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
364 365 366

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
367 368 369 370 371 372 373 374 375

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
376 377 378 379
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
380 381 382 383 384
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
385 386 387 388 389
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
390 391 392 393 394 395 396
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
397 398 399 400 401
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

402 403 404 405 406 407 408 409 410 411 412 413
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
414
        elif collective_mode != "single_process_multi_thread":
415 416
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
417 418
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
419 420 421 422 423 424 425 426 427 428
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
429
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
430
        elif collective_mode == 'local_sgd':
431
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
432 433
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
434 435 436 437 438 439 440 441 442 443 444
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
445
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
446
        sparse_update_ops = []
T
tangwei12 已提交
447
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
448 449
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
450
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
451 452 453
                sparse_update_ops.append(op)
        return sparse_update_ops

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
529

530 531
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
532 533 534 535 536 537

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
538

539 540 541 542 543
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
544
                  sync_mode=True,
W
Wu Yi 已提交
545 546
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
547
        """
548
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
549 550 551 552 553 554

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
555 556
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
557 558
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
559 560 561
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
562
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
563 564
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
565 566 567
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
568 569 570 571 572 573 574 575 576 577 578

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
579 580 581
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
582 583
        if startup_program is None:
            startup_program = default_startup_program()
584
        self.origin_program = program
W
Wu Yi 已提交
585 586
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
587

W
Wu Yi 已提交
588 589
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
590
            self.origin_program._trainers_endpoints = trainers.split(",")
591 592
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
593 594 595 596 597
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
598
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
599 600 601 602 603 604 605 606 607 608 609
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
610 611 612 613
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
614 615
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
616 617
            return

618 619 620 621 622 623 624 625 626 627 628
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

629
        self.trainer_num = trainers
630
        self.sync_mode = sync_mode
631 632 633
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
634
        self.vars_overview = VarsDistributed()
635 636
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
637
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
638 639
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
640
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
641
        self.grad_name_to_param_name = dict()
642 643
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
644
            self.grad_name_to_param_name[grad_var.name] = param_var.name
645

Q
Qiao Longfei 已提交
646
        # get all sparse update ops
Q
Qiao Longfei 已提交
647
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
648
            self.origin_program)
Q
Qiao Longfei 已提交
649
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
650
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
651
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
652

T
tangwei12 已提交
653 654 655
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
656
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
657 658 659
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

660
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
661
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
662
        self._init_splited_vars()
663

G
gongweibao 已提交
664
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
665
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
666
        send_vars = []
667 668 669 670 671 672

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
673
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
674

G
gongweibao 已提交
675
        if not self.config.slice_var_up:
676 677
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
678

679
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
680

681
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
682
            eplist = ps_dispatcher.dispatch(splited_vars)
683

G
gongweibao 已提交
684
            if not self.config.slice_var_up:
685 686
                assert (len(splited_vars) == 1)

687
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
688
            if len(splited_vars) == 1:
689
                splited_grad_varname = splited_vars[0].name
690 691
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
692

Y
Yancey1989 已提交
693
            elif len(splited_vars) > 1:
694
                orig_var = program.global_block().vars[splited_grad_varname]
695 696
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
697

Q
Qiao Longfei 已提交
698 699 700 701
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
702 703
            else:
                AssertionError("Can not insert the send op by original "
704
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
705

706 707 708 709 710 711 712
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
713 714
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
715
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
716

Q
Qiao Longfei 已提交
717 718 719 720 721 722 723 724 725 726 727
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
728 729 730 731
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
732
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
733
                index=index + 1,
734
                type="send",
Q
Qiao Longfei 已提交
735
                inputs={"X": send_input_vars},
736
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
737 738
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
739 740
                    "sections": sections,
                    "send_varnames": send_varnames,
741
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
742 743 744
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
745
                    ]
Y
Yancey1989 已提交
746
                })
Y
update  
Yancey1989 已提交
747 748
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
749

750 751 752 753 754 755 756
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
757

758
        if not self.sync_mode:
1
123malin 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
812

G
gongweibao 已提交
813
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
814
        recv_vars = []
Y
update  
Yancey1989 已提交
815
        for _, var in enumerate(send_vars):
816
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
817
        ps_dispatcher.reset()
Y
Yancey1989 已提交
818 819
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
820
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
821 822
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
823

