distribute_transpiler.py 93.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

149 150 151 152 153
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
154 155 156 157 158
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
159
    enable_dc_asgd = False
W
Wu Yi 已提交
160 161
    # supported modes: pserver, nccl2
    mode = "pserver"
162
    print_log = False
W
Wu Yi 已提交
163
    wait_port = True
Q
Qiao Longfei 已提交
164 165
    # split the send recv var in runtime
    runtime_split_send_recv = False
166
    sync_mode = True
G
gongweibao 已提交
167

168 169 170 171 172 173 174 175 176
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0
    #Nccl ranks bewteen nodes when use hierarchical allreduce, it's setted to nodes number.
    hierarchical_allreduce_exter_nranks = 0

G
gongweibao 已提交
177

Y
gen rst  
yi.wu 已提交
178
class DistributeTranspiler(object):
Y
yi.wu 已提交
179 180 181 182
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
183
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
184

W
Wu Yi 已提交
185 186 187 188 189 190 191 192 193
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205 206 207
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
208 209 210 211 212 213
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
214
            role = "PSERVER"
T
Tink_Y 已提交
215 216 217 218 219 220
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
221
                                                                pserver_program)
T
Tink_Y 已提交
222 223 224 225
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
226 227
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
228 229
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
230
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
231
            t = fluid.DistributeTranspiler(config=config)
232
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
233
            exe = fluid.ParallelExecutor(
234 235 236
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
237 238
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
239
    """
Y
Yancey1989 已提交
240

G
gongweibao 已提交
241 242 243 244 245 246 247 248 249
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

250 251 252
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
253 254 255
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
256 257 258 259
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
260 261
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
262 263 264 265 266 267
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
268 269
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
270 271 272

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
273 274 275 276 277 278 279 280 281

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
282 283 284 285
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
286 287 288 289 290
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
291 292 293 294 295
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
296 297 298 299 300 301 302
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
303 304 305 306 307
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
308
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
309
        sparse_update_ops = []
310
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
311 312
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
313
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
314 315 316
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
317
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
318
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
319 320 321
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
322
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
323
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
324 325 326 327 328 329 330
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
331

332 333 334 335 336
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
337
                  sync_mode=True,
W
Wu Yi 已提交
338 339
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
340
        """
341
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
342 343 344 345 346 347

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
348 349
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
350 351
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
352 353 354
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
355
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
356 357
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
358 359 360
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
361 362 363 364 365 366 367 368 369 370 371

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
372 373 374
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
375 376
        if startup_program is None:
            startup_program = default_startup_program()
377
        self.origin_program = program
W
Wu Yi 已提交
378 379
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
380

W
Wu Yi 已提交
381 382
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
383
            self.origin_program._trainers_endpoints = trainers.split(",")
384 385 386 387 388 389
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
            self.origin_program._hierarchical_allreduce_inter_nranks = \
                int(self.config.hierarchical_allreduce_inter_nranks)
            self.origin_program._hierarchical_allreduce_exter_nranks = \
                int(self.config.hierarchical_allreduce_exter_nranks)
W
Wu Yi 已提交
390 391 392 393
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
394 395
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
396 397
            return

398
        self.trainer_num = trainers
399
        self.sync_mode = sync_mode
400 401 402
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
403
        self.vars_overview = VarsDistributed()
404 405
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
406
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
407 408
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
409
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
410
        self.grad_name_to_param_name = dict()
411 412
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
413
            self.grad_name_to_param_name[grad_var.name] = param_var.name
414

Q
Qiao Longfei 已提交
415
        # get all sparse update ops
Q
Qiao Longfei 已提交
416
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
417
            self.origin_program)
Q
Qiao Longfei 已提交
418
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
419 420
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
421 422 423
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
424
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
425 426 427
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

428
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
429
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
430
        self._init_splited_vars()
431

G
gongweibao 已提交
432
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
433
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
434
        send_vars = []
435 436 437 438 439 440

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
441
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
442

G
gongweibao 已提交
443
        if not self.config.slice_var_up:
444 445
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
446

447
        self.grad_name_to_send_dummy_out = dict()
448
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
449
            eplist = ps_dispatcher.dispatch(splited_vars)
450

G
gongweibao 已提交
451
            if not self.config.slice_var_up:
452 453
                assert (len(splited_vars) == 1)

