distribute_transpiler.py 70.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
185 186
                  sync_mode=True,
                  startup_program=None):
187
        """
Y
yi.wu 已提交
188 189 190 191 192 193 194 195 196 197 198
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
199 200
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
201 202 203
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
204 205
        if startup_program is None:
            startup_program = default_startup_program()
206
        self.origin_program = program
W
Wu Yi 已提交
207 208
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
209

210 211 212 213 214 215 216
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
217
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
218
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
219
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
220
        self.grad_name_to_param_name = dict()
221 222
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
223
            self.grad_name_to_param_name[grad_var.name] = param_var.name
224

T
tangwei12 已提交
225 226 227 228 229 230
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

231
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
232
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
233
        self._init_splited_vars()
234

G
gongweibao 已提交
235
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
236
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
237
        send_vars = []
238 239 240 241 242 243

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
244
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
245

G
gongweibao 已提交
246
        if not self.config.slice_var_up:
247 248
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
249

250 251
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
252
            eplist = ps_dispatcher.dispatch(splited_vars)
253

G
gongweibao 已提交
254
            if not self.config.slice_var_up:
255 256
                assert (len(splited_vars) == 1)

257
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
258
            if len(splited_vars) == 1:
259
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
260
                index = find_op_by_output_arg(program.global_block(),
261
                                              splited_grad_varname)
Y
Yancey1989 已提交
262
            elif len(splited_vars) > 1:
263
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
264
                index = find_op_by_output_arg(program.global_block(),
265
                                              splited_grad_varname)
Y
Yancey1989 已提交
266
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
267
                index += 1
Y
Yancey1989 已提交
268 269
            else:
                AssertionError("Can not insert the send op by original "
270
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
271

W
Wu Yi 已提交
272 273
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
274
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
275

W
Wu Yi 已提交
276 277 278 279
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
280
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
281
                index=index + 1,
282
                type="send",
Y
update  
Yancey1989 已提交
283
                inputs={"X": splited_vars},
284
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
285 286
                attrs={
                    "epmap": eplist,
287
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
288 289 290 291
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
292
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
293
                })
Y
update  
Yancey1989 已提交
294 295
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
296 297

        if self.sync_mode:
W
Wu Yi 已提交
298 299 300
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
301 302
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
303
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
304
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
305 306
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
307
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
308
                })
Y
Yancey1989 已提交
309

G
gongweibao 已提交
310
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
311
        recv_vars = []
Y
update  
Yancey1989 已提交
312
        for _, var in enumerate(send_vars):
313
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
314
        ps_dispatcher.reset()
Y
Yancey1989 已提交
315 316
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
317
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
318 319
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
320

Y
Yancey1989 已提交
321
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
322
        all_recv_outputs = []
323
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
324 325 326 327
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
328 329 330 331 332 333 334
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
335 336 337 338 339 340 341 342 343
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
344 345
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
346
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
347 348 349
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
350
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
351 352
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
353
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
354
                })
T
typhoonzero 已提交
355

Q
qiaolongfei 已提交
356
        if self.sync_mode:
W
Wu Yi 已提交
357
            # form a WAW dependency
Q
qiaolongfei 已提交
358 359 360
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
361
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
362 363 364 365
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
366

367
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
368 369
            if len(splited_var) <= 1:
                continue
370
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
371
            program.global_block().append_op(
T
typhoonzero 已提交
372
                type="concat",
T
typhoonzero 已提交
373
                inputs={"X": splited_var},
T
typhoonzero 已提交
374
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
375
                attrs={"axis": 0})
T
typhoonzero 已提交
376

G
gongweibao 已提交
377 378
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

379
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
380 381
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
382
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
383

W
Wu Yi 已提交
384
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
385 386 387 388 389 390
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
391
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
392
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
393
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
394
        self.origin_program.__str__()
G
gongweibao 已提交
395

W
Wu Yi 已提交
396 397 398
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

399
        return self.origin_program
T
typhoonzero 已提交
400

W
Wu Yi 已提交
401
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
402 403 404 405
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
406
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
407
            eplist (list): A list of strings indicating
G
gongweibao 已提交
408 409 410 411

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
412
        startup_program = self.startup_program
G
gongweibao 已提交
413 414 415 416