824 825 826 827
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

828 829
        need_sparse_update_params = {}

Y
Yancey1989 已提交
830
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
831
        all_recv_outputs = []
832
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
833
            eps = []
Q
Qiao Longfei 已提交
834
            table_names = []
Y
Yancey1989 已提交
835 836 837
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
838
                table_names.append(var.name)
W
Wu Yi 已提交
839 840 841 842
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
843
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
844
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
845

W
Wu Yi 已提交
846 847 848 849 850 851 852 853 854
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
855
            if param_varname in self.sparse_param_to_height_sections:
856 857 858 859 860
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

861
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
862
            else:
Q
Qiao Longfei 已提交
863 864 865
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
866
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
867
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
868
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
869

Q
Qiao Longfei 已提交
870 871 872 873 874 875
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
876
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
877 878 879
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
880
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
881
                    })
T
typhoonzero 已提交
882

883 884
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
885
        if self.sync_mode:
W
Wu Yi 已提交
886
            # form a WAW dependency
Q
qiaolongfei 已提交
887 888
            program.global_block().append_op(
                type="fetch_barrier",
889
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
890
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
891 892
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
893
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
894 895
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
896

897
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
898 899
            if len(splited_var) <= 1:
                continue
900
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
901
            if param_varname not in self.sparse_param_to_height_sections:
902
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
903 904 905 906 907 908 909 910
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
911

G
gongweibao 已提交
912 913
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

914
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
915 916
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
917
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
918

919 920 921
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
994
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
995
        """
C
Chengmo 已提交
996 997 998 999 1000 1001 1002 1003 1004
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
1005 1006 1007

        Returns:
            Program: trainer side program.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1020
        """
T
typhoonzero 已提交
1021
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1022
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1023

T
tangwei12 已提交
1024 1025 1026 1027
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1028 1029
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1030
        self._delete_trainer_optimizer(is_startup=False)
1031

1032
        self.origin_program.__str__()
T
tangwei12 已提交
1033
        self.startup_program.__str__()
G
gongweibao 已提交
1034

W
Wu Yi 已提交
1035 1036 1037
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1038
        return self.origin_program
T
typhoonzero 已提交
1039

W
Wu Yi 已提交
1040
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1041 1042 1043 1044
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1045
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1046
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1047 1048 1049 1050

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1051
        startup_program = self.startup_program
G
gongweibao 已提交
1052 1053 1054

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1055 1056 1057 1058
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1059

M
minqiyang 已提交
1060
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1061 1062
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1083
                inputs={"X": []},
G
gongweibao 已提交
1084 1085 1086
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1087
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1088 1089 1090
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1091 1092
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1093 1094 1095
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1096
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1097 1098
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1099
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1100 1101 1102
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1103
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1104 1105
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1106
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1107 1108
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1109
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1110
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1121 1122 1123 1124 1125 1126 1127 1128
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1129 1130
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1131 1132 1133 1134 1135 1136
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1137

Y
yi.wu 已提交
1138 1139
        Args:
            endpoint (str): current parameter server endpoint.
1140

Y
yi.wu 已提交
1141 1142
        Returns:
            Program: the program for current parameter server to run.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1157
        """
Y
yi.wu 已提交
1158 1159 1160 1161
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1162 1163 1164
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1165 1166
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1167
        pserver_program.random_seed = self.origin_program.random_seed
1168 1169
        pserver_program._copy_dist_param_info_from(self.origin_program)

1170
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1171 1172 1173 1174 1175 1176 1177 1178
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1179 1180 1181 1182 1183
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1193
            if self.sync_mode and self.trainer_num > 1:
1194
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1204

Q
qiaolongfei 已提交
1205
        # step 3
1206
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1207 1208 1209
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1210
        # step 3.2
T
typhoonzero 已提交
1211 1212 1213 1214
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1215 1216
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1217
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1218
        # step 3.3
W
Wu Yi 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1237
        # Iterate through the ops, and if an op and the optimize ops
1238
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1239
        # append it into the sub program.
T
typhoonzero 已提交
1240 1241 1242

        global_ops = []

1243 1244 1245
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1246 1247
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1248
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1249
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1250 1251
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1252
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1253
                self._append_pserver_non_opt_ops(block, op)
1254