454
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
455
            if len(splited_vars) == 1:
456
                splited_grad_varname = splited_vars[0].name
457 458
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
459 460
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
461
                        grad_varname]
Q
Qiao Longfei 已提交
462 463 464 465
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
466
            elif len(splited_vars) > 1:
467
                orig_var = program.global_block().vars[splited_grad_varname]
468 469
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
470 471 472 473
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
474 475
            else:
                AssertionError("Can not insert the send op by original "
476
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
477

W
Wu Yi 已提交
478 479
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
480
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
481

Q
Qiao Longfei 已提交
482 483 484 485 486 487 488 489 490 491 492
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
493 494 495 496
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
497
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
498
                index=index + 1,
499
                type="send",
Q
Qiao Longfei 已提交
500
                inputs={"X": send_input_vars},
501
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
502 503
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
504 505
                    "sections": sections,
                    "send_varnames": send_varnames,
506
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
507 508 509 510
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
511
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
512
                })
Y
update  
Yancey1989 已提交
513 514
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
515 516

        if self.sync_mode:
W
Wu Yi 已提交
517 518
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
519 520 521 522
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
523
            input_deps = list(self.grad_name_to_send_dummy_out.values())
524

Y
Yancey1989 已提交
525 526
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
527
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
528
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
529 530
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
531 532
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
533
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
534
                })
Y
Yancey1989 已提交
535

G
gongweibao 已提交
536
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
537
        recv_vars = []
Y
update  
Yancey1989 已提交
538
        for _, var in enumerate(send_vars):
539
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
540
        ps_dispatcher.reset()
Y
Yancey1989 已提交
541 542
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
543
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
544 545
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
546

547 548 549 550
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
551
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
552
        all_recv_outputs = []
553
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
554
            eps = []
Q
Qiao Longfei 已提交
555
            table_names = []
Y
Yancey1989 已提交
556 557 558
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
559
                table_names.append(var.name)
W
Wu Yi 已提交
560 561 562 563
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
564
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
565
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
566

W
Wu Yi 已提交
567 568 569 570 571 572 573 574 575
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
576
            if param_varname in self.sparse_param_to_height_sections:
577 578 579 580 581 582

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
583 584
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
585 586
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
587
            else:
Q
Qiao Longfei 已提交
588 589 590
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
591
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
592
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
593
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
594

Q
Qiao Longfei 已提交
595 596 597 598 599 600
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
601
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
602 603 604 605 606 607
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
608

Q
qiaolongfei 已提交
609
        if self.sync_mode:
W
Wu Yi 已提交
610
            # form a WAW dependency
Q
qiaolongfei 已提交
611 612 613
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
614
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
615 616
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
617
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
618 619
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
620

621
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
622 623
            if len(splited_var) <= 1:
                continue
624
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
625
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
626 627 628 629 630 631 632 633 634
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
635

G
gongweibao 已提交
636 637
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

638
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
639 640
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
641
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
642

643 644 645
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
646
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
647 648 649 650 651
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
652 653 654 655 656 657 658 659 660 661 662 663

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
664
        """
T
typhoonzero 已提交
665
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
666
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
667

T
typhoonzero 已提交
668
        lr_ops = self._get_lr_ops()
669
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
670 671
        delete_ops(self.origin_program.global_block(), lr_ops)

672 673
        # delete table init op
        if self.has_distributed_lookup_table:
674 675 676
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
677 678
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
679 680 681 682 683
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
684
            table_init_op = table_param_init_op[0]
685 686 687 688 689 690
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
691

692
        self.origin_program.__str__()
G
gongweibao 已提交
693

W
Wu Yi 已提交
694 695 696
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

697
        return self.origin_program
T
typhoonzero 已提交
698

W
Wu Yi 已提交
699
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
700 701 702 703
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
704
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
705
            eplist (list): A list of strings indicating
G
gongweibao 已提交
706 707 708 709

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
710
        startup_program = self.startup_program
G
gongweibao 已提交
711 712 713 714

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
715
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
736
                inputs={"X": []},
G
gongweibao 已提交
737 738 739
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
740
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
741 742 743
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
744 745
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
746 747 748
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
749
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
750 751
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
752
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
753 754 755
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
756
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
757
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
758 759
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
760
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
761
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
762 763 764 765 766 767 768 769 770 771
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
772 773 774 775 776 777 778 779
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
780 781
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
782
        Get parameter server side program.
783

Y
yi.wu 已提交
784 785
        Args:
            endpoint (str): current parameter server endpoint.
786

Y
yi.wu 已提交
787 788
        Returns:
            Program: the program for current parameter server to run.
789 790 791 792 793 794 795 796 797 798 799 800 801 802

