distribute_transpiler.py 99.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165
    # split the send recv var in runtime
166 167
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

176
    # if mode is collective
177
    # supported modes: grad_allreduce, local_sgd
178 179
    collective_mode = None

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
211

Y
gen rst  
yi.wu 已提交
212
class DistributeTranspiler(object):
Y
yi.wu 已提交
213 214 215 216
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
217
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
218

W
Wu Yi 已提交
219 220 221 222 223 224 225 226 227
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
228 229 230 231

    Examples:
        .. code-block:: python

232 233 234 235 236 237 238 239 240 241
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
242 243 244 245 246 247
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
248
            role = "PSERVER"
T
Tink_Y 已提交
249 250 251 252 253 254
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
255
                                                                pserver_program)
T
Tink_Y 已提交
256 257 258 259
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
260 261
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
262 263
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
264
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
265
            t = fluid.DistributeTranspiler(config=config)
266
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
267
            exe = fluid.ParallelExecutor(
268 269 270
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
271 272
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
273
    """
Y
Yancey1989 已提交
274

G
gongweibao 已提交
275 276 277 278 279 280 281 282 283
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

284 285 286
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
287 288 289
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
290 291 292 293
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
294 295
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
296 297 298 299 300 301
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
302 303
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
304 305 306

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
307 308 309 310 311 312 313 314 315

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
316 317 318 319
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
320 321 322 323 324
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
325 326 327 328 329
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
330 331 332 333 334 335 336
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
337 338 339 340 341
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
368
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
369
        elif collective_mode == 'local_sgd':
370
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
371 372 373 374 375 376 377 378 379 380 381
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
382
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
383
        sparse_update_ops = []
384
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
385 386
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
387
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
388 389 390
                sparse_update_ops.append(op)
        return sparse_update_ops

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
466

467 468
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
469 470 471 472 473 474

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
475

476 477 478 479 480
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
481
                  sync_mode=True,
W
Wu Yi 已提交
482 483
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
484
        """
485
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
486 487 488 489 490 491

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
492 493
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
494 495
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
496 497 498
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
499
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
500 501
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
502 503 504
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
505 506 507 508 509 510 511 512 513 514 515

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
516 517 518
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
519 520
        if startup_program is None:
            startup_program = default_startup_program()
521
        self.origin_program = program
W
Wu Yi 已提交
522 523
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
524

W
Wu Yi 已提交
525 526
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
527
            self.origin_program._trainers_endpoints = trainers.split(",")
528 529
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
530 531 532 533 534
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
535
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
536 537 538 539 540 541 542 543 544 545 546
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
547 548 549 550
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
551 552
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
553 554
            return

555 556 557 558 559 560 561 562 563 564 565
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

566
        self.trainer_num = trainers
567
        self.sync_mode = sync_mode
568 569 570
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
571
        self.vars_overview = VarsDistributed()
572 573
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
574
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
575 576
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
577
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
578
        self.grad_name_to_param_name = dict()
579 580
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
581
            self.grad_name_to_param_name[grad_var.name] = param_var.name
582

Q
Qiao Longfei 已提交
583
        # get all sparse update ops
Q
Qiao Longfei 已提交
584
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
585
            self.origin_program)
Q
Qiao Longfei 已提交
586
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
587 588
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
589 590 591
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
592
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
593 594 595
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

596
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
597
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
598
        self._init_splited_vars()
599

G
gongweibao 已提交
600
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
601
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
602
        send_vars = []
603 604 605 606 607 608

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
609
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
610

G
gongweibao 已提交
611
        if not self.config.slice_var_up:
612 613
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
614

615
        self.grad_name_to_send_dummy_out = dict()
616
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
617
            eplist = ps_dispatcher.dispatch(splited_vars)
618

G
gongweibao 已提交
619
            if not self.config.slice_var_up:
620 621
                assert (len(splited_vars) == 1)

622
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
623
            if len(splited_vars) == 1:
624
                splited_grad_varname = splited_vars[0].name
625 626
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
627

Y
Yancey1989 已提交
628
            elif len(splited_vars) > 1:
629
                orig_var = program.global_block().vars[splited_grad_varname]
630 631
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
632

Q
Qiao Longfei 已提交
633 634 635 636
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
637 638
            else:
                AssertionError("Can not insert the send op by original "
639
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
640

641 642 643 644 645 646 647
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
648 649
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
650
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
651