Y
Yancey1989 已提交
1255
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1256 1257 1258 1259 1260 1261 1262 1263
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1264
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1265 1266 1267

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1268
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1269 1270

            # clone ops
Y
Yancey1989 已提交
1271 1272
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1273
                # clone sub_block of op
Y
Yancey1989 已提交
1274
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1275 1276

            # reset the block of op
W
Wu Yi 已提交
1277
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1278

1279
        # append lr decay ops to the child block if exists
1280
        lr_ops = self._get_lr_ops()
1281 1282
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1283 1284

        lr_decay_block_id = -1
1285
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1286
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1287
                pserver_program.num_blocks - 1)
1288
            optimize_blocks.append(lr_decay_block)
1289
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1290
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1291
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1292 1293
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1294
            lr_decay_block_id = lr_decay_block.idx
1295

T
typhoonzero 已提交
1296
        # append op to the current block
Q
qiaolongfei 已提交
1297
        grad_to_block_id = []
Q
qiaolongfei 已提交
1298
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1299
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1300
            per_opt_block = pserver_program._create_block(pre_block_idx)
1301
            optimize_blocks.append(per_opt_block)
1302
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1303
            # append grad merging ops before clip and weight decay
1304 1305
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1306
            for _, op in enumerate(self.optimize_ops):
1307
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1308
                # merged_var should be the input var name of L2Decay
1309 1310 1311
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1312 1313 1314
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1315 1316 1317 1318 1319 1320
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1321
                            op not in global_ops:
1322 1323 1324 1325 1326
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1327

1328
        # dedup grad to ids list
W
Wu Yi 已提交
1329
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1330
        # append global ops
1331
        if global_ops:
W
Wu Yi 已提交
1332
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1333
                pserver_program.num_blocks - 1)
1334
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1335
            for glb_op in global_ops:
X
Xi Chen 已提交
1336
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1337
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1338

1339
        # process distributed lookup_table
Q
qiaolongfei 已提交
1340
        prefetch_var_name_to_block_id = []
1341 1342
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1343
            table_opt_block = self._create_table_optimize_block(
1344
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1345
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1346
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1347
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1348 1349
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1350

T
tangwei12 已提交
1351
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1352 1353
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1354

1355
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1356 1357
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1358 1359 1360 1361 1362 1363
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1364
        attrs = {
1365
            "optimize_blocks": optimize_blocks,
1366
            "endpoint": endpoint,
1367
            "pserver_id": self.pserver_endpoints.index(endpoint),
1368
            "Fanin": self.trainer_num,
1369
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1370
            "grad_to_block_id": grad_to_block_id,
1371
            "sparse_grad_to_param": sparse_grad_to_param,
1372
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1373 1374 1375 1376
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1377
        }
T
tangwei12 已提交
1378 1379

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1380
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1381 1382
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1383

T
tangwei12 已提交
1384 1385 1386 1387
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1388 1389 1390 1391 1392
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1393
            attrs=attrs)
1394

W
Wu Yi 已提交
1395
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1396 1397
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1398 1399
        return pserver_program

W
Wu Yi 已提交
1400 1401 1402
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1403 1404
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1405 1406 1407

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1408

W
Wu Yi 已提交
1409 1410
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1425 1426
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1427 1428
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1429 1430
        return pserver_prog, pserver_startup

1431 1432
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1433
                            pserver_program=None,
1434
                            startup_program=None):
T
typhoonzero 已提交
1435
        """
W
Wu Yi 已提交
1436 1437
        **Deprecated**

T
typhoonzero 已提交
1438 1439 1440
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1441 1442 1443

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1444 1445
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1446
                when initalizing
1447

Y
yi.wu 已提交
1448 1449
        Returns:
            Program: parameter server side startup program.
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1465 1466
        """
        s_prog = Program()
W
Wu Yi 已提交
1467
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1468
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1480
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1481
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1482
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1483 1484 1485 1486
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1487
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1488 1489
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1500 1501

            if op_on_pserver:
1502 1503 1504
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1505
                if op.type in [
1506 1507
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1508
                ]:
W
Wu Yi 已提交
1509
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1510 1511 1512 1513
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1514
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1524

T
typhoonzero 已提交
1525 1526
        return s_prog

1527 1528
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1529
        block_suffix = "block"
1530 1531 1532
        block_idx = 0
        offset = 0
        is_slice = False
1533