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
417
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
438
                inputs={"X": []},
G
gongweibao 已提交
439 440 441 442 443 444
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
445 446
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
447 448 449
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
450
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
451 452 453 454 455
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
456
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
457 458 459
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
460
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
461
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
462 463 464 465 466 467 468 469 470 471
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
472 473 474 475 476 477 478 479
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
480 481
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
482
        Get parameter server side program.
483

Y
yi.wu 已提交
484 485
        Args:
            endpoint (str): current parameter server endpoint.
486

Y
yi.wu 已提交
487 488
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
489
        """
Y
yi.wu 已提交
490 491 492 493
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
494 495 496
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
497 498
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
499
        pserver_program.random_seed = self.origin_program.random_seed
500
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
501 502 503 504 505 506 507 508
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
509 510 511 512 513
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
514 515 516 517 518 519 520 521 522
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
523
            if self.sync_mode and self.trainer_num > 1:
524
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
525 526 527 528 529 530 531 532 533
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
534

Q
qiaolongfei 已提交
535
        # step 3
536
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
537 538 539
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
540
        # step 3.2
T
typhoonzero 已提交
541 542 543 544
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
545 546
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
547
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
548
        # step 3.3
T
typhoonzero 已提交
549
        # Iterate through the ops, and if an op and the optimize ops
550
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
551
        # append it into the sub program.
T
typhoonzero 已提交
552 553 554

        global_ops = []

Y
wip  
yi.wu 已提交
555 556
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
557
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
558
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
559
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
560
            elif op not in lr_ops:
Q
Qiyang Min 已提交
561
                self._append_pserver_non_opt_ops(block, op)
562 563 564 565 566 567

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
568

Y
Yancey1989 已提交
569
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
570 571 572 573 574 575 576 577
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
578
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
579 580 581

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
582
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
583 584

            # clone ops
Y
Yancey1989 已提交
585 586
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
587
                # clone sub_block of op
Y
Yancey1989 已提交
588
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
589 590 591 592

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

593
        # append lr decay ops to the child block if exists
594
        lr_ops = self._get_lr_ops()
595 596
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
597
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
598 599
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
600
            optimize_blocks.append(lr_decay_block)
601
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
602
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
603
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
604 605
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
606

T
typhoonzero 已提交
607
        # append op to the current block
Q
qiaolongfei 已提交
608
        grad_to_block_id = []
Q
qiaolongfei 已提交
609
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
610
        for idx, opt_op in enumerate(opt_op_on_pserver):
611
            per_opt_block = pserver_program.create_block(pre_block_idx)
612
            optimize_blocks.append(per_opt_block)
613
            # append grad merging ops before clip and weight decay
614
            # cases may like:
T
typhoonzero 已提交
615
            # L2Decay op -> clip op -> optimize
616 617 618 619 620 621 622
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
623
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
624 625
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
626
                if ufind.is_connected(op, opt_op) and op not in global_ops:
627
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
628
                                           merged_var, lr_ops)
T
typhoonzero 已提交
629

W
Wu Yi 已提交
630 631
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
632
        # append global ops
633
        if global_ops:
Q
qiaolongfei 已提交
634 635
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
636
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
637
            for glb_op in global_ops:
X
Xi Chen 已提交
638
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
639
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
640

641
        # process distributed lookup_table
Q
qiaolongfei 已提交
642
        prefetch_var_name_to_block_id = []
643 644
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
645
            table_opt_block = self._create_table_optimize_block(
646
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
647
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
648
            prefetch_var_name_to_block_id = self._create_prefetch_block(
649
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
650 651
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
652

T
tangwei12 已提交
653 654
            pserver_program._distributed_lookup_table = self.table_name

655 656 657
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
658
            assert len(prefetch_var_name_to_block_id) > 0
659
        else:
Q
qiaolongfei 已提交
660
            assert len(prefetch_var_name_to_block_id) == 0
661

662
        attrs = {
663
            "optimize_blocks": optimize_blocks,
664 665 666
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
667
            "grad_to_block_id": grad_to_block_id,
668 669 670 671
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
672
            attrs['checkpint_block_id'] = checkpoint_block_id
673

T
typhoonzero 已提交
674 675 676 677 678
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
679
            attrs=attrs)
680

T
tangwei12 已提交
681
        # add distributed attrs
T
tangwei12 已提交
682
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
683
            endpoint)
684

W
Wu Yi 已提交
685
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
686 687
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
688 689
        return pserver_program

W
Wu Yi 已提交
690 691 692 693 694 695
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
696

W
Wu Yi 已提交
697 698 699 700 701 702 703
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

704 705
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
706
                            pserver_program=None,
707
                            startup_program=None):
T
typhoonzero 已提交
708
        """
W
Wu Yi 已提交
709 710
        **Deprecated**

T
typhoonzero 已提交
711 712 713
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
714 715 716

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
717 718
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
719
                when initalizing
720

Y
yi.wu 已提交
721 722
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
723
        """
W
Wu Yi 已提交
724 725 726 727 728 729 730 731 732 733 734 735
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
736
        s_prog = Program()
W
Wu Yi 已提交
737
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
738
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
739 740 741 742 743 744 745 746 747 748 749
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
750
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
751
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
752
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
753 754 755 756
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
757
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
758 759
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
760 761 762 763 764 765 766 767 768 769
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
770 771

            if op_on_pserver:
772 773 774
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
775 776 777
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
778
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
779 780 781 782
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
783
                    attrs=op.all_attrs())
784 785

        # add slice vars
T
tangwei12 已提交
786
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
787

T
typhoonzero 已提交
788 789
        return s_prog

T
tangwei12 已提交
790 791 792
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
793
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
794
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
795
            if not block_name:
796 797
                continue

T
tangwei12 已提交
798
            block_idx = int(block_name.split(block_suffix)[1])
799 800 801 802 803 804
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
805
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
806

T
tangwei12 已提交
807
        return slice_vars_and_attrs
808

809 810
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
811 812 813 814 815 816 817 818 819
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
820
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
872
    def _init_splited_vars(self):
Y
yi.wu 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
896
        if self.config.slice_var_up:
Y
yi.wu 已提交
897 898
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
899 900 901
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
902
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
903 904
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
905 906 907
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
908 909 910 911
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
912 913
        assert (len(grad_blocks) == len(param_blocks))

914
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
915 916
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
917
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
918 919 920 921
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
922
        # dict(grad_splited_var -> param_splited_var)
923
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
924 925 926 927
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
928
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
929 930

        # create mapping of endpoint -> split var to create pserver side program
931
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
932 933 934 935 936 937 938 939 940
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

941
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
942 943
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
944
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
945 946 947 948 949 950 951 952 953
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
954 955 956 957 958 959 960 961 962

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

963
                    lookup_table_op_index = list(all_ops).index(op)
964 965 966
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
967
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
968
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
969 970 971 972 973 974
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
975
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
976 977 978 979
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
980 981

                    # insert split_ids_op
W
Wu Yi 已提交
982
                    program.global_block()._insert_op(
983
                        index=lookup_table_op_index,
984 985 986 987 988 989 990
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
991
                        outputs={"Out": prefetch_input_vars})
992 993

                    # insert prefetch_op
W
Wu Yi 已提交
994
                    program.global_block()._insert_op(
995
                        index=lookup_table_op_index + 1,
996
                        type="prefetch",
Q
qiaolongfei 已提交
997 998
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
999
                        attrs={
1000
                            "epmap": pserver_endpoints,
1001 1002 1003
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1004
                        })
1005 1006

                    # insert concat_op
W
Wu Yi 已提交
1007
                    program.global_block()._insert_op(
1008 1009 1010 1011 1012 1013 1014
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1015
                            'X': prefetch_output_vars
1016
                        },
1017 1018 1019 1020 1021
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1022
                        })
1023 1024

                    # delete lookup_table_op
1025
                    delete_ops(program.global_block(), [op])
1026 1027 1028
                    # break for loop
                    break

Y
Yancey1989 已提交
1029
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1030
        # 2. add split_ids_op and send_op to send gradient to pservers
1031 1032
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1033
        table_grad_name = grad_var_name(self.table_name)
1034 1035 1036 1037
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1038
                program.global_block()._insert_op(
1039 1040 1041 1042 1043
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1044
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1045
                program.global_block()._insert_op(
1046
                    index=op_index + 2,
1047
                    type="send",
1048
                    inputs={'X': self.trainer_side_table_grad_list},
1049
                    outputs={'Out': []},
Y
Yancey1989 已提交
1050
                    attrs={
1051
                        "sync_mode": True,
Y
Yancey1989 已提交
1052
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1053 1054 1055 1056 1057
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1058
                    })
1059 1060 1061 1062 1063 1064
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1093 1094

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1095
                                     pre_block_idx, grad_to_block_id):
1096 1097
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1098 1099
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1100

T
tangwei12 已提交
1101
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1102 1103
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1104 1105 1106
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1107 1108
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1109
            shape=table_shape,
Y
Yancey1989 已提交
1110 1111 1112
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1113 1114
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1115
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1116
            self.origin_program.global_block().vars[grad_var_name(
1117
                self.table_name)])
1118 1119 1120 1121

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1122 1123
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1124
        ][0]
Q
qiaolongfei 已提交
1125
        table_opt_block = pserver_program.create_block(pre_block_idx)
1126

1127 1128 1129
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1130
            pserver_side_table_grad_list = [
1131 1132 1133 1134 1135 1136 1137 1138 1139
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1140
            # append sum op for pserver_side_table_grad_list
1141 1142
            table_opt_block.append_op(
                type="sum",
1143
                inputs={"X": pserver_side_table_grad_list},
1144 1145
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1146 1147
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1148
            origin_grad_name = grad_var.name
1149 1150
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1151 1152
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1153
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1154
            grad_var = pserver_program.global_block()._rename_var(
1155
                origin_grad_name, splited_grad_name)
1156 1157 1158 1159 1160 1161 1162 1163 1164

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1165
        # only support sgd now
1166 1167 1168 1169
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1170
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1171

1172 1173 1174
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1175 1176
        return table_opt_block

T
tangwei12 已提交
1177 1178 1179 1180 1181 1182
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1183
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1184
            name="kLookupTablePath",
T
tangwei12 已提交
1185 1186
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1187

T
tangwei12 已提交
1188
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1189
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1190 1191 1192 1193
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1194
            attrs={'file_path': "none"})
T
tangwei12 已提交
1195 1196 1197

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1198 1199 1200 1201 1202
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1203
        Create vars for each split.
T
typhoonzero 已提交
1204 1205
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1206 1207 1208 1209
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1210
        Returns:
1211
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1212
                from original var name to each var split.
T
typhoonzero 已提交
1213
        """
1214 1215

        # varname->[(block_id, current_block_size)]
1216
        block_map = collections.OrderedDict()
1217

1218
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1219 1220
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1221
            if varname not in block_map:
T
typhoonzero 已提交
1222
                block_map[varname] = []
1223
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1224

M
minqiyang 已提交
1225
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1226
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1227
            if len(splited) == 1:
1228
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1229 1230
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1231
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1232 1233 1234 1235 1236
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1237
                continue
T
typhoonzero 已提交
1238
            var_mapping[varname] = []
T
typhoonzero 已提交
1239 1240 1241 1242
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1243

T
typhoonzero 已提交
1244
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1245
                size = block[1]
M
minqiyang 已提交
1246
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1247 1248 1249
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1250
                new_var_name = ""
1251
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1252 1253 1254 1255 1256
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1257
                var = program.global_block().create_var(
T
typhoonzero 已提交
1258 1259
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1260
                    dtype=orig_var.dtype,
1261
                    type=orig_var.type,
T
typhoonzero 已提交
1262
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1263
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1264
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1265
        return var_mapping
T
done  
typhoonzero 已提交
1266

W
Wu Yi 已提交
1267
    def _create_splited_vars(self, source_var, block, tag):
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1278 1279 1280 1281 1282 1283
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1284
            persistable=persistable)
T
done  
typhoonzero 已提交
1285

Y
Yancey1989 已提交
1286
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1287 1288 1289 1290
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1291
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1301
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1311

T
typhoonzero 已提交
1312 1313 1314 1315
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1316
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1332 1333
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1334 1335 1336 1337 1338
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1339 1340
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1341
        orig_var_name = ""
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1352
        else:
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1380
        else:
1381 1382 1383 1384 1385 1386
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1387
            for i in range(self.trainer_num):
1388 1389 1390 1391 1392 1393 1394
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1395 1396
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1397 1398 1399 1400 1401
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1402
        return merged_var
T
typhoonzero 已提交
1403

1404
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1405
                            grad_to_block_id, origin_program, merged_var):
1406
        program = optimize_block.program
T
typhoonzero 已提交
1407
        pserver_block = program.global_block()
1408
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1419
        for key in opt_op.input_names:
T
typhoonzero 已提交
1420 1421 1422
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1423
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1424 1425
                if not param_block:
                    return
T
typhoonzero 已提交
1426
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1427
                    name=param_block.name,
T
typhoonzero 已提交
1428
                    persistable=True,
T
typhoonzero 已提交
1429 1430 1431
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1432
            elif key == "LearningRate":
1433
                # learning rate variable has already be created by non-optimize op,
1434
                # don't create it once again.
1435
                lr_varname = opt_op.input(key)[0]
1436
                if lr_varname in pserver_block.vars:
1437 1438 1439 1440 1441 1442 1443 1444 1445
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1446

T
typhoonzero 已提交
1447
        for key in opt_op.input_names:
1448
            new_shape = None
W
Wu Yi 已提交
1449
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1450
                continue
1451
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1452 1453 1454 1455
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1456
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1457 1458 1459 1460 1461
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1462

1463
        # change output's ParamOut variable
1464 1465
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1466
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1467

1468
        optimize_block.append_op(
T
typhoonzero 已提交
1469 1470
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1471
            outputs=outputs,
G
gongweibao 已提交
1472
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1473

1474 1475
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1476
        for _, g in six.iteritems(var_dict):
1477 1478 1479 1480 1481 1482
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1483 1484 1485
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1486
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1487 1488 1489 1490
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1491
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1492 1493 1494

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1495
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1496 1497 1498 1499
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1500
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1501

Y
Yancey1989 已提交
1502
        return block.append_op(
G
gongweibao 已提交
1503
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1504 1505

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1506
        program = optimize_block.program
1507
        # Append the ops for parameters that do not need to be optimized/updated
1508 1509
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1510
        for key, varlist in six.iteritems(inputs):
1511 1512
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1513
            for var in varlist:
1514 1515 1516 1517 1518 1519
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1520
                elif var.name not in program.global_block().vars:
1521
                    program.global_block().create_var(
T
typhoonzero 已提交
1522 1523 1524 1525 1526
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1527 1528
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1529
        for key, varlist in six.iteritems(outputs):
1530 1531 1532
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1533 1534 1535 1536
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1537
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1538
                    program.global_block()._clone_variable(var)
1539

Y
Yancey1989 已提交
1540
        return optimize_block.append_op(
T
typhoonzero 已提交
1541
            type=opt_op.type,
T
typhoonzero 已提交
1542 1543
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1544
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1545

1546 1547 1548 1549
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1550 1551
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1552 1553 1554 1555 1556 1557
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1558 1559
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1560 1561 1562 1563 1564 1565
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1566
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1567 1568
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1569 1570 1571 1572 1573 1574 1575
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1576
        if op.input("Param")[0] in param_names:
1577 1578 1579
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1580
                param = op.input("Param")[0]
T
typhoonzero 已提交
1581
                if same_or_split_var(n, param) and n != param:
1582 1583 1584
                    return True
            return False

T
typhoonzero 已提交
1585
    def _get_input_map_from_op(self, varmap, op):
1586
        """Returns a dict from op input name to the vars in varmap."""
1587
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1599
        """Returns a dict from op output name to the vars in varmap."""
1600
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1610 1611 1612 1613 1614 1615

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1616
            if self._is_optimizer_op(op):
1617 1618 1619 1620
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1621
        block = self.origin_program.global_block()
1622 1623 1624 1625 1626
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1627

1628 1629 1630 1631 1632
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1633
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1634 1635 1636 1637 1638 1639
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1640 1641
                    # we only need to append op for once
                    break
1642
        return lr_ops
Y
Yancey1989 已提交
1643

W
Wu Yi 已提交
1644 1645 1646 1647 1648
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1649 1650
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1651 1652 1653
            return True
        return False

Y
Yancey1989 已提交
1654
    def _get_optimize_pass(self):
1655
        """
1656
        Get optimizer operators, parameters and gradients from origin_program
1657 1658 1659 1660
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1661 1662 1663
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1664
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1665
        for op in block.ops:
W
Wu Yi 已提交
1666
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1667
                opt_ops.append(op)
1668 1669 1670 1671 1672
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1673 1674
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1675 1676 1677 1678
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1679 1680 1681
            else:
                pass
        return opt_ops, params_grads