Q
Qiao Longfei 已提交
652 653 654 655 656 657 658 659 660 661 662
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
663 664 665 666
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
667
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
668
                index=index + 1,
669
                type="send",
Q
Qiao Longfei 已提交
670
                inputs={"X": send_input_vars},
671
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
672 673
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
674 675
                    "sections": sections,
                    "send_varnames": send_varnames,
676
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
677 678 679
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
680
                    ]
Y
Yancey1989 已提交
681
                })
Y
update  
Yancey1989 已提交
682 683
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
684 685

        if self.sync_mode:
W
Wu Yi 已提交
686 687
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
688 689 690 691
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
692
            input_deps = list(self.grad_name_to_send_dummy_out.values())
693

Y
Yancey1989 已提交
694 695
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
696
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
697
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
698 699
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
700
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
701
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
702
                })
Y
Yancey1989 已提交
703

G
gongweibao 已提交
704
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
705
        recv_vars = []
Y
update  
Yancey1989 已提交
706
        for _, var in enumerate(send_vars):
707
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
708
        ps_dispatcher.reset()
Y
Yancey1989 已提交
709 710
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
711
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
712 713
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
714

715 716 717 718
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

719 720
        need_sparse_update_params = {}

Y
Yancey1989 已提交
721
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
722
        all_recv_outputs = []
723
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
724
            eps = []
Q
Qiao Longfei 已提交
725
            table_names = []
Y
Yancey1989 已提交
726 727 728
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
729
                table_names.append(var.name)
W
Wu Yi 已提交
730 731 732 733
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
734
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
735
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
736

W
Wu Yi 已提交
737 738 739 740 741 742 743 744 745
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
746
            if param_varname in self.sparse_param_to_height_sections:
747 748 749 750 751
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

752
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
753
            else:
Q
Qiao Longfei 已提交
754 755 756
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
757
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
758
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
759
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
760

Q
Qiao Longfei 已提交
761 762 763 764 765 766
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
767
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
768 769 770
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
771
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
772
                    })
T
typhoonzero 已提交
773

Q
qiaolongfei 已提交
774
        if self.sync_mode:
W
Wu Yi 已提交
775
            # form a WAW dependency
Q
qiaolongfei 已提交
776 777 778
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
779
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
780 781
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
782
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
783 784
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
785

786
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
787 788
            if len(splited_var) <= 1:
                continue
789
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
790
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
791 792 793 794 795 796 797 798 799
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
800

801 802 803
            self._update_remote_sparse_update_op(program,
                                                 need_sparse_update_params)

G
gongweibao 已提交
804 805
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

806
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
807 808
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
809
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
810

811 812 813
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
814
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
815 816 817 818 819
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
820 821 822 823 824 825 826 827 828 829 830 831

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
832
        """
T
typhoonzero 已提交
833
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
834
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
835

T
typhoonzero 已提交
836
        lr_ops = self._get_lr_ops()
837
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
838 839
        delete_ops(self.origin_program.global_block(), lr_ops)

840 841
        # delete table init op
        if self.has_distributed_lookup_table:
842 843 844
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
845 846
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
847 848 849 850 851
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
852
            table_init_op = table_param_init_op[0]
853 854 855 856 857 858
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
859

860
        self.origin_program.__str__()
G
gongweibao 已提交
861

W
Wu Yi 已提交
862 863 864
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

865
        return self.origin_program
T
typhoonzero 已提交
866

W
Wu Yi 已提交
867
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
868 869 870 871
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
872
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
873
            eplist (list): A list of strings indicating
G
gongweibao 已提交
874 875 876 877

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
878
        startup_program = self.startup_program
G
gongweibao 已提交
879 880 881 882

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
883
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
904
                inputs={"X": []},
G
gongweibao 已提交
905 906 907
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
908
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
909 910 911
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
912 913
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
914 915 916
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
917
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
918 919
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
920
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
921 922 923
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
924
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
925
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
926 927
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
928
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
929
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
930 931 932 933 934 935 936 937 938 939
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
940 941 942 943 944 945 946 947
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
948 949
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
950
        Get parameter server side program.
951

Y
yi.wu 已提交
952 953
        Args:
            endpoint (str): current parameter server endpoint.
954

Y
yi.wu 已提交
955 956
        Returns:
            Program: the program for current parameter server to run.
957 958 959 960 961 962 963 964 965 966 967 968 969 970

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
971
        """
Y
yi.wu 已提交
972 973 974 975
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
976 977 978
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
979 980
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
981
        pserver_program.random_seed = self.origin_program.random_seed
982 983
        pserver_program._copy_dist_param_info_from(self.origin_program)