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
803
        """
Y
yi.wu 已提交
804 805 806 807
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
808 809 810
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
811 812
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
813
        pserver_program.random_seed = self.origin_program.random_seed
814 815
        pserver_program._copy_dist_param_info_from(self.origin_program)

816
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
817 818 819 820 821 822 823 824
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
825 826 827 828 829
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
830 831 832 833 834 835 836 837 838
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
839
            if self.sync_mode and self.trainer_num > 1:
840
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
841 842 843 844 845 846 847 848 849
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
850

Q
qiaolongfei 已提交
851
        # step 3
852
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
853 854 855
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
856
        # step 3.2
T
typhoonzero 已提交
857 858 859 860
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
861 862
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
863
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
864
        # step 3.3
W
Wu Yi 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
883
        # Iterate through the ops, and if an op and the optimize ops
884
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
885
        # append it into the sub program.
T
typhoonzero 已提交
886 887 888

        global_ops = []

889 890 891
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
892 893
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
894
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
895
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
896 897
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
898
            elif op not in lr_ops:
Q
Qiyang Min 已提交
899
                self._append_pserver_non_opt_ops(block, op)
900

Y
Yancey1989 已提交
901
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
902 903 904 905 906 907 908 909
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
910
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
911 912 913

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
914
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
915 916

            # clone ops
Y
Yancey1989 已提交
917 918
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
919
                # clone sub_block of op
Y
Yancey1989 已提交
920
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
921 922

            # reset the block of op
W
Wu Yi 已提交
923
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
924

925
        # append lr decay ops to the child block if exists
926
        lr_ops = self._get_lr_ops()
927 928
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
929
        if len(lr_ops) > 0:
W
Wu Yi 已提交
930
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
931
                pserver_program.num_blocks - 1)
932
            optimize_blocks.append(lr_decay_block)
933
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
934
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
935
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
936 937
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
938

T
typhoonzero 已提交
939
        # append op to the current block
Q
qiaolongfei 已提交
940
        grad_to_block_id = []
Q
qiaolongfei 已提交
941
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
942
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
943
            per_opt_block = pserver_program._create_block(pre_block_idx)
944
            optimize_blocks.append(per_opt_block)
945
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
946
            # append grad merging ops before clip and weight decay
947 948
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
949
            for _, op in enumerate(self.optimize_ops):
950
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
951
                # merged_var should be the input var name of L2Decay
952 953 954
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
955 956 957
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
958 959 960 961 962 963
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
964
                            op not in global_ops:
965 966 967 968 969
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
970

971
        # dedup grad to ids list
W
Wu Yi 已提交
972
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
973
        # append global ops
974
        if global_ops:
W
Wu Yi 已提交
975
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
976
                pserver_program.num_blocks - 1)
977
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
978
            for glb_op in global_ops:
X
Xi Chen 已提交
979
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
980
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
981

982
        # process distributed lookup_table
Q
qiaolongfei 已提交
983
        prefetch_var_name_to_block_id = []
984 985
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
986
            table_opt_block = self._create_table_optimize_block(
987
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
988
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
989
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
990
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
991 992
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
993

T
tangwei12 已提交
994
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
995 996
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
997

998
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
999 1000
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1001 1002 1003 1004 1005 1006
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1007
        attrs = {
1008
            "optimize_blocks": optimize_blocks,
1009 1010 1011
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1012
            "grad_to_block_id": grad_to_block_id,
1013
            "sparse_grad_to_param": sparse_grad_to_param,
1014
        }
T
tangwei12 已提交
1015 1016

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1017
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1018 1019
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1020

T
tangwei12 已提交
1021 1022 1023 1024
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1025 1026 1027 1028 1029
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1030
            attrs=attrs)
1031

W
Wu Yi 已提交
1032
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1033 1034
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1035 1036
        return pserver_program

W
Wu Yi 已提交
1037 1038 1039 1040 1041 1042
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1043

W
Wu Yi 已提交
1044 1045
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1060 1061
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1062 1063
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1064 1065
        return pserver_prog, pserver_startup

1066 1067
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1068
                            pserver_program=None,
1069
                            startup_program=None):
T
typhoonzero 已提交
1070
        """
W
Wu Yi 已提交
1071 1072
        **Deprecated**

T
typhoonzero 已提交
1073 1074 1075
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1076 1077 1078

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1079 1080
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1081
                when initalizing
1082

