distribute_transpiler.py 91.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

149 150 151 152 153
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
154 155 156 157 158
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
159
    enable_dc_asgd = False
W
Wu Yi 已提交
160 161
    # supported modes: pserver, nccl2
    mode = "pserver"
162
    print_log = False
W
Wu Yi 已提交
163
    wait_port = True
Q
Qiao Longfei 已提交
164 165
    # split the send recv var in runtime
    runtime_split_send_recv = False
166
    sync_mode = True
G
gongweibao 已提交
167

168 169 170 171 172 173 174 175 176
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0
    #Nccl ranks bewteen nodes when use hierarchical allreduce, it's setted to nodes number.
    hierarchical_allreduce_exter_nranks = 0

G
gongweibao 已提交
177

Y
gen rst  
yi.wu 已提交
178
class DistributeTranspiler(object):
Y
yi.wu 已提交
179 180 181 182
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
183
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
184

W
Wu Yi 已提交
185 186 187 188 189 190 191 192 193
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205 206 207
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
208 209 210 211 212 213
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
214
            role = "PSERVER"
T
Tink_Y 已提交
215 216 217 218 219 220
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
221
                                                                pserver_program)
T
Tink_Y 已提交
222 223 224 225
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
226 227
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
228 229
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
230
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
231
            t = fluid.DistributeTranspiler(config=config)
232
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
233
            exe = fluid.ParallelExecutor(
234 235 236
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
237 238
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
239
    """
Y
Yancey1989 已提交
240

G
gongweibao 已提交
241 242 243 244 245 246 247 248 249
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

250 251 252
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
253 254 255
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
256 257 258 259
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
260 261
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
262 263 264 265 266 267
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
268 269
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
270 271 272

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                startup_program.global_block().create_var(
                    name="Hierarchical_inter_NCCLID",
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                for i in range(0, self.config.nccl_comm_num):
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
291 292 293 294 295
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
296 297 298 299 300 301 302
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
303 304 305 306 307
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
308
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
309
        sparse_update_ops = []
310
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
311 312
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
313
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
314 315 316
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
317
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
318
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
319 320 321
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
322
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
323
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
324 325 326 327 328 329 330
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
331

332 333 334 335 336
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
337
                  sync_mode=True,
W
Wu Yi 已提交
338 339
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
340
        """
341
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
342 343 344 345 346 347

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
348 349
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
350 351
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
352 353 354
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
355
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
356 357
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
358 359 360
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
361 362 363 364 365 366 367 368 369 370 371

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
372 373 374
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
375 376
        if startup_program is None:
            startup_program = default_startup_program()
377
        self.origin_program = program
W
Wu Yi 已提交
378 379
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
380

W
Wu Yi 已提交
381 382
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
383
            self.origin_program._trainers_endpoints = trainers.split(",")
384 385 386 387 388 389
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
            self.origin_program._hierarchical_allreduce_inter_nranks = \
                int(self.config.hierarchical_allreduce_inter_nranks)
            self.origin_program._hierarchical_allreduce_exter_nranks = \
                int(self.config.hierarchical_allreduce_exter_nranks)
W
Wu Yi 已提交
390 391 392 393
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
394 395
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
396 397
            return

398
        self.trainer_num = trainers
399
        self.sync_mode = sync_mode
400 401 402
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
403
        self.vars_overview = VarsDistributed()
404 405
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
406
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
407 408
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
409
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
410
        self.grad_name_to_param_name = dict()
411 412
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
413
            self.grad_name_to_param_name[grad_var.name] = param_var.name
414

Q
Qiao Longfei 已提交
415
        # get all sparse update ops
Q
Qiao Longfei 已提交
416
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
417
            self.origin_program)
Q
Qiao Longfei 已提交
418
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
419 420
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
421 422 423
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
424
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
425 426 427
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

428
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
429
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
430
        self._init_splited_vars()
431

G
gongweibao 已提交
432
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
433
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
434
        send_vars = []
435 436 437 438 439 440

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
441
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
442

G
gongweibao 已提交
443
        if not self.config.slice_var_up:
444 445
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
446

447
        self.grad_name_to_send_dummy_out = dict()
448
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
449
            eplist = ps_dispatcher.dispatch(splited_vars)
450

G
gongweibao 已提交
451
            if not self.config.slice_var_up:
452 453
                assert (len(splited_vars) == 1)