1534
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1535

1536 1537
        if not block_name:
            return is_slice, block_idx, offset
1538

1539 1540 1541 1542
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1543 1544 1545 1546 1547
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1573 1574 1575 1576
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1614

Y
yi.wu 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1654
    def _init_splited_vars(self):
Y
yi.wu 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1678
        if self.config.slice_var_up:
Y
yi.wu 已提交
1679 1680
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1681 1682 1683
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1684
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1685 1686
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1687 1688 1689
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1690 1691 1692 1693
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1694 1695
        assert (len(grad_blocks) == len(param_blocks))

1696
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1697 1698
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1715
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1716 1717 1718 1719
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1720
        # dict(grad_splited_var -> param_splited_var)
1721
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1722 1723 1724
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1725
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1726
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1727 1728

        # create mapping of endpoint -> split var to create pserver side program
1729
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1739
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1740 1741
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1742
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1743
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1744 1745
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1746 1747
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1748 1749 1750 1751 1752 1753

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1754 1755
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1756
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1757 1758 1759
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1760 1761
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1762 1763
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1764 1765 1766
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1767
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1768
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1769 1770

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1771
                    self.all_out_emb_vars.append(out_var)
1772 1773

                    # delete lookup_table_op
1774
                    delete_ops(program.global_block(), [op])
1775 1776 1777
                    # break for loop
                    break

S
seiriosPlus 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1824
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1825
        # 2. add split_ids_op and send_op to send gradient to pservers
1826

1827 1828
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1829
        table_grad_name = grad_var_name(self.table_name)
1830 1831 1832 1833
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1834
                program.global_block()._insert_op(
1835 1836 1837 1838 1839
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1840 1841
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1842
                program.global_block()._insert_op(
1843
                    index=op_index + 2,
1844
                    type="send",
1845
                    inputs={'X': self.trainer_side_table_grad_list},
1846 1847 1848 1849 1850
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1851 1852
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1853
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1854 1855 1856 1857 1858
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1859
                    })
1860 1861 1862 1863 1864 1865
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1866
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1892
        return prefetch_var_name_to_block_id
1893 1894

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1895
                                     pre_block_idx, grad_to_block_id):
1896
        # STEP: create table optimize block
1897
        table_opt_block = pserver_program._create_block(pre_block_idx)
1898
        # create table param and grad var in pserver program
1899 1900
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1901 1902 1903
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1904 1905
        ][0]

Y
Yancey1989 已提交
1906 1907
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1908

T
tangwei12 已提交
1909
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1910 1911
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1912 1913 1914
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1915 1916
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1917
            shape=table_shape,
Y
Yancey1989 已提交
1918 1919 1920
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1921

1922 1923
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1924
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1925
            self.origin_program.global_block().vars[grad_var_name(
1926
                self.table_name)])
1927

1928 1929 1930
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1931

1932 1933 1934
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1935
            pserver_side_table_grad_list = [
1936 1937 1938 1939 1940 1941 1942 1943 1944
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1945
            # append sum op for pserver_side_table_grad_list
1946 1947
            table_opt_block.append_op(
                type="sum",
1948
                inputs={"X": pserver_side_table_grad_list},
1949 1950
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1951 1952
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1953
            origin_grad_name = grad_var.name
1954 1955
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1956 1957
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1958
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1959
            grad_var = pserver_program.global_block()._rename_var(
1960
                origin_grad_name, splited_grad_name)
1961 1962 1963 1964 1965 1966 1967

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1968
        # only support sgd now
1969 1970 1971
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1972
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1973

1974 1975 1976
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1977 1978
        return table_opt_block

T
tangwei12 已提交
1979 1980 1981 1982 1983
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1984
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1985
            name="kLookupTablePath",
T
tangwei12 已提交
1986 1987
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1988

W
Wu Yi 已提交
1989
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1990
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1991 1992 1993 1994
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1995
            attrs={'file_path': "none"})
T
tangwei12 已提交
1996 1997 1998

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1999 2000 2001 2002 2003
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2004
        Create vars for each split.
T
typhoonzero 已提交
2005 2006
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2007 2008 2009 2010
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2011
        Returns:
2012
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2013
                from original var name to each var split.
T
typhoonzero 已提交
2014
        """
2015 2016

