distribute_transpiler.py 105.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
44
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
307
        self.counter_var = None
G
gongweibao 已提交
308

W
Wu Yi 已提交
309 310 311 312
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
313 314
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
315 316 317 318 319 320
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
321 322
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
323 324 325

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
326 327 328 329 330 331 332 333 334

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
335 336 337 338
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
339 340 341 342 343
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
344 345 346 347 348
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
349 350 351 352 353 354 355
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
356 357 358 359 360
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
387
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
388
        elif collective_mode == 'local_sgd':
389
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
390 391 392 393 394 395 396 397 398 399 400
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
401
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
402
        sparse_update_ops = []
403
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
404 405
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
406
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
407 408 409
                sparse_update_ops.append(op)
        return sparse_update_ops

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
485

486 487
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
488 489 490 491 492 493

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
494

495 496 497 498 499
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
500
                  sync_mode=True,
W
Wu Yi 已提交
501 502
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
503
        """
504
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
505 506 507 508 509 510

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
511 512
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
513 514
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
515 516 517
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
518
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
519 520
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
521 522 523
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
524 525 526 527 528 529 530 531 532 533 534

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
535 536 537
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
538 539
        if startup_program is None:
            startup_program = default_startup_program()
540
        self.origin_program = program
W
Wu Yi 已提交
541 542
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
543

W
Wu Yi 已提交
544 545
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
546
            self.origin_program._trainers_endpoints = trainers.split(",")
547 548
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
549 550 551 552 553
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
554
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
555 556 557 558 559 560 561 562 563 564 565
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
566 567 568 569
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
570 571
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
572 573
            return

574 575 576 577 578 579 580 581 582 583 584
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

585
        self.trainer_num = trainers
586
        self.sync_mode = sync_mode
587 588 589
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
590
        self.vars_overview = VarsDistributed()
591 592
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
593
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
594 595
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
596
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
597
        self.grad_name_to_param_name = dict()
598 599
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
600
            self.grad_name_to_param_name[grad_var.name] = param_var.name
601

Q
Qiao Longfei 已提交
602
        # get all sparse update ops
Q
Qiao Longfei 已提交
603
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
604
            self.origin_program)
Q
Qiao Longfei 已提交
605
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
606 607
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
608 609 610
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
611
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
612 613 614
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

615
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
616
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
617
        self._init_splited_vars()
618

G
gongweibao 已提交
619
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
620
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
621
        send_vars = []
622 623 624 625 626 627

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
628
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
629

G
gongweibao 已提交
630
        if not self.config.slice_var_up:
631 632
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
633

634
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
635

636
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
637
            eplist = ps_dispatcher.dispatch(splited_vars)
638

G
gongweibao 已提交
639
            if not self.config.slice_var_up:
640 641
                assert (len(splited_vars) == 1)

642
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
643
            if len(splited_vars) == 1:
644
                splited_grad_varname = splited_vars[0].name
645 646
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
647

Y
Yancey1989 已提交
648
            elif len(splited_vars) > 1:
649
                orig_var = program.global_block().vars[splited_grad_varname]
650 651
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
652

Q
Qiao Longfei 已提交
653 654 655 656
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
657 658
            else:
                AssertionError("Can not insert the send op by original "
659
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
660

661 662 663 664 665 666 667
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
668 669
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
670
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
671

Q
Qiao Longfei 已提交
672 673 674 675 676 677 678 679 680 681 682
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
683 684 685 686
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
687
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
688
                index=index + 1,
689
                type="send",
Q
Qiao Longfei 已提交
690
                inputs={"X": send_input_vars},
691
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
692 693
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
694 695
                    "sections": sections,
                    "send_varnames": send_varnames,
696
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
697 698 699
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
700
                    ]
Y
Yancey1989 已提交
701
                })
Y
update  
Yancey1989 已提交
702 703
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
704 705

        if self.sync_mode:
706
            fetch_barrier_input = []
W
Wu Yi 已提交
707 708
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
709 710 711 712
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
713
            input_deps = list(self.grad_name_to_send_dummy_out.values())
714

Y
Yancey1989 已提交
715 716
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
717
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
718
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
719 720
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
721
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
722
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
723
                })
724
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
750

G
gongweibao 已提交
751
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
752
        recv_vars = []
Y
update  
Yancey1989 已提交
753
        for _, var in enumerate(send_vars):
754
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
755
        ps_dispatcher.reset()
Y
Yancey1989 已提交
756 757
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
758
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
759 760
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
761

762 763 764 765
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

766 767
        need_sparse_update_params = {}

Y
Yancey1989 已提交
768
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
769
        all_recv_outputs = []
770
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
771
            eps = []
Q
Qiao Longfei 已提交
772
            table_names = []
Y
Yancey1989 已提交
773 774 775
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
776
                table_names.append(var.name)
W
Wu Yi 已提交
777 778 779 780
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
781
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
782
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
783

W
Wu Yi 已提交
784 785 786 787 788 789 790 791 792
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
793
            if param_varname in self.sparse_param_to_height_sections:
794 795 796 797 798
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

799
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
800
            else:
Q
Qiao Longfei 已提交
801 802 803
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
804
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
805
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
806
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
807

Q
Qiao Longfei 已提交
808 809 810 811 812 813
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
814
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
815 816 817
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
818
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
819
                    })
820 821
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
822

823 824
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
825
        if self.sync_mode:
W
Wu Yi 已提交
826
            # form a WAW dependency
Q
qiaolongfei 已提交
827 828
            program.global_block().append_op(
                type="fetch_barrier",
829
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
830
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
831 832
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
833
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
834 835
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
836

837 838
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
839
            if param_varname not in self.sparse_param_to_height_sections:
840 841
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
842 843 844 845 846 847 848 849
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
850

G
gongweibao 已提交
851 852
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

853
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
854 855
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
856
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
857

858 859 860
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
861
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
862
        """
C
Chengmo 已提交
863 864 865 866 867 868 869 870 871
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
872 873 874

        Returns:
            Program: trainer side program.
875 876 877 878 879 880 881 882 883 884 885 886

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
887
        """
T
typhoonzero 已提交
888
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
889
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
890

T
typhoonzero 已提交
891
        lr_ops = self._get_lr_ops()
892
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
893 894
        delete_ops(self.origin_program.global_block(), lr_ops)

895 896
        # delete table init op
        if self.has_distributed_lookup_table:
897 898 899
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
900 901
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
902 903 904 905 906
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
907
            table_init_op = table_param_init_op[0]
908 909 910 911 912 913
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
914

915
        self.origin_program.__str__()
G
gongweibao 已提交
916

W
Wu Yi 已提交
917 918 919
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

920
        return self.origin_program
T
typhoonzero 已提交
921

W
Wu Yi 已提交
922
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
923 924 925 926
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
927
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
928
            eplist (list): A list of strings indicating
G
gongweibao 已提交
929 930 931 932

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
933
        startup_program = self.startup_program
G
gongweibao 已提交
934 935 936 937

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
938
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
959
                inputs={"X": []},
G
gongweibao 已提交
960 961 962
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
963
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
964 965 966
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
967 968
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
969 970 971
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
972
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
973 974
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
975
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
976 977 978
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
979
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
980
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
981 982
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
983
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
984
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
985 986 987 988 989 990 991 992 993 994
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
995 996 997 998 999 1000 1001 1002
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1003 1004
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1005 1006 1007 1008 1009 1010
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1011

Y
yi.wu 已提交
1012 1013
        Args:
            endpoint (str): current parameter server endpoint.
1014

Y
yi.wu 已提交
1015 1016
        Returns:
            Program: the program for current parameter server to run.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1031
        """
Y
yi.wu 已提交
1032 1033 1034 1035
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1036 1037 1038
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1039 1040
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1041
        pserver_program.random_seed = self.origin_program.random_seed
1042 1043
        pserver_program._copy_dist_param_info_from(self.origin_program)

1044
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1045 1046 1047 1048 1049 1050 1051 1052
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1053 1054 1055 1056 1057
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1067
            if self.sync_mode and self.trainer_num > 1:
1068
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1078

Q
qiaolongfei 已提交
1079
        # step 3
1080
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1081 1082 1083
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1084
        # step 3.2
T
typhoonzero 已提交
1085 1086 1087 1088
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1089 1090
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1091
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1092
        # step 3.3
W
Wu Yi 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1111
        # Iterate through the ops, and if an op and the optimize ops
1112
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1113
        # append it into the sub program.
T
typhoonzero 已提交
1114 1115 1116

        global_ops = []

1117 1118 1119
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1120 1121
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1122
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1123
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1124 1125
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1126
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1127
                self._append_pserver_non_opt_ops(block, op)
1128

Y
Yancey1989 已提交
1129
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1130 1131 1132 1133 1134 1135 1136 1137
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1138
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1139 1140 1141

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1142
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1143 1144

            # clone ops
Y
Yancey1989 已提交
1145 1146
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1147
                # clone sub_block of op
Y
Yancey1989 已提交
1148
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1149 1150

            # reset the block of op
W
Wu Yi 已提交
1151
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1152

1153
        # append lr decay ops to the child block if exists
1154
        lr_ops = self._get_lr_ops()
1155 1156
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1157 1158

        lr_decay_block_id = -1
1159
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1160
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1161
                pserver_program.num_blocks - 1)
1162
            optimize_blocks.append(lr_decay_block)
1163
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1164
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1165
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1166 1167
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1168
            lr_decay_block_id = lr_decay_block.idx
1169

T
typhoonzero 已提交
1170
        # append op to the current block
Q
qiaolongfei 已提交
1171
        grad_to_block_id = []
Q
qiaolongfei 已提交
1172
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1173
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1174
            per_opt_block = pserver_program._create_block(pre_block_idx)
1175
            optimize_blocks.append(per_opt_block)
1176
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1177
            # append grad merging ops before clip and weight decay
1178 1179
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1180
            for _, op in enumerate(self.optimize_ops):
1181
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1182
                # merged_var should be the input var name of L2Decay
1183 1184 1185
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1186 1187 1188
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1189 1190 1191 1192 1193 1194
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1195
                            op not in global_ops:
1196 1197 1198 1199 1200
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1201

1202
        # dedup grad to ids list
W
Wu Yi 已提交
1203
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1204
        # append global ops
1205
        if global_ops:
W
Wu Yi 已提交
1206
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1207
                pserver_program.num_blocks - 1)
1208
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1209
            for glb_op in global_ops:
X
Xi Chen 已提交
1210
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1211
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1212

1213
        # process distributed lookup_table
Q
qiaolongfei 已提交
1214
        prefetch_var_name_to_block_id = []
1215 1216
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1217
            table_opt_block = self._create_table_optimize_block(
1218
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1219
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1220
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1221
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1222 1223
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1224

T
tangwei12 已提交
1225
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1226 1227
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1228

1229
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1230 1231
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1232 1233 1234 1235 1236 1237
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1238
        attrs = {
1239
            "optimize_blocks": optimize_blocks,
1240
            "endpoint": endpoint,
1241
            "pserver_id": self.pserver_endpoints.index(endpoint),
1242 1243
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1244
            "grad_to_block_id": grad_to_block_id,
1245
            "sparse_grad_to_param": sparse_grad_to_param,
1246
            "lr_decay_block_id": lr_decay_block_id,
1247
        }
T
tangwei12 已提交
1248 1249

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1250
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1251 1252
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1253

T
tangwei12 已提交
1254 1255 1256 1257
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1258 1259 1260 1261 1262
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1263
            attrs=attrs)
1264

W
Wu Yi 已提交
1265
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1266 1267
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1268 1269
        return pserver_program

W
Wu Yi 已提交
1270 1271 1272
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1273 1274
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1275 1276 1277

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1278

W
Wu Yi 已提交
1279 1280
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1295 1296
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1297 1298
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1299 1300
        return pserver_prog, pserver_startup

1301 1302
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1303
                            pserver_program=None,
1304
                            startup_program=None):
T
typhoonzero 已提交
1305
        """
W
Wu Yi 已提交
1306 1307
        **Deprecated**

T
typhoonzero 已提交
1308 1309 1310
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1311 1312 1313

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1314 1315
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1316
                when initalizing
1317

Y
yi.wu 已提交
1318 1319
        Returns:
            Program: parameter server side startup program.
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1335 1336
        """
        s_prog = Program()
W
Wu Yi 已提交
1337
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1338
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1350
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1351
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1352
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1353 1354 1355 1356
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1357
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1358 1359
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1370 1371

            if op_on_pserver:
1372 1373 1374
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1375
                if op.type in [
1376 1377
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1378
                ]:
W
Wu Yi 已提交
1379
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1380 1381 1382 1383
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1384
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1394

T
typhoonzero 已提交
1395 1396
        return s_prog

1397 1398
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1399
        block_suffix = "block"
1400 1401 1402
        block_idx = 0
        offset = 0
        is_slice = False
1403

1404
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1405

1406 1407
        if not block_name:
            return is_slice, block_idx, offset
1408

1409 1410 1411 1412
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1413 1414 1415 1416 1417
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1443 1444 1445 1446
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1484

Y
yi.wu 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1524
    def _init_splited_vars(self):
Y
yi.wu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1548
        if self.config.slice_var_up:
Y
yi.wu 已提交
1549 1550
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1551 1552 1553
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1554
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1555 1556
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1557 1558 1559
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1560 1561 1562 1563
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1564 1565
        assert (len(grad_blocks) == len(param_blocks))

1566
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1567 1568
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1585
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1586 1587 1588 1589
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1590
        # dict(grad_splited_var -> param_splited_var)
1591
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1592 1593 1594
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1595
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1596
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1597 1598

        # create mapping of endpoint -> split var to create pserver side program
1599
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1609
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1610 1611
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1612
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1613
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1614 1615
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1616 1617
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1618 1619 1620 1621 1622 1623

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1624 1625
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1626
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1627 1628 1629
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1630 1631
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1632 1633
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1634 1635 1636
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1637
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1638
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1639 1640

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1641
                    self.all_out_emb_vars.append(out_var)
1642 1643

                    # delete lookup_table_op
1644
                    delete_ops(program.global_block(), [op])
1645 1646 1647
                    # break for loop
                    break

S
seiriosPlus 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1694
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1695
        # 2. add split_ids_op and send_op to send gradient to pservers
1696

1697 1698
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1699
        table_grad_name = grad_var_name(self.table_name)
1700 1701 1702 1703
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1704
                program.global_block()._insert_op(
1705 1706 1707 1708 1709
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1710 1711
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1712
                program.global_block()._insert_op(
1713
                    index=op_index + 2,
1714
                    type="send",
1715
                    inputs={'X': self.trainer_side_table_grad_list},
1716 1717 1718 1719 1720
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1721 1722
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1723
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1724 1725 1726 1727 1728
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1729
                    })
1730 1731 1732 1733 1734 1735
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1736
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1762
        return prefetch_var_name_to_block_id
1763 1764

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1765
                                     pre_block_idx, grad_to_block_id):
1766
        # STEP: create table optimize block
1767
        table_opt_block = pserver_program._create_block(pre_block_idx)
1768
        # create table param and grad var in pserver program
1769 1770
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1771 1772 1773
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1774 1775
        ][0]

Y
Yancey1989 已提交
1776 1777
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1778

T
tangwei12 已提交
1779
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1780 1781
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1782 1783 1784
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1785 1786
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1787
            shape=table_shape,
Y
Yancey1989 已提交
1788 1789 1790
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1791

1792 1793
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1794
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1795
            self.origin_program.global_block().vars[grad_var_name(
1796
                self.table_name)])
1797

1798 1799 1800
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1801

1802 1803 1804
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1805
            pserver_side_table_grad_list = [
1806 1807 1808 1809 1810 1811 1812 1813 1814
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1815
            # append sum op for pserver_side_table_grad_list
1816 1817
            table_opt_block.append_op(
                type="sum",
1818
                inputs={"X": pserver_side_table_grad_list},
1819 1820
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1821 1822
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1823
            origin_grad_name = grad_var.name
1824 1825
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1826 1827
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1828
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1829
            grad_var = pserver_program.global_block()._rename_var(
1830
                origin_grad_name, splited_grad_name)
1831 1832 1833 1834 1835 1836 1837

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1838
        # only support sgd now
1839 1840 1841
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1842
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1843

1844 1845 1846
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1847 1848
        return table_opt_block

T
tangwei12 已提交
1849 1850 1851 1852 1853
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1854
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1855
            name="kLookupTablePath",
T
tangwei12 已提交
1856 1857
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1858

W
Wu Yi 已提交
1859
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1860
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1861 1862 1863 1864
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1865
            attrs={'file_path': "none"})
T
tangwei12 已提交
1866 1867 1868

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1869 1870 1871 1872 1873
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1874
        Create vars for each split.
T
typhoonzero 已提交
1875 1876
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1877 1878 1879 1880
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1881
        Returns:
1882
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1883
                from original var name to each var split.
T
typhoonzero 已提交
1884
        """
1885 1886

        # varname->[(block_id, current_block_size)]
1887
        block_map = collections.OrderedDict()
1888

1889
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1890 1891
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1892
            if varname not in block_map:
T
typhoonzero 已提交
1893
                block_map[varname] = []
1894
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1895

M
minqiyang 已提交
1896
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1897
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1898
            if len(splited) == 1:
1899
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1900
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1901
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1902
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1903 1904 1905 1906 1907
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1908
                continue
T
typhoonzero 已提交
1909
            var_mapping[varname] = []
T
typhoonzero 已提交
1910 1911 1912 1913
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1914

T
typhoonzero 已提交
1915
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1916
                size = block[1]
M
minqiyang 已提交
1917
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1918 1919 1920
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1921
                new_var_name = ""
1922
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1923
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1924
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1925 1926
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1927
                                   (varname, i)
T
typhoonzero 已提交
1928
                var = program.global_block().create_var(
T
typhoonzero 已提交
1929 1930
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1931
                    dtype=orig_var.dtype,
1932
                    type=orig_var.type,
T
typhoonzero 已提交
1933
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1934
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1935
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1936
        return var_mapping
T
done  
typhoonzero 已提交
1937

1938
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1939 1940 1941 1942 1943 1944
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1945
            persistable=persistable)
T
done  
typhoonzero 已提交
1946

Q
Qiao Longfei 已提交
1947 1948 1949 1950 1951 1952 1953
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1954
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1955 1956
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1957
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1958
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1959
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1960 1961
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1962
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1963 1964 1965 1966
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1967 1968 1969 1970
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1971
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1972
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1973 1974 1975 1976
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1977
                attrs={
Q
Qiao Longfei 已提交
1978
                    "sections": height_sections,
1979 1980
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1981 1982 1983
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1984

T
typhoonzero 已提交
1985 1986 1987 1988
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1989
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2002
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2003 2004
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2005 2006
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2007
                return param_shape
2008 2009 2010
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2011 2012 2013
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2014 2015
        elif op_type == "sgd":
            pass
2016 2017 2018 2019
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2020 2021
        return orig_shape

2022 2023
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2024
        orig_var_name = ""
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2035
        else:
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2058
            return None
2059 2060 2061 2062
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2063
        else:
2064
            merged_var_name = orig_varname
2065 2066

        merged_var = pserver_block.vars[merged_var_name]
2067 2068 2069
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2070
            for i in range(self.trainer_num):
2071
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2072
                                   (merged_var_name, i)
2073 2074 2075 2076
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2077 2078
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2079 2080 2081 2082 2083
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2084
        return merged_var
T
typhoonzero 已提交
2085

W
Wu Yi 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2148
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2149 2150
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2151
        program = optimize_block.program
T
typhoonzero 已提交
2152
        pserver_block = program.global_block()
2153
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2164 2165 2166 2167
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2168
        for key in opt_op.input_names:
T
typhoonzero 已提交
2169
            if key == "Grad":
W
Wu Yi 已提交
2170 2171 2172
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2183
            elif key == "Param":
W
Wu Yi 已提交
2184
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2185 2186
                if not param_block:
                    return
T
typhoonzero 已提交
2187
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2188
                    name=param_block.name,
T
typhoonzero 已提交
2189
                    persistable=True,
T
typhoonzero 已提交
2190 2191 2192
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2193
            elif key == "LearningRate":
2194
                # learning rate variable has already be created by non-optimize op,
2195
                # don't create it once again.
2196
                lr_varname = opt_op.input(key)[0]
2197
                if lr_varname in pserver_block.vars:
2198 2199 2200 2201 2202 2203 2204 2205 2206
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2207

T
typhoonzero 已提交
2208
        for key in opt_op.input_names:
2209
            new_shape = None
2210 2211 2212 2213
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2214
                continue
2215
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2216
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2217
            # update accumulator variable shape
2218 2219
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2220
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2221 2222 2223 2224 2225
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2226

2227
        # change output's ParamOut variable
2228 2229
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2230
        outputs["ParamOut"] = new_inputs["Param"]
2231
        optimize_block.append_op(
T
typhoonzero 已提交
2232 2233
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2234
            outputs=outputs,
G
gongweibao 已提交
2235
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2236

2237 2238 2239 2240 2241 2242
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2254
        grad_block = None
M
minqiyang 已提交
2255
        for _, g in six.iteritems(var_dict):
2256
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2257
                # skip per trainer vars
2258
                if g.name.find(".trainer_") == -1:
2259
                    # only param or grads have splited blocks
2260 2261
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2262 2263
                        grad_block = g
                        break
2264 2265
        return grad_block

Q
Qiyang Min 已提交
2266 2267 2268
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2269
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2270 2271 2272 2273
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2274
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2275 2276 2277

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2278
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2279 2280 2281 2282
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2283
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2284

Y
Yancey1989 已提交
2285
        return block.append_op(
G
gongweibao 已提交
2286
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2287 2288

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2289
        program = optimize_block.program
2290
        # Append the ops for parameters that do not need to be optimized/updated
2291 2292
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2293
        for key, varlist in six.iteritems(inputs):
2294 2295
            if not isinstance(varlist, list):
                varlist = [varlist]
2296 2297 2298
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2299
                # for inputs/outputs
2300
                grad_block = self._get_pserver_grad_param_var(
2301 2302
                    var, program.global_block().vars)
                if grad_block:
2303
                    varlist[i] = grad_block
2304
                elif var.name not in program.global_block().vars:
2305 2306 2307 2308 2309
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2310

2311 2312
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2313
        for key, varlist in six.iteritems(outputs):
2314 2315
            if not isinstance(varlist, list):
                varlist = [varlist]
2316 2317 2318
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2319 2320
                    var, program.global_block().vars)
                if grad_block:
2321
                    varlist[i] = grad_block
2322
                elif var.name not in program.global_block().vars:
2323 2324 2325 2326 2327
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2328

Y
Yancey1989 已提交
2329
        return optimize_block.append_op(
T
typhoonzero 已提交
2330
            type=opt_op.type,
T
typhoonzero 已提交
2331 2332
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2333
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2334

2335 2336 2337 2338
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2339
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2340
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2341 2342 2343 2344 2345 2346
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2347 2348
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2349 2350 2351 2352 2353 2354
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2355
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2356
        if "Param" in op.input_names and \
T
tangwei12 已提交
2357
                "LearningRate" in op.input_names:
2358 2359 2360 2361 2362 2363 2364
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2365
        if op.input("Param")[0] in param_names:
2366 2367 2368
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2369
                param = op.input("Param")[0]
T
typhoonzero 已提交
2370
                if same_or_split_var(n, param) and n != param:
2371 2372 2373
                    return True
            return False

T
typhoonzero 已提交
2374
    def _get_input_map_from_op(self, varmap, op):
2375
        """Returns a dict from op input name to the vars in varmap."""
2376
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2388
        """Returns a dict from op output name to the vars in varmap."""
2389
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2399 2400

    def _get_lr_ops(self):
2401 2402
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2403
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2404 2405 2406 2407
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2454 2455 2456 2457 2458
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2459 2460 2461 2462
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2463
            if self._is_optimizer_op(op):
2464 2465 2466 2467
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2468
        block = self.origin_program.global_block()
2469 2470 2471 2472 2473
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2474

2475 2476 2477 2478 2479
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2480
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2481 2482 2483 2484 2485 2486
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2487 2488
                    # we only need to append op for once
                    break
2489
        return lr_ops
Y
Yancey1989 已提交
2490

W
Wu Yi 已提交
2491 2492 2493 2494 2495
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2496 2497
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2498 2499 2500
            return True
        return False

Y
Yancey1989 已提交
2501
    def _get_optimize_pass(self):
2502
        """
2503
        Get optimizer operators, parameters and gradients from origin_program
2504 2505
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2506
            params_grads (dict): parameter->gradient.
2507
        """
Y
Yancey1989 已提交
2508 2509 2510
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2511 2512
        # tmp set to dedup
        optimize_params = set()
2513
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2514
        for op in block.ops:
W
Wu Yi 已提交
2515
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2516
                opt_ops.append(op)
2517 2518 2519 2520 2521 2522
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2523 2524
                        params_grads.append([
                            origin_var_dict[param_name],
2525
                            origin_var_dict[grad_name]
2526
                        ])
Y
Yancey1989 已提交
2527 2528 2529
            else:
                pass
        return opt_ops, params_grads