454
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
455
            if len(splited_vars) == 1:
456
                splited_grad_varname = splited_vars[0].name
457 458
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
459 460
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
461
                        grad_varname]
Q
Qiao Longfei 已提交
462 463 464 465
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
466
            elif len(splited_vars) > 1:
467
                orig_var = program.global_block().vars[splited_grad_varname]
468 469
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
470 471 472 473
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
474 475
            else:
                AssertionError("Can not insert the send op by original "
476
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
477

W
Wu Yi 已提交
478 479
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
480
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
481

Q
Qiao Longfei 已提交
482 483 484 485 486 487 488 489 490 491 492
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
493 494 495 496
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
497
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
498
                index=index + 1,
499
                type="send",
Q
Qiao Longfei 已提交
500
                inputs={"X": send_input_vars},
501
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
502 503
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
504 505
                    "sections": sections,
                    "send_varnames": send_varnames,
506
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
507 508 509 510
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
511
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
512
                })
Y
update  
Yancey1989 已提交
513 514
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
515 516

        if self.sync_mode:
W
Wu Yi 已提交
517 518
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
519 520 521 522
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
523
            input_deps = list(self.grad_name_to_send_dummy_out.values())
524

Y
Yancey1989 已提交
525 526
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
527
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
528
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
529 530
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
531 532
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
533
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
534
                })
Y
Yancey1989 已提交
535

G
gongweibao 已提交
536
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
537
        recv_vars = []
Y
update  
Yancey1989 已提交
538
        for _, var in enumerate(send_vars):
539
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
540
        ps_dispatcher.reset()
Y
Yancey1989 已提交
541 542
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
543
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
544 545
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
546

547 548 549 550
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
551
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
552
        all_recv_outputs = []
553
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
554
            eps = []
Q
Qiao Longfei 已提交
555
            table_names = []
Y
Yancey1989 已提交
556 557 558
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
559
                table_names.append(var.name)
W
Wu Yi 已提交
560 561 562 563
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
564
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
565
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
566

W
Wu Yi 已提交
567 568 569 570 571 572 573 574 575
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
576
            if param_varname in self.sparse_param_to_height_sections:
577 578 579 580 581 582

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
583 584
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
585 586
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
587
            else:
Q
Qiao Longfei 已提交
588 589 590
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
591
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
592
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
593
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
594

Q
Qiao Longfei 已提交
595 596 597 598 599 600
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
601
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
602 603 604 605 606 607
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
608

Q
qiaolongfei 已提交
609
        if self.sync_mode:
W
Wu Yi 已提交
610
            # form a WAW dependency
Q
qiaolongfei 已提交
611 612 613
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
614
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
615 616
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
617
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
618 619
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
620

621
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
622 623
            if len(splited_var) <= 1:
                continue
624
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
625
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
626 627 628 629 630 631 632 633 634
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
635

G
gongweibao 已提交
636 637
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

638
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
639 640
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
641
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
642

643 644 645
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
646
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
647 648 649 650 651 652
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
653
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
654
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
655

T
typhoonzero 已提交
656
        lr_ops = self._get_lr_ops()
657
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
658 659
        delete_ops(self.origin_program.global_block(), lr_ops)

660 661
        # delete table init op
        if self.has_distributed_lookup_table:
662 663 664
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
665 666
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
667 668 669 670 671
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
672
            table_init_op = table_param_init_op[0]
673 674 675 676 677 678
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
679

680
        self.origin_program.__str__()
G
gongweibao 已提交
681

W
Wu Yi 已提交
682 683 684
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

685
        return self.origin_program
T
typhoonzero 已提交
686

W
Wu Yi 已提交
687
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
688 689 690 691
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
692
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
693
            eplist (list): A list of strings indicating
G
gongweibao 已提交
694 695 696 697

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
698
        startup_program = self.startup_program
G
gongweibao 已提交
699 700 701 702

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
703
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
724
                inputs={"X": []},
G
gongweibao 已提交
725 726 727
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
728
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
729 730 731
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
732 733
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
734 735 736
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
737
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
738 739
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
740
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
741 742 743
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
744
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
745
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
746 747
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
748
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
749
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
750 751 752 753 754 755 756 757 758 759
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
760 761 762 763 764 765 766 767
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
768 769
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
770
        Get parameter server side program.
771

Y
yi.wu 已提交
772 773
        Args:
            endpoint (str): current parameter server endpoint.
774