        # varname->[(block_id, current_block_size)]
2017
        block_map = collections.OrderedDict()
2018

2019
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2020 2021
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2022
            if varname not in block_map:
T
typhoonzero 已提交
2023
                block_map[varname] = []
2024
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2025

M
minqiyang 已提交
2026
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
2027
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
2028
            if len(splited) == 1:
2029
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2030
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2031
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2032
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2033 2034 2035 2036 2037
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2038
                continue
T
typhoonzero 已提交
2039
            var_mapping[varname] = []
T
typhoonzero 已提交
2040 2041 2042 2043
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2044

T
typhoonzero 已提交
2045
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2046
                size = block[1]
M
minqiyang 已提交
2047
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2048 2049 2050
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2051
                new_var_name = ""
2052
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2053
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2054
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2055 2056
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2057
                                   (varname, i)
T
typhoonzero 已提交
2058
                var = program.global_block().create_var(
T
typhoonzero 已提交
2059 2060
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2061
                    dtype=orig_var.dtype,
2062
                    type=orig_var.type,
T
typhoonzero 已提交
2063
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2064
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2065
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2066
        return var_mapping
T
done  
typhoonzero 已提交
2067

2068
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2069 2070 2071 2072 2073 2074
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2075
            persistable=persistable)
T
done  
typhoonzero 已提交
2076

Q
Qiao Longfei 已提交
2077 2078 2079 2080 2081 2082 2083
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2084
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2085 2086
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2087
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2088
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2089
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2090 2091
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2092
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2093 2094 2095 2096
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2097 2098 2099 2100
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2101
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2102
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2103 2104 2105 2106
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2107
                attrs={
Q
Qiao Longfei 已提交
2108
                    "sections": height_sections,
2109 2110
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2111 2112 2113
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2114

T
typhoonzero 已提交
2115 2116 2117 2118
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2119
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2132
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2133 2134
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2135 2136
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2137
                return param_shape
2138 2139 2140
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2141 2142 2143
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2144 2145
        elif op_type == "sgd":
            pass
2146 2147 2148 2149
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2150 2151
        return orig_shape

2152 2153
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2154
        orig_var_name = ""
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2165
        else:
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2188
            return None
2189 2190 2191 2192
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2193
        else:
2194
            merged_var_name = orig_varname
2195 2196

        merged_var = pserver_block.vars[merged_var_name]
2197 2198 2199
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2200
            for i in range(self.trainer_num):
2201
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2202
                                   (merged_var_name, i)
2203 2204 2205 2206
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2207 2208
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2209 2210 2211 2212 2213
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2214
        return merged_var
T
typhoonzero 已提交
2215

W
Wu Yi 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2278
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2279 2280
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2281
        program = optimize_block.program
T
typhoonzero 已提交
2282
        pserver_block = program.global_block()
2283
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2294 2295 2296 2297
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2298
        for key in opt_op.input_names:
T
typhoonzero 已提交
2299
            if key == "Grad":
W
Wu Yi 已提交
2300 2301 2302
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2313
            elif key == "Param":
W
Wu Yi 已提交
2314
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2315 2316
                if not param_block:
                    return
T
typhoonzero 已提交
2317
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2318
                    name=param_block.name,
T
typhoonzero 已提交
2319
                    persistable=True,
T
typhoonzero 已提交
2320 2321 2322
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2323
            elif key == "LearningRate":
2324
                # learning rate variable has already be created by non-optimize op,
2325
                # don't create it once again.
2326
                lr_varname = opt_op.input(key)[0]
2327
                if lr_varname in pserver_block.vars:
2328 2329 2330 2331 2332 2333 2334 2335 2336
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2337

T
typhoonzero 已提交
2338
        for key in opt_op.input_names:
2339
            new_shape = None
2340 2341 2342 2343
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2344
                continue
2345
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2346
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2347
            # update accumulator variable shape
2348 2349
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2350
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2351 2352 2353 2354 2355
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2356

2357
        # change output's ParamOut variable
2358 2359
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2360
        outputs["ParamOut"] = new_inputs["Param"]
2361
        optimize_block.append_op(
T
typhoonzero 已提交
2362 2363
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2364
            outputs=outputs,
G
gongweibao 已提交
2365
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2366

