distribute_transpiler.py 87.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
Q
Qiao Longfei 已提交
159 160
    # split the send recv var in runtime
    runtime_split_send_recv = False
G
gongweibao 已提交
161 162


Y
gen rst  
yi.wu 已提交
163
class DistributeTranspiler(object):
Y
yi.wu 已提交
164 165 166 167
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
168
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
169

W
Wu Yi 已提交
170 171 172 173 174 175 176 177 178
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
179 180 181 182

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
196
                                                                pserver_program)
T
Tink_Y 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
211
    """
Y
Yancey1989 已提交
212

G
gongweibao 已提交
213 214 215 216 217 218 219 220 221
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

222 223 224
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
225 226 227
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
228 229 230 231
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
232 233
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
234 235 236 237 238 239
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
240 241
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
258
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
259
        sparse_update_ops = []
260
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
261 262
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
263
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
264 265 266
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
267
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
268
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
269 270 271
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
272
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
273
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
274 275 276 277 278 279 280
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
281

282 283 284 285 286
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
287
                  sync_mode=True,
W
Wu Yi 已提交
288 289
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
290
        """
Y
yi.wu 已提交
291 292 293 294 295 296 297
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
298 299
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
300 301
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
302 303 304
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
305
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
306 307
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
308 309 310
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
311 312 313
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
314 315
        if startup_program is None:
            startup_program = default_startup_program()
316
        self.origin_program = program
W
Wu Yi 已提交
317 318
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
319

W
Wu Yi 已提交
320 321
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
322
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
323 324 325 326
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
327 328
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
329 330
            return

331 332 333 334 335
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
336
        self.vars_overview = VarsDistributed()
337 338
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
339
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
340 341
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
342
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
343
        self.grad_name_to_param_name = dict()
344 345
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
346
            self.grad_name_to_param_name[grad_var.name] = param_var.name
347

Q
Qiao Longfei 已提交
348
        # get all sparse update ops
Q
Qiao Longfei 已提交
349
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
350
            self.origin_program)
Q
Qiao Longfei 已提交
351
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
352 353
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
354 355 356
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
357
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
358 359 360
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

361
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
362
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
363
        self._init_splited_vars()
364

G
gongweibao 已提交
365
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
366
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
367
        send_vars = []
368 369 370 371 372 373

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
374
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
375

G
gongweibao 已提交
376
        if not self.config.slice_var_up:
377 378
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
379

380
        self.grad_name_to_send_dummy_out = dict()
381
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
382
            eplist = ps_dispatcher.dispatch(splited_vars)
383

G
gongweibao 已提交
384
            if not self.config.slice_var_up:
385 386
                assert (len(splited_vars) == 1)

387
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
388
            if len(splited_vars) == 1:
389
                splited_grad_varname = splited_vars[0].name
390 391
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
392 393
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
394
                        grad_varname]
Q
Qiao Longfei 已提交
395 396 397 398
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
399
            elif len(splited_vars) > 1:
400
                orig_var = program.global_block().vars[splited_grad_varname]
401 402
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
403 404 405 406
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
407 408
            else:
                AssertionError("Can not insert the send op by original "
409
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
410

W
Wu Yi 已提交
411 412
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
413
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
414

Q
Qiao Longfei 已提交
415 416 417 418 419 420 421 422 423 424 425
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
426 427 428 429
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
430
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
431
                index=index + 1,
432
                type="send",
Q
Qiao Longfei 已提交
433
                inputs={"X": send_input_vars},
434
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
435 436
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
437 438
                    "sections": sections,
                    "send_varnames": send_varnames,
439
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
440 441 442 443
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
444
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
445
                })
Y
update  
Yancey1989 已提交
446 447
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
448 449

        if self.sync_mode:
W
Wu Yi 已提交
450 451
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
452 453 454 455
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
456
            input_deps = list(self.grad_name_to_send_dummy_out.values())
457

Y
Yancey1989 已提交
458 459
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
460
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
461
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
462 463
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
464 465
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
466
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
467
                })
Y
Yancey1989 已提交
468