Y
yi.wu 已提交
775 776
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
777
        """
Y
yi.wu 已提交
778 779 780 781
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
782 783 784
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
785 786
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
787
        pserver_program.random_seed = self.origin_program.random_seed
788 789
        pserver_program._copy_dist_param_info_from(self.origin_program)

790
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
791 792 793 794 795 796 797 798
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
799 800 801 802 803
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
804 805 806 807 808 809 810 811 812
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
813
            if self.sync_mode and self.trainer_num > 1:
814
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
815 816 817 818 819 820 821 822 823
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
824

Q
qiaolongfei 已提交
825
        # step 3
826
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
827 828 829
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
830
        # step 3.2
T
typhoonzero 已提交
831 832 833 834
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
835 836
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
837
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
838
        # step 3.3
W
Wu Yi 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
857
        # Iterate through the ops, and if an op and the optimize ops
858
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
859
        # append it into the sub program.
T
typhoonzero 已提交
860 861 862

        global_ops = []

863 864 865
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
866 867
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
868
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
869
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
870 871
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
872
            elif op not in lr_ops:
Q
Qiyang Min 已提交
873
                self._append_pserver_non_opt_ops(block, op)
874

Y
Yancey1989 已提交
875
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
876 877 878 879 880 881 882 883
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
884
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
885 886 887

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
888
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
889 890

            # clone ops
Y
Yancey1989 已提交
891 892
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
893
                # clone sub_block of op
Y
Yancey1989 已提交
894
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
895 896

            # reset the block of op
W
Wu Yi 已提交
897
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
898

899
        # append lr decay ops to the child block if exists
900
        lr_ops = self._get_lr_ops()
901 902
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
903
        if len(lr_ops) > 0:
W
Wu Yi 已提交
904
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
905
                pserver_program.num_blocks - 1)
906
            optimize_blocks.append(lr_decay_block)
907
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
908
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
909
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
910 911
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
912

T
typhoonzero 已提交
913
        # append op to the current block
Q
qiaolongfei 已提交
914
        grad_to_block_id = []
Q
qiaolongfei 已提交
915
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
916
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
917
            per_opt_block = pserver_program._create_block(pre_block_idx)
918
            optimize_blocks.append(per_opt_block)
919
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
920
            # append grad merging ops before clip and weight decay
921 922
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
923
            for _, op in enumerate(self.optimize_ops):
924
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
925
                # merged_var should be the input var name of L2Decay
926 927 928
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
929 930 931
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
932 933 934 935 936 937
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
938
                            op not in global_ops:
939 940 941 942 943
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
944

945
        # dedup grad to ids list
W
Wu Yi 已提交
946
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
947
        # append global ops
948
        if global_ops:
W
Wu Yi 已提交
949
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
950
                pserver_program.num_blocks - 1)
951
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
952
            for glb_op in global_ops:
X
Xi Chen 已提交
953
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
954
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
955

956
        # process distributed lookup_table
Q
qiaolongfei 已提交
957
        prefetch_var_name_to_block_id = []
958 959
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
960
            table_opt_block = self._create_table_optimize_block(
961
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
962
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
963
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
964
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
965 966
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
967

T
tangwei12 已提交
968
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
969 970
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
971

972
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
973 974
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
975 976 977 978 979 980
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
981
        attrs = {
982
            "optimize_blocks": optimize_blocks,
983 984 985
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
986
            "grad_to_block_id": grad_to_block_id,
987
            "sparse_grad_to_param": sparse_grad_to_param,
988
        }
T
tangwei12 已提交
989 990

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
991
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
992 993
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
994

T
tangwei12 已提交
995 996 997 998
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
999 1000 1001 1002 1003
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1004
            attrs=attrs)
1005

W
Wu Yi 已提交
1006
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1007 1008
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1009 1010
        return pserver_program

W
Wu Yi 已提交
1011 1012 1013 1014 1015 1016
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1017

W
Wu Yi 已提交
1018 1019 1020 1021
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1022 1023
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1024 1025
        return pserver_prog, pserver_startup

1026 1027
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1028
                            pserver_program=None,
1029
                            startup_program=None):
T
typhoonzero 已提交
1030
        """
W
Wu Yi 已提交
1031 1032
        **Deprecated**

T
typhoonzero 已提交
1033 1034 1035
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1036 1037 1038

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1039 1040
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1041
                when initalizing
1042