Y
yi.wu 已提交
1083 1084
        Returns:
            Program: parameter server side startup program.
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1100 1101
        """
        s_prog = Program()
W
Wu Yi 已提交
1102
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1103
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1115
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1116
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1117
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1118 1119 1120 1121
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1122
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1123 1124
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1135 1136

            if op_on_pserver:
1137 1138 1139
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1140
                if op.type in [
1141 1142
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1143
                ]:
W
Wu Yi 已提交
1144
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1145 1146 1147 1148
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1149
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1159

T
typhoonzero 已提交
1160 1161
        return s_prog

1162 1163
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1164
        block_suffix = "block"
1165 1166 1167
        block_idx = 0
        offset = 0
        is_slice = False
1168

1169
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1170

1171 1172
        if not block_name:
            return is_slice, block_idx, offset
1173

1174 1175 1176 1177
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1178 1179 1180 1181 1182
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1246

Y
yi.wu 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1286
    def _init_splited_vars(self):
Y
yi.wu 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1310
        if self.config.slice_var_up:
Y
yi.wu 已提交
1311 1312
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1313 1314 1315
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1316
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1317 1318
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1319 1320 1321
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1322 1323 1324 1325
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1326 1327
        assert (len(grad_blocks) == len(param_blocks))

1328
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1329 1330
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1347
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1348 1349 1350 1351
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1352
        # dict(grad_splited_var -> param_splited_var)
1353
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1354 1355 1356
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1357
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1358
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1359 1360

        # create mapping of endpoint -> split var to create pserver side program
1361
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1371
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1372 1373
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1374
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1375
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1376 1377
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1378 1379
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1380 1381 1382 1383 1384 1385

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1386 1387
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1388
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1389 1390 1391
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1392 1393
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1394 1395
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1396 1397 1398
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1399
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1400
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1401 1402

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1403
                    self.all_out_emb_vars.append(out_var)
1404 1405

                    # delete lookup_table_op
1406
                    delete_ops(program.global_block(), [op])
1407 1408 1409
                    # break for loop
                    break

S
seiriosPlus 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1456
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1457
        # 2. add split_ids_op and send_op to send gradient to pservers
1458

1459 1460
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1461
        table_grad_name = grad_var_name(self.table_name)
1462 1463 1464 1465
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1466
                program.global_block()._insert_op(
1467 1468 1469 1470 1471
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1472 1473
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1474
                program.global_block()._insert_op(
1475
                    index=op_index + 2,
1476
                    type="send",
1477
                    inputs={'X': self.trainer_side_table_grad_list},
1478 1479 1480 1481 1482
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1483
                    attrs={
1484
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1485
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1486
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1487 1488 1489 1490 1491
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1492
                    })
1493 1494 1495 1496 1497 1498
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1499
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1525
        return prefetch_var_name_to_block_id
1526 1527

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1528
                                     pre_block_idx, grad_to_block_id):
1529
        # STEP: create table optimize block
1530
        table_opt_block = pserver_program._create_block(pre_block_idx)
1531
        # create table param and grad var in pserver program
1532 1533
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1534 1535 1536
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1537 1538
        ][0]

Y
Yancey1989 已提交
1539 1540
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1541

T
tangwei12 已提交
1542
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1543 1544
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1545 1546 1547
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1548 1549
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1550
            shape=table_shape,
Y
Yancey1989 已提交
1551 1552 1553
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1554

1555 1556
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1557
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1558
            self.origin_program.global_block().vars[grad_var_name(
1559
                self.table_name)])
1560

1561 1562 1563
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1564

1565 1566 1567
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1568
            pserver_side_table_grad_list = [
1569 1570 1571 1572 1573 1574 1575 1576 1577
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1578
            # append sum op for pserver_side_table_grad_list
1579 1580
            table_opt_block.append_op(
                type="sum",
1581
                inputs={"X": pserver_side_table_grad_list},
1582 1583
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1584 1585
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1586
            origin_grad_name = grad_var.name
1587 1588
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1589 1590
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1591
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1592
            grad_var = pserver_program.global_block()._rename_var(
1593
                origin_grad_name, splited_grad_name)
1594 1595 1596 1597 1598 1599 1600

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1601
        # only support sgd now
1602 1603 1604
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1605
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1606

1607 1608 1609
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1610 1611
        return table_opt_block

T
tangwei12 已提交
1612 1613 1614 1615 1616
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1617
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1618
            name="kLookupTablePath",
T
tangwei12 已提交
1619 1620
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1621

W
Wu Yi 已提交
1622
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1623
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1624 1625 1626 1627
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1628
            attrs={'file_path': "none"})
T
tangwei12 已提交
1629 1630 1631

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1632 1633 1634 1635 1636
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1637
        Create vars for each split.
T
typhoonzero 已提交
1638 1639
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1640 1641 1642 1643
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1644
        Returns:
1645
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1646
                from original var name to each var split.
T
typhoonzero 已提交
1647
        """
1648 1649

        # varname->[(block_id, current_block_size)]
1650
        block_map = collections.OrderedDict()
1651

1652
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1653 1654
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1655
            if varname not in block_map:
T
typhoonzero 已提交
1656
                block_map[varname] = []
1657
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1658

M
minqiyang 已提交
1659
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1660
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1661
            if len(splited) == 1:
1662
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1663
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1664
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1665
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1666 1667 1668 1669 1670
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1671
                continue
T
typhoonzero 已提交
1672
            var_mapping[varname] = []
T
typhoonzero 已提交
1673 1674 1675 1676
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1677

T
typhoonzero 已提交
1678
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1679
                size = block[1]
M
minqiyang 已提交
1680
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1681 1682 1683
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1684
                new_var_name = ""
1685
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1686
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1687
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1688 1689
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1690
                                   (varname, i)
T
typhoonzero 已提交
1691
                var = program.global_block().create_var(
T
typhoonzero 已提交
1692 1693
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1694
                    dtype=orig_var.dtype,
1695
                    type=orig_var.type,
T
typhoonzero 已提交
1696
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1697
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1698
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1699
        return var_mapping
T
done  
typhoonzero 已提交
1700

1701
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1702 1703 1704 1705 1706 1707
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1708
            persistable=persistable)
T
done  
typhoonzero 已提交
1709

Q
Qiao Longfei 已提交
1710 1711 1712 1713 1714 1715 1716
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1717
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1718 1719
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1720
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1721
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1722
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1723 1724
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1725
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1726 1727 1728 1729
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1730 1731 1732 1733
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1734
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1735
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1736 1737 1738 1739
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1740
                attrs={
Q
Qiao Longfei 已提交
1741
                    "sections": height_sections,
1742 1743
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1744 1745 1746
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1747

T
typhoonzero 已提交
1748 1749 1750 1751
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1752
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1765
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1766 1767
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1768 1769
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1770
                return param_shape
1771 1772 1773
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1774 1775 1776
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1777 1778
        elif op_type == "sgd":
            pass
1779 1780 1781 1782
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1783 1784
        return orig_shape

1785 1786
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1787
        orig_var_name = ""
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1798
        else:
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1821
            return None
1822 1823 1824 1825
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1826
        else:
1827
            merged_var_name = orig_varname
1828 1829

        merged_var = pserver_block.vars[merged_var_name]
1830 1831 1832
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1833
            for i in range(self.trainer_num):
1834
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1835
                                   (merged_var_name, i)
1836 1837 1838 1839
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1840 1841
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1842 1843 1844 1845 1846
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1847
        return merged_var
T
typhoonzero 已提交
1848

W
Wu Yi 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1911
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1912 1913
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1914
        program = optimize_block.program
T
typhoonzero 已提交
1915
        pserver_block = program.global_block()
1916
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1927 1928 1929 1930
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1931
        for key in opt_op.input_names:
T
typhoonzero 已提交
1932
            if key == "Grad":
W
Wu Yi 已提交
1933 1934 1935
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1946
            elif key == "Param":
W
Wu Yi 已提交
1947
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1948 1949
                if not param_block:
                    return
T
typhoonzero 已提交
1950
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1951
                    name=param_block.name,
T
typhoonzero 已提交
1952
                    persistable=True,
T
typhoonzero 已提交
1953 1954 1955
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1956
            elif key == "LearningRate":
1957
                # learning rate variable has already be created by non-optimize op,
1958
                # don't create it once again.
1959
                lr_varname = opt_op.input(key)[0]
1960
                if lr_varname in pserver_block.vars:
1961 1962 1963 1964 1965 1966 1967 1968 1969
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1970

T
typhoonzero 已提交
1971
        for key in opt_op.input_names:
1972
            new_shape = None
W
Wu Yi 已提交
1973
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1974
                continue
1975
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1976
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1977
            # update accumulator variable shape
1978 1979
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1980
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1981 1982 1983 1984 1985
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1986

1987
        # change output's ParamOut variable
1988 1989
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1990
        outputs["ParamOut"] = new_inputs["Param"]
1991
        optimize_block.append_op(
T
typhoonzero 已提交
1992 1993
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1994
            outputs=outputs,
G
gongweibao 已提交
1995
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1996

1997 1998 1999 2000 2001 2002
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2014
        grad_block = None
M
minqiyang 已提交
2015
        for _, g in six.iteritems(var_dict):
2016
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2017
                # skip per trainer vars
2018
                if g.name.find(".trainer_") == -1:
2019
                    # only param or grads have splited blocks
2020 2021
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2022 2023
                        grad_block = g
                        break
2024 2025
        return grad_block

Q
Qiyang Min 已提交
2026 2027 2028
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2029
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2030 2031 2032 2033
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2034
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2035 2036 2037

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2038
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2039 2040 2041 2042
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2043
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2044

Y
Yancey1989 已提交
2045
        return block.append_op(
G
gongweibao 已提交
2046
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2047 2048

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2049
        program = optimize_block.program
2050
        # Append the ops for parameters that do not need to be optimized/updated
2051 2052
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2053
        for key, varlist in six.iteritems(inputs):
2054 2055
            if not isinstance(varlist, list):
                varlist = [varlist]
2056 2057 2058
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2059
                # for inputs/outputs
2060
                grad_block = self._get_pserver_grad_param_var(
2061 2062
                    var, program.global_block().vars)
                if grad_block:
2063
                    varlist[i] = grad_block
2064
                elif var.name not in program.global_block().vars:
2065 2066 2067 2068 2069
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2070

2071 2072
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2073
        for key, varlist in six.iteritems(outputs):
2074 2075
            if not isinstance(varlist, list):
                varlist = [varlist]
2076 2077 2078
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2079 2080
                    var, program.global_block().vars)
                if grad_block:
2081
                    varlist[i] = grad_block
2082
                elif var.name not in program.global_block().vars:
2083 2084 2085 2086 2087
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2088

Y
Yancey1989 已提交
2089
        return optimize_block.append_op(
T
typhoonzero 已提交
2090
            type=opt_op.type,
T
typhoonzero 已提交
2091 2092
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2093
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2094

2095 2096 2097 2098
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2099
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2100
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2101 2102 2103 2104 2105 2106
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2107 2108
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2109 2110 2111 2112 2113 2114
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2115
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2116
        if "Param" in op.input_names and \
T
tangwei12 已提交
2117
                "LearningRate" in op.input_names:
2118 2119 2120 2121 2122 2123 2124
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2125
        if op.input("Param")[0] in param_names:
2126 2127 2128
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2129
                param = op.input("Param")[0]
T
typhoonzero 已提交
2130
                if same_or_split_var(n, param) and n != param:
2131 2132 2133
                    return True
            return False

T
typhoonzero 已提交
2134
    def _get_input_map_from_op(self, varmap, op):
2135
        """Returns a dict from op input name to the vars in varmap."""
2136
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2148
        """Returns a dict from op output name to the vars in varmap."""
2149
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2159 2160

    def _get_lr_ops(self):
2161 2162 2163
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2164 2165 2166 2167
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2168 2169 2170 2171 2172
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2173 2174 2175 2176
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2177
            if self._is_optimizer_op(op):
2178 2179 2180 2181
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2182
        block = self.origin_program.global_block()
2183 2184 2185 2186 2187
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2188

2189 2190 2191 2192 2193
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2194
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2195 2196 2197 2198 2199 2200
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2201 2202
                    # we only need to append op for once
                    break
2203
        return lr_ops
Y
Yancey1989 已提交
2204

W
Wu Yi 已提交
2205 2206 2207 2208 2209
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2210 2211
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2212 2213 2214
            return True
        return False

Y
Yancey1989 已提交
2215
    def _get_optimize_pass(self):
2216
        """
2217
        Get optimizer operators, parameters and gradients from origin_program
2218 2219
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2220
            params_grads (dict): parameter->gradient.
2221
        """
Y
Yancey1989 已提交
2222 2223 2224
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2225 2226
        # tmp set to dedup
        optimize_params = set()
2227
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2228
        for op in block.ops:
W
Wu Yi 已提交
2229
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2230
                opt_ops.append(op)
2231 2232 2233 2234 2235 2236
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2237 2238
                        params_grads.append([
                            origin_var_dict[param_name],
2239
                            origin_var_dict[grad_name]
2240
                        ])
Y
Yancey1989 已提交
2241 2242 2243
            else:
                pass
        return opt_ops, params_grads