G
gongweibao 已提交
469
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
470
        recv_vars = []
Y
update  
Yancey1989 已提交
471
        for _, var in enumerate(send_vars):
472
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
473
        ps_dispatcher.reset()
Y
Yancey1989 已提交
474 475
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
476
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
477 478
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
479

480 481 482 483
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
484
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
485
        all_recv_outputs = []
486
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
487
            eps = []
Q
Qiao Longfei 已提交
488
            table_names = []
Y
Yancey1989 已提交
489 490 491
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
492
                table_names.append(var.name)
W
Wu Yi 已提交
493 494 495 496
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
497
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
498
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
499

W
Wu Yi 已提交
500 501 502 503 504 505 506 507 508
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
509
            if param_varname in self.sparse_param_to_height_sections:
510 511 512 513 514 515

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
516 517
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
518 519
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
520
            else:
Q
Qiao Longfei 已提交
521 522 523
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
524
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
525
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
526
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
527

Q
Qiao Longfei 已提交
528 529 530 531 532 533
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
534
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
535 536 537 538 539 540
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
541

Q
qiaolongfei 已提交
542
        if self.sync_mode:
W
Wu Yi 已提交
543
            # form a WAW dependency
Q
qiaolongfei 已提交
544 545 546
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
547
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
548 549
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
550
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
551 552
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
553

554
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
555 556
            if len(splited_var) <= 1:
                continue
557
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
558
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
559 560 561 562 563 564 565 566 567
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
568

G
gongweibao 已提交
569 570
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

571
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
572 573
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
574
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
575

576 577 578
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
579
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
580 581 582 583 584 585
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
586
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
587
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
588

T
typhoonzero 已提交
589
        lr_ops = self._get_lr_ops()
590
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
591 592
        delete_ops(self.origin_program.global_block(), lr_ops)

593 594
        # delete table init op
        if self.has_distributed_lookup_table:
595 596 597
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
598 599
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
600 601 602 603 604
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
605
            table_init_op = table_param_init_op[0]
606 607 608 609 610 611
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
612

613
        self.origin_program.__str__()
G
gongweibao 已提交
614

W
Wu Yi 已提交
615 616 617
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

618
        return self.origin_program
T
typhoonzero 已提交
619

W
Wu Yi 已提交
620
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
621 622 623 624
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
625
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
626
            eplist (list): A list of strings indicating
G
gongweibao 已提交
627 628 629 630

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
631
        startup_program = self.startup_program
G
gongweibao 已提交
632 633 634 635

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
636
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
657
                inputs={"X": []},
G
gongweibao 已提交
658 659 660 661 662 663
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
664 665
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
666 667 668
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
669
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
670 671 672 673 674
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
675
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
676
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
677 678
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
679
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
680
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
681 682 683 684 685 686 687 688 689 690
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
691 692 693 694 695 696 697 698
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
699 700
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
701
        Get parameter server side program.
702

Y
yi.wu 已提交
703 704
        Args:
            endpoint (str): current parameter server endpoint.
705

Y
yi.wu 已提交
706 707
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
708
        """
Y
yi.wu 已提交
709 710 711 712
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
713 714 715
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
716 717
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
718
        pserver_program.random_seed = self.origin_program.random_seed
719 720
        pserver_program._copy_dist_param_info_from(self.origin_program)

721
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
722 723 724 725 726 727 728 729
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
730 731 732 733 734
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
735 736 737 738 739 740 741 742 743
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
744
            if self.sync_mode and self.trainer_num > 1:
745
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
746 747 748 749 750 751 752 753 754
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
755

Q
qiaolongfei 已提交
756
        # step 3
757
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
758 759 760
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
761
        # step 3.2
T
typhoonzero 已提交
762 763 764 765
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
766 767
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
768
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
769
        # step 3.3
W
Wu Yi 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
788
        # Iterate through the ops, and if an op and the optimize ops
789
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
790
        # append it into the sub program.
T
typhoonzero 已提交
791 792 793

        global_ops = []

794 795 796
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
797 798
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
799
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
800
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
801 802
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
803
            elif op not in lr_ops:
Q
Qiyang Min 已提交
804
                self._append_pserver_non_opt_ops(block, op)
805

Y
Yancey1989 已提交
806
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
807 808 809 810 811 812 813 814
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
815
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
816 817 818

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
819
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
820 821

            # clone ops
Y
Yancey1989 已提交
822 823
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
824
                # clone sub_block of op
Y
Yancey1989 已提交
825
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
826 827

            # reset the block of op
W
Wu Yi 已提交
828
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
829

830
        # append lr decay ops to the child block if exists
831
        lr_ops = self._get_lr_ops()
832 833
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
834
        if len(lr_ops) > 0:
W
Wu Yi 已提交
835
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
836
                pserver_program.num_blocks - 1)
837
            optimize_blocks.append(lr_decay_block)
838
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
839
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
840
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
841 842
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
843

T
typhoonzero 已提交
844
        # append op to the current block
Q
qiaolongfei 已提交
845
        grad_to_block_id = []
Q
qiaolongfei 已提交
846
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
847
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
848
            per_opt_block = pserver_program._create_block(pre_block_idx)
849
            optimize_blocks.append(per_opt_block)
850
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
851
            # append grad merging ops before clip and weight decay
852 853
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
854
            for _, op in enumerate(self.optimize_ops):
855
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
856
                # merged_var should be the input var name of L2Decay
857 858 859
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
860 861 862
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
863 864 865 866 867 868
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
869
                            op not in global_ops:
870 871 872 873 874
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
875

876
        # dedup grad to ids list
W
Wu Yi 已提交
877
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
878
        # append global ops
879
        if global_ops:
W
Wu Yi 已提交
880
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
881
                pserver_program.num_blocks - 1)
882
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
883
            for glb_op in global_ops:
X
Xi Chen 已提交
884
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
885
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
886

887
        # process distributed lookup_table
Q
qiaolongfei 已提交
888
        prefetch_var_name_to_block_id = []
889 890
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
891
            table_opt_block = self._create_table_optimize_block(
892
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
893
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
894
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
895
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
896 897
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
898

T
tangwei12 已提交
899
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
900 901
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
902

903
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
904 905
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
906 907 908 909 910 911
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
912
        attrs = {
913
            "optimize_blocks": optimize_blocks,
914 915 916
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
917
            "grad_to_block_id": grad_to_block_id,
918
            "sparse_grad_to_param": sparse_grad_to_param,
919
        }
T
tangwei12 已提交
920 921

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
922
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
923 924
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
925

T
tangwei12 已提交
926 927 928 929
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
930 931 932 933 934
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
935
            attrs=attrs)
936

W
Wu Yi 已提交
937
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
938 939
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
940 941
        return pserver_program

W
Wu Yi 已提交
942 943 944 945 946 947
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
948

W
Wu Yi 已提交
949 950 951 952
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
953 954
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
955 956
        return pserver_prog, pserver_startup

957 958
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
959
                            pserver_program=None,
960
                            startup_program=None):
T
typhoonzero 已提交
961
        """
W
Wu Yi 已提交
962 963
        **Deprecated**

T
typhoonzero 已提交
964 965 966
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
967 968 969

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
970 971
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
972
                when initalizing
973

Y
yi.wu 已提交
974 975
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
976 977
        """
        s_prog = Program()
W
Wu Yi 已提交
978
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
979
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
980 981 982 983 984 985 986 987 988 989 990
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
991
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
992
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
993
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
994 995 996 997
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
998
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
999 1000
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1011 1012

            if op_on_pserver:
1013 1014 1015
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1016 1017 1018
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1019
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1020 1021 1022 1023
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1024
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1034

T
typhoonzero 已提交
1035 1036
        return s_prog

1037 1038
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1039
        block_suffix = "block"
1040 1041 1042
        block_idx = 0
        offset = 0
        is_slice = False
1043

1044
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1045

1046 1047
        if not block_name:
            return is_slice, block_idx, offset
1048

1049 1050 1051 1052
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1053 1054 1055 1056 1057
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1121

Y
yi.wu 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1161
    def _init_splited_vars(self):
Y
yi.wu 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1185
        if self.config.slice_var_up:
Y
yi.wu 已提交
1186 1187
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1188 1189 1190
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1191
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1192 1193
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1194 1195 1196
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1197 1198 1199 1200
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1201 1202
        assert (len(grad_blocks) == len(param_blocks))

1203
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1204 1205
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1222
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1223 1224 1225 1226
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1227
        # dict(grad_splited_var -> param_splited_var)
1228
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1229 1230 1231
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1232
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1233
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1234 1235

        # create mapping of endpoint -> split var to create pserver side program
1236
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1246
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1247 1248
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1249
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1250
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1251 1252
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1253 1254
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1255 1256 1257 1258 1259 1260

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1261 1262
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1263
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1264 1265 1266
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1267 1268
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1269 1270
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1271 1272 1273
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1274
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1275
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1276 1277

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1278
                    self.all_out_emb_vars.append(out_var)
1279 1280

                    # delete lookup_table_op
1281
                    delete_ops(program.global_block(), [op])
1282 1283 1284
                    # break for loop
                    break

S
seiriosPlus 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1331
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1332
        # 2. add split_ids_op and send_op to send gradient to pservers
1333

1334 1335
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1336
        table_grad_name = grad_var_name(self.table_name)
1337 1338 1339 1340
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1341
                program.global_block()._insert_op(
1342 1343 1344 1345 1346
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1347 1348
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1349
                program.global_block()._insert_op(
1350
                    index=op_index + 2,
1351
                    type="send",
1352
                    inputs={'X': self.trainer_side_table_grad_list},
1353 1354 1355 1356 1357
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1358
                    attrs={
1359
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1360
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1361
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1362 1363 1364 1365 1366
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1367
                    })
1368 1369 1370 1371 1372 1373
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1374
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1400
        return prefetch_var_name_to_block_id
1401 1402

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1403
                                     pre_block_idx, grad_to_block_id):
1404
        # STEP: create table optimize block
1405
        table_opt_block = pserver_program._create_block(pre_block_idx)
1406
        # create table param and grad var in pserver program
1407 1408
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1409 1410
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1411 1412
        ][0]

Y
Yancey1989 已提交
1413 1414
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1415

T
tangwei12 已提交
1416
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1417 1418
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1419 1420 1421
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1422 1423
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1424
            shape=table_shape,
Y
Yancey1989 已提交
1425 1426 1427
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1428

1429 1430
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1431
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1432
            self.origin_program.global_block().vars[grad_var_name(
1433
                self.table_name)])
1434

1435 1436 1437
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1438

1439 1440 1441
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1442
            pserver_side_table_grad_list = [
1443 1444 1445 1446 1447 1448 1449 1450 1451
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1452
            # append sum op for pserver_side_table_grad_list
1453 1454
            table_opt_block.append_op(
                type="sum",
1455
                inputs={"X": pserver_side_table_grad_list},
1456 1457
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1458 1459
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1460
            origin_grad_name = grad_var.name
1461 1462
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1463 1464
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1465
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1466
            grad_var = pserver_program.global_block()._rename_var(
1467
                origin_grad_name, splited_grad_name)
1468 1469 1470 1471 1472 1473 1474

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1475
        # only support sgd now
1476 1477 1478
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1479
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1480

1481 1482 1483
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1484 1485
        return table_opt_block

T
tangwei12 已提交
1486 1487 1488 1489 1490
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1491
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1492
            name="kLookupTablePath",
T
tangwei12 已提交
1493 1494
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1495

W
Wu Yi 已提交
1496
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1497
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1498 1499 1500 1501
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1502
            attrs={'file_path': "none"})
T
tangwei12 已提交
1503 1504 1505

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1506 1507 1508 1509 1510
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1511
        Create vars for each split.
T
typhoonzero 已提交
1512 1513
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1514 1515 1516 1517
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1518
        Returns:
1519
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1520
                from original var name to each var split.
T
typhoonzero 已提交
1521
        """
1522 1523

        # varname->[(block_id, current_block_size)]
1524
        block_map = collections.OrderedDict()
1525

1526
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1527 1528
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1529
            if varname not in block_map:
T
typhoonzero 已提交
1530
                block_map[varname] = []
1531
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1532

M
minqiyang 已提交
1533
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1534
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1535
            if len(splited) == 1:
1536
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1537
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1538
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1539
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1540 1541 1542 1543 1544
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1545
                continue
T
typhoonzero 已提交
1546
            var_mapping[varname] = []
T
typhoonzero 已提交
1547 1548 1549 1550
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1551

T
typhoonzero 已提交
1552
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1553
                size = block[1]
M
minqiyang 已提交
1554
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1555 1556 1557
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1558
                new_var_name = ""
1559
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1560
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1561
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1562 1563
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1564
                                   (varname, i)
T
typhoonzero 已提交
1565
                var = program.global_block().create_var(
T
typhoonzero 已提交
1566 1567
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1568
                    dtype=orig_var.dtype,
1569
                    type=orig_var.type,
T
typhoonzero 已提交
1570
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1571
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1572
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1573
        return var_mapping
T
done  
typhoonzero 已提交
1574

1575
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1576 1577 1578 1579 1580 1581
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1582
            persistable=persistable)
T
done  
typhoonzero 已提交
1583

Q
Qiao Longfei 已提交
1584 1585 1586 1587 1588 1589 1590
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1591
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1592 1593
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1594
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1595
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1596
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1597 1598
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1599
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1600 1601 1602 1603
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1604 1605 1606 1607
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1608
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1609
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1610 1611 1612 1613
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1614
                attrs={
Q
Qiao Longfei 已提交
1615
                    "sections": height_sections,
1616 1617
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1618 1619 1620
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1621

T
typhoonzero 已提交
1622 1623 1624 1625
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1626
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1639
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1640 1641
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1642 1643
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1644
                return param_shape
1645 1646 1647
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1648 1649 1650
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1651 1652
        elif op_type == "sgd":
            pass
1653 1654 1655 1656
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1657 1658
        return orig_shape

1659 1660
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1661
        orig_var_name = ""
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1672
        else:
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1695
            return None
1696 1697 1698 1699
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1700
        else:
1701
            merged_var_name = orig_varname
1702 1703

        merged_var = pserver_block.vars[merged_var_name]
1704 1705 1706
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1707
            for i in range(self.trainer_num):
1708
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1709
                                   (merged_var_name, i)
1710 1711 1712 1713
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1714 1715
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1716 1717 1718 1719 1720
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1721
        return merged_var
T
typhoonzero 已提交
1722

W
Wu Yi 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1785
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1786 1787
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1788
        program = optimize_block.program
T
typhoonzero 已提交
1789
        pserver_block = program.global_block()
1790
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1801 1802 1803 1804
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1805
        for key in opt_op.input_names:
T
typhoonzero 已提交
1806
            if key == "Grad":
W
Wu Yi 已提交
1807 1808 1809
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1820
            elif key == "Param":
W
Wu Yi 已提交
1821
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1822 1823
                if not param_block:
                    return
T
typhoonzero 已提交
1824
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1825
                    name=param_block.name,
T
typhoonzero 已提交
1826
                    persistable=True,
T
typhoonzero 已提交
1827 1828 1829
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1830
            elif key == "LearningRate":
1831
                # learning rate variable has already be created by non-optimize op,
1832
                # don't create it once again.
1833
                lr_varname = opt_op.input(key)[0]
1834
                if lr_varname in pserver_block.vars:
1835 1836 1837 1838 1839 1840 1841 1842 1843
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1844

T
typhoonzero 已提交
1845
        for key in opt_op.input_names:
1846
            new_shape = None
W
Wu Yi 已提交
1847
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1848
                continue
1849
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1850
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1851
            # update accumulator variable shape
1852 1853
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1854
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1855 1856 1857 1858 1859
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1860

1861
        # change output's ParamOut variable
1862 1863
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1864
        outputs["ParamOut"] = new_inputs["Param"]
1865
        optimize_block.append_op(
T
typhoonzero 已提交
1866 1867
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1868
            outputs=outputs,
G
gongweibao 已提交
1869
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1870

1871 1872 1873 1874 1875 1876
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1888
        grad_block = None
M
minqiyang 已提交
1889
        for _, g in six.iteritems(var_dict):
1890
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1891
                # skip per trainer vars
1892
                if g.name.find(".trainer_") == -1:
1893
                    # only param or grads have splited blocks
1894 1895
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1896 1897
                        grad_block = g
                        break
1898 1899
        return grad_block

Q
Qiyang Min 已提交
1900 1901 1902
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1903
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1904 1905 1906 1907
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1908
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1909 1910 1911

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1912
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1913 1914 1915 1916
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1917
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1918

Y
Yancey1989 已提交
1919
        return block.append_op(
G
gongweibao 已提交
1920
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1921 1922

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1923
        program = optimize_block.program
1924
        # Append the ops for parameters that do not need to be optimized/updated
1925 1926
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1927
        for key, varlist in six.iteritems(inputs):
1928 1929
            if not isinstance(varlist, list):
                varlist = [varlist]
1930 1931 1932
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1933
                # for inputs/outputs
1934
                grad_block = self._get_pserver_grad_param_var(
1935 1936
                    var, program.global_block().vars)
                if grad_block:
1937
                    varlist[i] = grad_block
1938
                elif var.name not in program.global_block().vars:
1939 1940 1941 1942 1943
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1944

1945 1946
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1947
        for key, varlist in six.iteritems(outputs):
1948 1949
            if not isinstance(varlist, list):
                varlist = [varlist]
1950 1951 1952
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1953 1954
                    var, program.global_block().vars)
                if grad_block:
1955
                    varlist[i] = grad_block
1956
                elif var.name not in program.global_block().vars:
1957 1958 1959 1960 1961
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1962

Y
Yancey1989 已提交
1963
        return optimize_block.append_op(
T
typhoonzero 已提交
1964
            type=opt_op.type,
T
typhoonzero 已提交
1965 1966
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1967
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1968

1969 1970 1971 1972
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1973
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1974
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1975 1976 1977 1978 1979 1980
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1981 1982
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1983 1984 1985 1986 1987 1988
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1989
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1990
        if "Param" in op.input_names and \
T
tangwei12 已提交
1991
                "LearningRate" in op.input_names:
1992 1993 1994 1995 1996 1997 1998
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1999
        if op.input("Param")[0] in param_names:
2000 2001 2002
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2003
                param = op.input("Param")[0]
T
typhoonzero 已提交
2004
                if same_or_split_var(n, param) and n != param:
2005 2006 2007
                    return True
            return False

T
typhoonzero 已提交
2008
    def _get_input_map_from_op(self, varmap, op):
2009
        """Returns a dict from op input name to the vars in varmap."""
2010
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2022
        """Returns a dict from op output name to the vars in varmap."""
2023
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2033 2034

    def _get_lr_ops(self):
2035 2036 2037
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2038 2039 2040 2041
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2042 2043 2044 2045 2046
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2047 2048 2049 2050
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2051
            if self._is_optimizer_op(op):
2052 2053 2054 2055
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2056
        block = self.origin_program.global_block()
2057 2058 2059 2060 2061
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2062

2063 2064 2065 2066 2067
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2068
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2069 2070 2071 2072 2073 2074
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2075 2076
                    # we only need to append op for once
                    break
2077
        return lr_ops
Y
Yancey1989 已提交
2078

W
Wu Yi 已提交
2079 2080 2081 2082 2083
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2084 2085
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2086 2087 2088
            return True
        return False

Y
Yancey1989 已提交
2089
    def _get_optimize_pass(self):
2090
        """
2091
        Get optimizer operators, parameters and gradients from origin_program
2092 2093
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2094
            params_grads (dict): parameter->gradient.
2095
        """
Y
Yancey1989 已提交
2096 2097 2098
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2099 2100
        # tmp set to dedup
        optimize_params = set()
2101
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2102
        for op in block.ops:
W
Wu Yi 已提交
2103
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2104
                opt_ops.append(op)
2105 2106 2107 2108 2109 2110
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2111 2112
                        params_grads.append([
                            origin_var_dict[param_name],
2113
                            origin_var_dict[grad_name]
2114
                        ])
Y
Yancey1989 已提交
2115 2116 2117
            else:
                pass
        return opt_ops, params_grads