Y
yi.wu 已提交
1043 1044
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
1045 1046
        """
        s_prog = Program()
W
Wu Yi 已提交
1047
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1048
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1060
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1061
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1062
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1063 1064 1065 1066
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1067
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1068 1069
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1080 1081

            if op_on_pserver:
1082 1083 1084
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1085
                if op.type in [
1086 1087
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1088
                ]:
W
Wu Yi 已提交
1089
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1090 1091 1092 1093
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1094
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1104

T
typhoonzero 已提交
1105 1106
        return s_prog

1107 1108
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1109
        block_suffix = "block"
1110 1111 1112
        block_idx = 0
        offset = 0
        is_slice = False
1113

1114
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1115

1116 1117
        if not block_name:
            return is_slice, block_idx, offset
1118

1119 1120 1121 1122
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1123 1124 1125 1126 1127
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1191

Y
yi.wu 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1231
    def _init_splited_vars(self):
Y
yi.wu 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1255
        if self.config.slice_var_up:
Y
yi.wu 已提交
1256 1257
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1258 1259 1260
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1261
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1262 1263
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1264 1265 1266
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1267 1268 1269 1270
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1271 1272
        assert (len(grad_blocks) == len(param_blocks))

1273
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1274 1275
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1292
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1293 1294 1295 1296
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1297
        # dict(grad_splited_var -> param_splited_var)
1298
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1299 1300 1301
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1302
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1303
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1304 1305

        # create mapping of endpoint -> split var to create pserver side program
1306
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1316
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1317 1318
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1319
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1320
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1321 1322
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1323 1324
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1325 1326 1327 1328 1329 1330

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1331 1332
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1333
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1334 1335 1336
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1337 1338
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1339 1340
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1341 1342 1343
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1344
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1345
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1346 1347

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1348
                    self.all_out_emb_vars.append(out_var)
1349 1350

                    # delete lookup_table_op
1351
                    delete_ops(program.global_block(), [op])
1352 1353 1354
                    # break for loop
                    break

S
seiriosPlus 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1401
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1402
        # 2. add split_ids_op and send_op to send gradient to pservers
1403

1404 1405
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1406
        table_grad_name = grad_var_name(self.table_name)
1407 1408 1409 1410
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1411
                program.global_block()._insert_op(
1412 1413 1414 1415 1416
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1417 1418
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1419
                program.global_block()._insert_op(
1420
                    index=op_index + 2,
1421
                    type="send",
1422
                    inputs={'X': self.trainer_side_table_grad_list},
1423 1424 1425 1426 1427
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1428
                    attrs={
1429
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1430
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1431
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1432 1433 1434 1435 1436
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1437
                    })
1438 1439 1440 1441 1442 1443
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1444
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1470
        return prefetch_var_name_to_block_id
1471 1472

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1473
                                     pre_block_idx, grad_to_block_id):
1474
        # STEP: create table optimize block
1475
        table_opt_block = pserver_program._create_block(pre_block_idx)
1476
        # create table param and grad var in pserver program
1477 1478
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1479 1480 1481
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1482 1483
        ][0]

Y
Yancey1989 已提交
1484 1485
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1486

T
tangwei12 已提交
1487
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1488 1489
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1490 1491 1492
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1493 1494
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1495
            shape=table_shape,
Y
Yancey1989 已提交
1496 1497 1498
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1499

1500 1501
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1502
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1503
            self.origin_program.global_block().vars[grad_var_name(
1504
                self.table_name)])
1505

1506 1507 1508
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1509

1510 1511 1512
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1513
            pserver_side_table_grad_list = [
1514 1515 1516 1517 1518 1519 1520 1521 1522
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1523
            # append sum op for pserver_side_table_grad_list
1524 1525
            table_opt_block.append_op(
                type="sum",
1526
                inputs={"X": pserver_side_table_grad_list},
1527 1528
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1529 1530
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1531
            origin_grad_name = grad_var.name
1532 1533
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1534 1535
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1536
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1537
            grad_var = pserver_program.global_block()._rename_var(
1538
                origin_grad_name, splited_grad_name)
1539 1540 1541 1542 1543 1544 1545

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1546
        # only support sgd now
1547 1548 1549
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1550
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1551

1552 1553 1554
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1555 1556
        return table_opt_block

T
tangwei12 已提交
1557 1558 1559 1560 1561
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1562
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1563
            name="kLookupTablePath",
T
tangwei12 已提交
1564 1565
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1566

W
Wu Yi 已提交
1567
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1568
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1569 1570 1571 1572
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1573
            attrs={'file_path': "none"})
T
tangwei12 已提交
1574 1575 1576