2367 2368 2369 2370 2371 2372
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2384
        grad_block = None
M
minqiyang 已提交
2385
        for _, g in six.iteritems(var_dict):
2386
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2387
                # skip per trainer vars
2388
                if g.name.find(".trainer_") == -1:
2389
                    # only param or grads have splited blocks
2390 2391
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2392 2393
                        grad_block = g
                        break
2394 2395
        return grad_block

Q
Qiyang Min 已提交
2396 2397 2398
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2399
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2400 2401 2402 2403
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2404
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2405 2406 2407

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2408
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2409 2410 2411 2412
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2413
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2414

Y
Yancey1989 已提交
2415
        return block.append_op(
G
gongweibao 已提交
2416
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2417 2418

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2419
        program = optimize_block.program
2420
        # Append the ops for parameters that do not need to be optimized/updated
2421 2422
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2423
        for key, varlist in six.iteritems(inputs):
2424 2425
            if not isinstance(varlist, list):
                varlist = [varlist]
2426 2427 2428
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2429
                # for inputs/outputs
2430
                grad_block = self._get_pserver_grad_param_var(
2431 2432
                    var, program.global_block().vars)
                if grad_block:
2433
                    varlist[i] = grad_block
2434
                elif var.name not in program.global_block().vars:
2435 2436 2437 2438 2439
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2440

2441 2442
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2443
        for key, varlist in six.iteritems(outputs):
2444 2445
            if not isinstance(varlist, list):
                varlist = [varlist]
2446 2447 2448
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2449 2450
                    var, program.global_block().vars)
                if grad_block:
2451
                    varlist[i] = grad_block
2452
                elif var.name not in program.global_block().vars:
2453 2454 2455 2456 2457
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2458

Y
Yancey1989 已提交
2459
        return optimize_block.append_op(
T
typhoonzero 已提交
2460
            type=opt_op.type,
T
typhoonzero 已提交
2461 2462
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2463
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2464

2465 2466 2467 2468
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2469
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2470
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2471 2472 2473 2474 2475 2476
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2477 2478
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2479 2480 2481 2482 2483 2484
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2485
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2486
        if "Param" in op.input_names and \
T
tangwei12 已提交
2487
                "LearningRate" in op.input_names:
2488 2489 2490 2491 2492 2493 2494
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2495
        if op.input("Param")[0] in param_names:
2496 2497 2498
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2499
                param = op.input("Param")[0]
T
typhoonzero 已提交
2500
                if same_or_split_var(n, param) and n != param:
2501 2502 2503
                    return True
            return False

T
typhoonzero 已提交
2504
    def _get_input_map_from_op(self, varmap, op):
2505
        """Returns a dict from op input name to the vars in varmap."""
2506
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2518
        """Returns a dict from op output name to the vars in varmap."""
2519
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2529 2530

    def _get_lr_ops(self):
2531 2532
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2533
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2534 2535 2536 2537
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2584 2585 2586 2587 2588
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2589 2590 2591 2592
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2593
            if self._is_optimizer_op(op):
2594 2595 2596 2597
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2598
        block = self.origin_program.global_block()
2599 2600 2601 2602 2603
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2604

2605 2606 2607 2608 2609
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2610
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2611 2612 2613 2614 2615 2616
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2617 2618
                    # we only need to append op for once
                    break
2619
        return lr_ops
Y
Yancey1989 已提交
2620

W
Wu Yi 已提交
2621 2622 2623 2624 2625
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2626 2627
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2628 2629 2630
            return True
        return False

Y
Yancey1989 已提交
2631
    def _get_optimize_pass(self):
2632
        """
2633
        Get optimizer operators, parameters and gradients from origin_program
2634 2635
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2636
            params_grads (dict): parameter->gradient.
2637
        """
Y
Yancey1989 已提交
2638 2639 2640
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2641 2642
        # tmp set to dedup
        optimize_params = set()
2643
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2644
        for op in block.ops:
W
Wu Yi 已提交
2645
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2656
                opt_ops.append(op)
2657 2658 2659 2660 2661 2662
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2663 2664
                        params_grads.append([
                            origin_var_dict[param_name],
2665
                            origin_var_dict[grad_name]
2666
                        ])
Y
Yancey1989 已提交
2667 2668
            else:
                pass
C
Chengmo 已提交
2669 2670 2671 2672 2673 2674

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2675
        return opt_ops, params_grads
C
Chengmo 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads