distribute_transpiler.py 82.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127
class DistributeTranspilerConfig(object):
    """
T
Tink_Y 已提交
128 129 130 131 132 133 134 135
    Args:
        slice_var_up (bool): Do Tensor slice for pservers, default is True.
        split_method (PSDispatcher): RoundRobin or HashName can be used
          try to choose the best method to balance loads for pservers.
        min_block_size (int): Minimum splitted element number in block.
          According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
          We can use bandwidth effiently when data size is larger than 2MB.If you
          want to change it, please be sure you see the slice_variable function.
G
gongweibao 已提交
136 137 138 139 140
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
141
    enable_dc_asgd = False
W
Wu Yi 已提交
142 143
    # supported modes: pserver, nccl2
    mode = "pserver"
144
    print_log = False
G
gongweibao 已提交
145 146


Y
gen rst  
yi.wu 已提交
147
class DistributeTranspiler(object):
Y
yi.wu 已提交
148 149 150 151
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
152
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
153

W
Wu Yi 已提交
154 155 156 157 158 159 160 161 162
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
163 164 165 166

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
	     
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
181
                                                                pserver_program)
T
Tink_Y 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
196
    """
Y
Yancey1989 已提交
197

G
gongweibao 已提交
198 199 200 201 202 203 204 205 206
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

207 208 209
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
210 211 212
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
240
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
241 242 243 244
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
Q
Qiao Longfei 已提交
245 246
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
Q
Qiao Longfei 已提交
247 248 249
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
250
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
251
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
252 253 254
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
255
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
256
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
257 258 259 260 261 262 263
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
264

265 266 267 268 269
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
270
                  sync_mode=True,
W
Wu Yi 已提交
271 272
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
273
        """
Y
yi.wu 已提交
274 275 276 277 278 279 280
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
281 282
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
283 284
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
285 286 287
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
288
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
289 290
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
291 292 293
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
294 295 296
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
297 298
        if startup_program is None:
            startup_program = default_startup_program()
299
        self.origin_program = program
W
Wu Yi 已提交
300 301
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
302

W
Wu Yi 已提交
303 304 305 306 307 308 309 310 311
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

312 313 314 315 316 317 318
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
319
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
320 321
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
322
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
323
        self.grad_name_to_param_name = dict()
324 325
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
326
            self.grad_name_to_param_name[grad_var.name] = param_var.name
327

Q
Qiao Longfei 已提交
328
        # get all sparse update ops
Q
Qiao Longfei 已提交
329
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
330
            self.origin_program)
Q
Qiao Longfei 已提交
331
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
332 333
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
334 335 336 337 338 339
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

340
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
341
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
342
        self._init_splited_vars()
343

G
gongweibao 已提交
344
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
345
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
346
        send_vars = []
347 348 349 350 351 352

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
353
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
354

G
gongweibao 已提交
355
        if not self.config.slice_var_up:
356 357
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
358

359
        self.grad_name_to_send_dummy_out = dict()
360
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
361
            eplist = ps_dispatcher.dispatch(splited_vars)
362

G
gongweibao 已提交
363
            if not self.config.slice_var_up:
364 365
                assert (len(splited_vars) == 1)

366
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
367
            if len(splited_vars) == 1:
368
                splited_grad_varname = splited_vars[0].name
369 370
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
371 372
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
373
                        grad_varname]
Q
Qiao Longfei 已提交
374 375 376 377
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
378
            elif len(splited_vars) > 1:
379
                orig_var = program.global_block().vars[splited_grad_varname]
380 381
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
382
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
383
                index += 1
Y
Yancey1989 已提交
384 385
            else:
                AssertionError("Can not insert the send op by original "
386
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
387

W
Wu Yi 已提交
388 389
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
390
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
391

W
Wu Yi 已提交
392 393 394 395
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
396
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
397
                index=index + 1,
398
                type="send",
Y
update  
Yancey1989 已提交
399
                inputs={"X": splited_vars},
400
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
401 402
                attrs={
                    "epmap": eplist,
403
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
404 405 406 407
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
408
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
409
                })
Y
update  
Yancey1989 已提交
410 411
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
412 413

        if self.sync_mode:
W
Wu Yi 已提交
414 415
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
416 417 418 419
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
420
            input_deps = list(self.grad_name_to_send_dummy_out.values())
421

Y
Yancey1989 已提交
422 423
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
424
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
425
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
426 427
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
428 429
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
430
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
431
                })
Y
Yancey1989 已提交
432

G
gongweibao 已提交
433
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
434
        recv_vars = []
Y
update  
Yancey1989 已提交
435
        for _, var in enumerate(send_vars):
436
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
437
        ps_dispatcher.reset()
Y
Yancey1989 已提交
438 439
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
440
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
441 442
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
443

Y
Yancey1989 已提交
444
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
445
        all_recv_outputs = []
446
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
447
            eps = []
Q
Qiao Longfei 已提交
448
            table_names = []
Y
Yancey1989 已提交
449 450 451
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
452
                table_names.append(var.name)
W
Wu Yi 已提交
453 454 455 456
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
457
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
458
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
459

W
Wu Yi 已提交
460 461 462 463 464 465 466 467 468
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
469 470 471
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
472 473
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
474
            else:
Q
Qiao Longfei 已提交
475
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
476 477 478 479 480 481 482 483 484 485 486 487
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
488

Q
qiaolongfei 已提交
489
        if self.sync_mode:
W
Wu Yi 已提交
490
            # form a WAW dependency
Q
qiaolongfei 已提交
491 492 493
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
494
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
495 496
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
497
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
498 499
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
500

501
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
502 503
            if len(splited_var) <= 1:
                continue
504
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
505 506 507 508 509 510 511 512 513
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
514

G
gongweibao 已提交
515 516
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

517
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
518 519
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
520
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
521

W
Wu Yi 已提交
522
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
523 524 525 526 527 528
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
529
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
530
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
531
        lr_ops = self._get_lr_ops()
532
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
533 534
        delete_ops(self.origin_program.global_block(), lr_ops)

535 536
        # delete table init op
        if self.has_distributed_lookup_table:
537 538 539
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
540 541
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
542 543 544 545 546
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
547
            table_init_op = table_param_init_op[0]
548 549 550 551 552 553
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
554

555
        self.origin_program.__str__()
G
gongweibao 已提交
556

W
Wu Yi 已提交
557 558 559
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

560
        return self.origin_program
T
typhoonzero 已提交
561

W
Wu Yi 已提交
562
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
563 564 565 566
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
567
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
568
            eplist (list): A list of strings indicating
G
gongweibao 已提交
569 570 571 572

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
573
        startup_program = self.startup_program
G
gongweibao 已提交
574 575 576 577

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
578
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
599
                inputs={"X": []},
G
gongweibao 已提交
600 601 602 603 604 605
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
606 607
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
608 609 610
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
611
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
612 613 614 615 616
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
617
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
618
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
619 620
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
621
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
622
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
623 624 625 626 627 628 629 630 631 632
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
633 634 635 636 637 638 639 640
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
641 642
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
643
        Get parameter server side program.
644

Y
yi.wu 已提交
645 646
        Args:
            endpoint (str): current parameter server endpoint.
647

Y
yi.wu 已提交
648 649
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
650
        """
Y
yi.wu 已提交
651 652 653 654
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
655 656 657
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
658 659
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
660
        pserver_program.random_seed = self.origin_program.random_seed
661
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
662 663 664 665 666 667 668 669
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
670 671 672 673 674
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
675 676 677 678 679 680 681 682 683
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
684
            if self.sync_mode and self.trainer_num > 1:
685
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
686 687 688 689 690 691 692 693 694
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
695

696 697 698
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
699
        # step 3
700
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
701 702 703
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
704
        # step 3.2
T
typhoonzero 已提交
705 706 707 708
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
709 710
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
711
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
712
        # step 3.3
W
Wu Yi 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
731
        # Iterate through the ops, and if an op and the optimize ops
732
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
733
        # append it into the sub program.
T
typhoonzero 已提交
734 735 736

        global_ops = []

Y
wip  
yi.wu 已提交
737 738
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
739
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
740
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
741
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
742
            elif op not in lr_ops:
Q
Qiyang Min 已提交
743
                self._append_pserver_non_opt_ops(block, op)
744 745 746 747 748 749

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
750

Y
Yancey1989 已提交
751
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
752 753 754 755 756 757 758 759
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
760
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
761 762 763

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
764
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
765 766

            # clone ops
Y
Yancey1989 已提交
767 768
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
769
                # clone sub_block of op
Y
Yancey1989 已提交
770
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
771 772

            # reset the block of op
W
Wu Yi 已提交
773
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
774

775
        # append lr decay ops to the child block if exists
776
        lr_ops = self._get_lr_ops()
777 778
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
779
        if len(lr_ops) > 0:
W
Wu Yi 已提交
780
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
781
                pserver_program.num_blocks - 1)
782
            optimize_blocks.append(lr_decay_block)
783
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
784
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
785
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
786 787
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
788

T
typhoonzero 已提交
789
        # append op to the current block
Q
qiaolongfei 已提交
790
        grad_to_block_id = []
Q
qiaolongfei 已提交
791
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
792
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
793
            per_opt_block = pserver_program._create_block(pre_block_idx)
794
            optimize_blocks.append(per_opt_block)
795
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
796
            # append grad merging ops before clip and weight decay
797 798
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
799
            for _, op in enumerate(self.optimize_ops):
800 801 802 803 804
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
805 806 807
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
808 809 810 811 812 813
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
814
                            op not in global_ops:
815 816 817 818 819
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
820

821
        # dedup grad to ids list
W
Wu Yi 已提交
822
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
823
        # append global ops
824
        if global_ops:
W
Wu Yi 已提交
825
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
826
                pserver_program.num_blocks - 1)
827
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
828
            for glb_op in global_ops:
X
Xi Chen 已提交
829
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
830
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
831

832
        # process distributed lookup_table
Q
qiaolongfei 已提交
833
        prefetch_var_name_to_block_id = []
834 835
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
836
            table_opt_block = self._create_table_optimize_block(
837
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
838
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
839
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
840
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
841 842
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
843

T
tangwei12 已提交
844
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
845 846
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
847

848
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
849 850
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
851 852 853 854 855 856
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
857
        attrs = {
858
            "optimize_blocks": optimize_blocks,
859 860 861
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
862
            "grad_to_block_id": grad_to_block_id,
863
        }
T
tangwei12 已提交
864 865

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
866
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
867 868
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
869

T
tangwei12 已提交
870 871 872 873
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
874 875 876 877 878
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
879
            attrs=attrs)
880

T
tangwei12 已提交
881
        # add distributed attrs
882 883
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
884

W
Wu Yi 已提交
885
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
886 887
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
888 889
        return pserver_program

W
Wu Yi 已提交
890 891 892 893 894 895
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
896

W
Wu Yi 已提交
897 898 899 900
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
901 902
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
903 904
        return pserver_prog, pserver_startup

905 906
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
907
                            pserver_program=None,
908
                            startup_program=None):
T
typhoonzero 已提交
909
        """
W
Wu Yi 已提交
910 911
        **Deprecated**

T
typhoonzero 已提交
912 913 914
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
915 916 917

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
918 919
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
920
                when initalizing
921

Y
yi.wu 已提交
922 923
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
924
        """
925 926 927
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
928
        if pserver_program != None:
929 930 931
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
932
        if startup_program != None:
933 934 935
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
936

T
typhoonzero 已提交
937
        s_prog = Program()
W
Wu Yi 已提交
938
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
939
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
940 941 942 943 944 945 946 947 948 949 950
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
951
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
952
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
953
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
954 955 956 957
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
958
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
959 960
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
961 962 963 964 965 966 967 968 969 970
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
971 972

            if op_on_pserver:
973 974 975
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
976 977 978
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
979
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
980 981 982 983
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
984
                    attrs=op.all_attrs())
W
Wu Yi 已提交
985 986 987 988 989 990 991 992 993
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
994 995

        # add slice vars
996
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
997

T
typhoonzero 已提交
998 999
        return s_prog

T
tangwei12 已提交
1000
    def _get_slice_vars_and_attrs(self, endpoint):
1001
        slice_vars_and_attrs = {}
T
tangwei12 已提交
1002
        block_suffix = "block"
1003
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
1004
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
1005
            if not block_name:
1006 1007
                continue

T
tangwei12 已提交
1008
            block_idx = int(block_name.split(block_suffix)[1])
1009 1010
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1011
            skip_dim0 = 0
1012 1013
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1014
                skip_dim0 += slice_var.shape[0]
1015
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1016
        return slice_vars_and_attrs
1017

1018 1019
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1059
    def _init_splited_vars(self):
Y
yi.wu 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1083
        if self.config.slice_var_up:
Y
yi.wu 已提交
1084 1085
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1086 1087 1088
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1089
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1090 1091
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1092 1093 1094
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1095 1096 1097 1098
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1099 1100
        assert (len(grad_blocks) == len(param_blocks))

1101
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1102 1103
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1104
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1105 1106 1107 1108
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1109
        # dict(grad_splited_var -> param_splited_var)
1110
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1111 1112 1113
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1114
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1115
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1116 1117

        # create mapping of endpoint -> split var to create pserver side program
1118
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1128
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1129 1130
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1131
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1132
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1133 1134
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1135 1136
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1137 1138 1139 1140 1141 1142

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1143 1144
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1145
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1146 1147 1148
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1149 1150
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1151 1152
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1153 1154 1155
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1156
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1157
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1158 1159

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1160
                    self.all_out_emb_vars.append(out_var)
1161 1162

                    # delete lookup_table_op
1163
                    delete_ops(program.global_block(), [op])
1164 1165 1166
                    # break for loop
                    break

S
seiriosPlus 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1213
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1214
        # 2. add split_ids_op and send_op to send gradient to pservers
1215

1216 1217
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1218
        table_grad_name = grad_var_name(self.table_name)
1219 1220 1221 1222
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1223
                program.global_block()._insert_op(
1224 1225 1226 1227 1228
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1229 1230
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1231
                program.global_block()._insert_op(
1232
                    index=op_index + 2,
1233
                    type="send",
1234
                    inputs={'X': self.trainer_side_table_grad_list},
1235 1236 1237 1238 1239
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1240
                    attrs={
1241
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1242
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1243
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1244 1245 1246 1247 1248
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1249
                    })
1250 1251 1252 1253 1254 1255
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1256
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1282
        return prefetch_var_name_to_block_id
1283 1284

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1285
                                     pre_block_idx, grad_to_block_id):
1286
        # STEP: create table optimize block
1287
        table_opt_block = pserver_program._create_block(pre_block_idx)
1288
        # create table param and grad var in pserver program
1289 1290
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1291 1292 1293
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1294 1295
        ][0]

Y
Yancey1989 已提交
1296 1297
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1298

T
tangwei12 已提交
1299
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1300 1301
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1302 1303 1304
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1305 1306
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1307
            shape=table_shape,
Y
Yancey1989 已提交
1308 1309 1310
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1311

1312 1313
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1314
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1315
            self.origin_program.global_block().vars[grad_var_name(
1316
                self.table_name)])
1317

1318 1319 1320
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1321

1322 1323 1324
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1325
            pserver_side_table_grad_list = [
1326 1327 1328 1329 1330 1331 1332 1333 1334
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1335
            # append sum op for pserver_side_table_grad_list
1336 1337
            table_opt_block.append_op(
                type="sum",
1338
                inputs={"X": pserver_side_table_grad_list},
1339 1340
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1341 1342
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1343
            origin_grad_name = grad_var.name
1344 1345
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1346 1347
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1348
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1349
            grad_var = pserver_program.global_block()._rename_var(
1350
                origin_grad_name, splited_grad_name)
1351 1352 1353 1354 1355 1356 1357

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1358
        # only support sgd now
1359 1360 1361
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1362
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1363

1364 1365 1366
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1367 1368
        return table_opt_block

T
tangwei12 已提交
1369 1370 1371 1372 1373
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1374
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1375
            name="kLookupTablePath",
T
tangwei12 已提交
1376 1377
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1378

W
Wu Yi 已提交
1379
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1380
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1381 1382 1383 1384
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1385
            attrs={'file_path': "none"})
T
tangwei12 已提交
1386 1387 1388

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1389 1390 1391 1392 1393
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1394
        Create vars for each split.
T
typhoonzero 已提交
1395 1396
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1397 1398 1399 1400
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1401
        Returns:
1402
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1403
                from original var name to each var split.
T
typhoonzero 已提交
1404
        """
1405 1406

        # varname->[(block_id, current_block_size)]
1407
        block_map = collections.OrderedDict()
1408

1409
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1410 1411
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1412
            if varname not in block_map:
T
typhoonzero 已提交
1413
                block_map[varname] = []
1414
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1415

M
minqiyang 已提交
1416
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1417
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1418
            if len(splited) == 1:
1419
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1420
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1421
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1422
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1423 1424 1425 1426 1427
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1428
                continue
T
typhoonzero 已提交
1429
            var_mapping[varname] = []
T
typhoonzero 已提交
1430 1431 1432 1433
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1434

T
typhoonzero 已提交
1435
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1436
                size = block[1]
M
minqiyang 已提交
1437
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1438 1439 1440
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1441
                new_var_name = ""
1442
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1443
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1444
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1445 1446
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1447
                                   (varname, i)
T
typhoonzero 已提交
1448
                var = program.global_block().create_var(
T
typhoonzero 已提交
1449 1450
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1451
                    dtype=orig_var.dtype,
1452
                    type=orig_var.type,
T
typhoonzero 已提交
1453
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1454
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1455
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1456
        return var_mapping
T
done  
typhoonzero 已提交
1457

1458
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1459 1460 1461 1462 1463 1464
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1465
            persistable=persistable)
T
done  
typhoonzero 已提交
1466

Y
Yancey1989 已提交
1467
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1468 1469 1470 1471
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1472
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1473
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1474 1475
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1476
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1477 1478 1479 1480
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1481 1482 1483 1484
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1485 1486 1487 1488
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1489
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1490 1491 1492 1493
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1494 1495 1496 1497
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1498 1499 1500
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1501

T
typhoonzero 已提交
1502 1503 1504 1505
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1506
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1519
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1520 1521
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1522 1523
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1524
                return param_shape
1525 1526 1527
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1528 1529 1530
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1531 1532
        elif op_type == "sgd":
            pass
1533 1534 1535 1536
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1537 1538
        return orig_shape

1539 1540
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1541
        orig_var_name = ""
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1552
        else:
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1575
            return None
1576 1577 1578 1579
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1580
        else:
1581
            merged_var_name = orig_varname
1582 1583

        merged_var = pserver_block.vars[merged_var_name]
1584 1585 1586
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1587
            for i in range(self.trainer_num):
1588
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1589
                                   (merged_var_name, i)
1590 1591 1592 1593
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1594 1595
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1596 1597 1598 1599 1600
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1601
        return merged_var
T
typhoonzero 已提交
1602

W
Wu Yi 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1665
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1666
                            grad_to_block_id, origin_program, merged_var):
1667
        program = optimize_block.program
T
typhoonzero 已提交
1668
        pserver_block = program.global_block()
1669
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1680 1681 1682 1683
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1684
        for key in opt_op.input_names:
T
typhoonzero 已提交
1685
            if key == "Grad":
W
Wu Yi 已提交
1686 1687 1688 1689
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1690
            elif key == "Param":
W
Wu Yi 已提交
1691
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1692 1693
                if not param_block:
                    return
T
typhoonzero 已提交
1694
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1695
                    name=param_block.name,
T
typhoonzero 已提交
1696
                    persistable=True,
T
typhoonzero 已提交
1697 1698 1699
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1700
            elif key == "LearningRate":
1701
                # learning rate variable has already be created by non-optimize op,
1702
                # don't create it once again.
1703
                lr_varname = opt_op.input(key)[0]
1704
                if lr_varname in pserver_block.vars:
1705 1706 1707 1708 1709 1710 1711 1712 1713
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1714

T
typhoonzero 已提交
1715
        for key in opt_op.input_names:
1716
            new_shape = None
W
Wu Yi 已提交
1717
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1718
                continue
1719
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1720
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1721
            # update accumulator variable shape
1722 1723
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1724
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1725 1726 1727 1728 1729
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1730

1731 1732 1733 1734 1735 1736 1737
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1738
        # change output's ParamOut variable
1739 1740
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1741
        outputs["ParamOut"] = new_inputs["Param"]
1742
        optimize_block.append_op(
T
typhoonzero 已提交
1743 1744
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1745
            outputs=outputs,
G
gongweibao 已提交
1746
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1759
        grad_block = None
M
minqiyang 已提交
1760
        for _, g in six.iteritems(var_dict):
1761
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1762
                # skip per trainer vars
1763
                if g.name.find(".trainer_") == -1:
1764 1765 1766 1767 1768
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1769 1770
        return grad_block

Q
Qiyang Min 已提交
1771 1772 1773
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1774
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1775 1776 1777 1778
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1779
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1780 1781 1782

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1783
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1784 1785 1786 1787
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1788
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1789

Y
Yancey1989 已提交
1790
        return block.append_op(
G
gongweibao 已提交
1791
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1792 1793

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1794
        program = optimize_block.program
1795
        # Append the ops for parameters that do not need to be optimized/updated
1796 1797
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1798
        for key, varlist in six.iteritems(inputs):
1799 1800
            if not isinstance(varlist, list):
                varlist = [varlist]
1801 1802 1803
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1804
                # for inputs/outputs
1805
                grad_block = self._get_pserver_grad_param_var(
1806 1807
                    var, program.global_block().vars)
                if grad_block:
1808
                    varlist[i] = grad_block
1809
                elif var.name not in program.global_block().vars:
1810 1811 1812 1813 1814
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1815

1816 1817
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1818
        for key, varlist in six.iteritems(outputs):
1819 1820
            if not isinstance(varlist, list):
                varlist = [varlist]
1821 1822 1823
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1824 1825
                    var, program.global_block().vars)
                if grad_block:
1826
                    varlist[i] = grad_block
1827
                elif var.name not in program.global_block().vars:
1828 1829 1830 1831 1832
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1833

Y
Yancey1989 已提交
1834
        return optimize_block.append_op(
T
typhoonzero 已提交
1835
            type=opt_op.type,
T
typhoonzero 已提交
1836 1837
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1838
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1839

1840 1841 1842 1843
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1844
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1845
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1846 1847 1848 1849 1850 1851
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1852 1853
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1854 1855 1856 1857 1858 1859
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1860
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1861
        if "Param" in op.input_names and \
T
tangwei12 已提交
1862
                "LearningRate" in op.input_names:
1863 1864 1865 1866 1867 1868 1869
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1870
        if op.input("Param")[0] in param_names:
1871 1872 1873
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1874
                param = op.input("Param")[0]
T
typhoonzero 已提交
1875
                if same_or_split_var(n, param) and n != param:
1876 1877 1878
                    return True
            return False

T
typhoonzero 已提交
1879
    def _get_input_map_from_op(self, varmap, op):
1880
        """Returns a dict from op input name to the vars in varmap."""
1881
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1893
        """Returns a dict from op output name to the vars in varmap."""
1894
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1904 1905

    def _get_lr_ops(self):
1906 1907 1908
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1909 1910 1911 1912
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1913 1914 1915 1916 1917
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1918 1919 1920 1921
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1922
            if self._is_optimizer_op(op):
1923 1924 1925 1926
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1927
        block = self.origin_program.global_block()
1928 1929 1930 1931 1932
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1933

1934 1935 1936 1937 1938
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1939
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1940 1941 1942 1943 1944 1945
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1946 1947
                    # we only need to append op for once
                    break
1948
        return lr_ops
Y
Yancey1989 已提交
1949

W
Wu Yi 已提交
1950 1951 1952 1953 1954
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1955 1956
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1957 1958 1959
            return True
        return False

Y
Yancey1989 已提交
1960
    def _get_optimize_pass(self):
1961
        """
1962
        Get optimizer operators, parameters and gradients from origin_program
1963 1964 1965 1966
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1967 1968 1969
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1970 1971
        # tmp set to dedup
        optimize_params = set()
1972
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1973
        for op in block.ops:
W
Wu Yi 已提交
1974
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1975
                opt_ops.append(op)
1976 1977 1978 1979 1980 1981
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1982 1983
                        params_grads.append([
                            origin_var_dict[param_name],
1984
                            origin_var_dict[grad_name]
1985
                        ])
Y
Yancey1989 已提交
1986 1987 1988
            else:
                pass
        return opt_ops, params_grads