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1577 1578 1579 1580 1581
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1582
        Create vars for each split.
T
typhoonzero 已提交
1583 1584
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1585 1586 1587 1588
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1589
        Returns:
1590
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1591
                from original var name to each var split.
T
typhoonzero 已提交
1592
        """
1593 1594

        # varname->[(block_id, current_block_size)]
1595
        block_map = collections.OrderedDict()
1596

1597
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1598 1599
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1600
            if varname not in block_map:
T
typhoonzero 已提交
1601
                block_map[varname] = []
1602
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1603

M
minqiyang 已提交
1604
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1605
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1606
            if len(splited) == 1:
1607
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1608
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1609
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1610
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1611 1612 1613 1614 1615
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1616
                continue
T
typhoonzero 已提交
1617
            var_mapping[varname] = []
T
typhoonzero 已提交
1618 1619 1620 1621
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1622

T
typhoonzero 已提交
1623
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1624
                size = block[1]
M
minqiyang 已提交
1625
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1626 1627 1628
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1629
                new_var_name = ""
1630
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1631
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1632
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1633 1634
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1635
                                   (varname, i)
T
typhoonzero 已提交
1636
                var = program.global_block().create_var(
T
typhoonzero 已提交
1637 1638
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1639
                    dtype=orig_var.dtype,
1640
                    type=orig_var.type,
T
typhoonzero 已提交
1641
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1642
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1643
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1644
        return var_mapping
T
done  
typhoonzero 已提交
1645

1646
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1647 1648 1649 1650 1651 1652
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1653
            persistable=persistable)
T
done  
typhoonzero 已提交
1654

Q
Qiao Longfei 已提交
1655 1656 1657 1658 1659 1660 1661
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1662
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1663 1664
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1665
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1666
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1667
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1668 1669
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1670
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1671 1672 1673 1674
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1675 1676 1677 1678
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1679
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1680
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1681 1682 1683 1684
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1685
                attrs={
Q
Qiao Longfei 已提交
1686
                    "sections": height_sections,
1687 1688
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1689 1690 1691
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1692

T
typhoonzero 已提交
1693 1694 1695 1696
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1697
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1710
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1711 1712
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1713 1714
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1715
                return param_shape
1716 1717 1718
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1719 1720 1721
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1722 1723
        elif op_type == "sgd":
            pass
1724 1725 1726 1727
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1728 1729
        return orig_shape

1730 1731
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1732
        orig_var_name = ""
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1743
        else:
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1766
            return None
1767 1768 1769 1770
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1771
        else:
1772
            merged_var_name = orig_varname
1773 1774

        merged_var = pserver_block.vars[merged_var_name]
1775 1776 1777
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1778
            for i in range(self.trainer_num):
1779
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1780
                                   (merged_var_name, i)
1781 1782 1783 1784
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1785 1786
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1787 1788 1789 1790 1791
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1792
        return merged_var
T
typhoonzero 已提交
1793

W
Wu Yi 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1856
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1857 1858
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1859
        program = optimize_block.program
T
typhoonzero 已提交
1860
        pserver_block = program.global_block()
1861
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1872 1873 1874 1875
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1876
        for key in opt_op.input_names:
T
typhoonzero 已提交
1877
            if key == "Grad":
W
Wu Yi 已提交
1878 1879 1880
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1891
            elif key == "Param":
W
Wu Yi 已提交
1892
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1893 1894
                if not param_block:
                    return
T
typhoonzero 已提交
1895
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1896
                    name=param_block.name,
T
typhoonzero 已提交
1897
                    persistable=True,
T
typhoonzero 已提交
1898 1899 1900
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1901
            elif key == "LearningRate":
1902
                # learning rate variable has already be created by non-optimize op,
1903
                # don't create it once again.
1904
                lr_varname = opt_op.input(key)[0]
1905
                if lr_varname in pserver_block.vars:
1906 1907 1908 1909 1910 1911 1912 1913 1914
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1915

T
typhoonzero 已提交
1916
        for key in opt_op.input_names:
1917
            new_shape = None
W
Wu Yi 已提交
1918
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1919
                continue
1920
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1921
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1922
            # update accumulator variable shape
1923 1924
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1925
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1926 1927 1928 1929 1930
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1931

1932
        # change output's ParamOut variable
1933 1934
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1935
        outputs["ParamOut"] = new_inputs["Param"]
1936
        optimize_block.append_op(
T
typhoonzero 已提交
1937 1938
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1939
            outputs=outputs,
G
gongweibao 已提交
1940
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1941

1942 1943 1944 1945 1946 1947
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1959
        grad_block = None
M
minqiyang 已提交
1960
        for _, g in six.iteritems(var_dict):
1961
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1962
                # skip per trainer vars
1963
                if g.name.find(".trainer_") == -1:
1964
                    # only param or grads have splited blocks
1965 1966
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1967 1968
                        grad_block = g
                        break
1969 1970
        return grad_block

Q
Qiyang Min 已提交
1971 1972 1973
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1974
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1975 1976 1977 1978
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1979
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1980 1981 1982

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1983
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1984 1985 1986 1987
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1988
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1989

Y
Yancey1989 已提交
1990
        return block.append_op(
G
gongweibao 已提交
1991
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1992 1993

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1994
        program = optimize_block.program
1995
        # Append the ops for parameters that do not need to be optimized/updated
1996 1997
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1998
        for key, varlist in six.iteritems(inputs):
1999 2000
            if not isinstance(varlist, list):
                varlist = [varlist]
2001 2002 2003
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2004
                # for inputs/outputs
2005
                grad_block = self._get_pserver_grad_param_var(
2006 2007
                    var, program.global_block().vars)
                if grad_block:
2008
                    varlist[i] = grad_block
2009
                elif var.name not in program.global_block().vars:
2010 2011 2012 2013 2014
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2015

2016 2017
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2018
        for key, varlist in six.iteritems(outputs):
2019 2020
            if not isinstance(varlist, list):
                varlist = [varlist]
2021 2022 2023
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2024 2025
                    var, program.global_block().vars)
                if grad_block:
2026
                    varlist[i] = grad_block
2027
                elif var.name not in program.global_block().vars:
2028 2029 2030 2031 2032
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2033

Y
Yancey1989 已提交
2034
        return optimize_block.append_op(
T
typhoonzero 已提交
2035
            type=opt_op.type,
T
typhoonzero 已提交
2036 2037
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2038
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2039

2040 2041 2042 2043
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2044
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2045
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2046 2047 2048 2049 2050 2051
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2052 2053
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2054 2055 2056 2057 2058 2059
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2060
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2061
        if "Param" in op.input_names and \
T
tangwei12 已提交
2062
                "LearningRate" in op.input_names:
2063 2064 2065 2066 2067 2068 2069
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2070
        if op.input("Param")[0] in param_names:
2071 2072 2073
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2074
                param = op.input("Param")[0]
T
typhoonzero 已提交
2075
                if same_or_split_var(n, param) and n != param:
2076 2077 2078
                    return True
            return False

T
typhoonzero 已提交
2079
    def _get_input_map_from_op(self, varmap, op):
2080
        """Returns a dict from op input name to the vars in varmap."""
2081
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2093
        """Returns a dict from op output name to the vars in varmap."""
2094
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2104 2105

    def _get_lr_ops(self):
2106 2107 2108
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2109 2110 2111 2112
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2113 2114 2115 2116 2117
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2118 2119 2120 2121
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2122
            if self._is_optimizer_op(op):
2123 2124 2125 2126
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2127
        block = self.origin_program.global_block()
2128 2129 2130 2131 2132
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2133

2134 2135 2136 2137 2138
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2139
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2140 2141 2142 2143 2144 2145
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2146 2147
                    # we only need to append op for once
                    break
2148
        return lr_ops
Y
Yancey1989 已提交
2149

W
Wu Yi 已提交
2150 2151 2152 2153 2154
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2155 2156
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2157 2158 2159
            return True
        return False

Y
Yancey1989 已提交
2160
    def _get_optimize_pass(self):
2161
        """
2162
        Get optimizer operators, parameters and gradients from origin_program
2163 2164
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2165
            params_grads (dict): parameter->gradient.
2166
        """
Y
Yancey1989 已提交
2167 2168 2169
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2170 2171
        # tmp set to dedup
        optimize_params = set()
2172
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2173
        for op in block.ops:
W
Wu Yi 已提交
2174
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2175
                opt_ops.append(op)
2176 2177 2178 2179 2180 2181
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2182 2183
                        params_grads.append([
                            origin_var_dict[param_name],
2184
                            origin_var_dict[grad_name]
2185
                        ])
Y
Yancey1989 已提交
2186 2187 2188
            else:
                pass
        return opt_ops, params_grads