984
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
985 986 987 988 989 990 991 992
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
993 994 995 996 997
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
998 999 1000 1001 1002 1003 1004 1005 1006
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1007
            if self.sync_mode and self.trainer_num > 1:
1008
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1018

Q
qiaolongfei 已提交
1019
        # step 3
1020
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1021 1022 1023
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1024
        # step 3.2
T
typhoonzero 已提交
1025 1026 1027 1028
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1029 1030
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1031
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1032
        # step 3.3
W
Wu Yi 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1051
        # Iterate through the ops, and if an op and the optimize ops
1052
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1053
        # append it into the sub program.
T
typhoonzero 已提交
1054 1055 1056

        global_ops = []

1057 1058 1059
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1060 1061
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1062
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1063
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1064 1065
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1066
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1067
                self._append_pserver_non_opt_ops(block, op)
1068

Y
Yancey1989 已提交
1069
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1070 1071 1072 1073 1074 1075 1076 1077
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1078
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1079 1080 1081

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1082
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1083 1084

            # clone ops
Y
Yancey1989 已提交
1085 1086
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1087
                # clone sub_block of op
Y
Yancey1989 已提交
1088
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1089 1090

            # reset the block of op
W
Wu Yi 已提交
1091
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1092

1093
        # append lr decay ops to the child block if exists
1094
        lr_ops = self._get_lr_ops()
1095 1096
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1097
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1098
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1099
                pserver_program.num_blocks - 1)
1100
            optimize_blocks.append(lr_decay_block)
1101
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1102
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1103
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1104 1105
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1106

T
typhoonzero 已提交
1107
        # append op to the current block
Q
qiaolongfei 已提交
1108
        grad_to_block_id = []
Q
qiaolongfei 已提交
1109
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1110
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1111
            per_opt_block = pserver_program._create_block(pre_block_idx)
1112
            optimize_blocks.append(per_opt_block)
1113
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1114
            # append grad merging ops before clip and weight decay
1115 1116
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1117
            for _, op in enumerate(self.optimize_ops):
1118
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1119
                # merged_var should be the input var name of L2Decay
1120 1121 1122
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1123 1124 1125
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1126 1127 1128 1129 1130 1131
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1132
                            op not in global_ops:
1133 1134 1135 1136 1137
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1138

1139
        # dedup grad to ids list
W
Wu Yi 已提交
1140
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1141
        # append global ops
1142
        if global_ops:
W
Wu Yi 已提交
1143
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1144
                pserver_program.num_blocks - 1)
1145
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1146
            for glb_op in global_ops:
X
Xi Chen 已提交
1147
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1148
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1149

1150
        # process distributed lookup_table
Q
qiaolongfei 已提交
1151
        prefetch_var_name_to_block_id = []
1152 1153
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1154
            table_opt_block = self._create_table_optimize_block(
1155
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1156
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1157
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1158
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1159 1160
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1161

T
tangwei12 已提交
1162
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1163 1164
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1165

1166
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1167 1168
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1169 1170 1171 1172 1173 1174
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1175
        attrs = {
1176
            "optimize_blocks": optimize_blocks,
1177 1178 1179
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1180
            "grad_to_block_id": grad_to_block_id,
1181
            "sparse_grad_to_param": sparse_grad_to_param,
1182
        }
T
tangwei12 已提交
1183 1184

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1185
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1186 1187
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1188

T
tangwei12 已提交
1189 1190 1191 1192
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1193 1194 1195 1196 1197
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1198
            attrs=attrs)
1199

W
Wu Yi 已提交
1200
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1201 1202
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1203 1204
        return pserver_program

W
Wu Yi 已提交
1205 1206 1207 1208 1209 1210
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1211

W
Wu Yi 已提交
1212 1213
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1228 1229
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1230 1231
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1232 1233
        return pserver_prog, pserver_startup

1234 1235
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1236
                            pserver_program=None,
1237
                            startup_program=None):
T
typhoonzero 已提交
1238
        """
W
Wu Yi 已提交
1239 1240
        **Deprecated**

T
typhoonzero 已提交
1241 1242 1243
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1244 1245 1246

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1247 1248
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1249
                when initalizing
1250

Y
yi.wu 已提交
1251 1252
        Returns:
            Program: parameter server side startup program.
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1268 1269
        """
        s_prog = Program()
W
Wu Yi 已提交
1270
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1271
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1283
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1284
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1285
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1286 1287 1288 1289
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1290
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1291 1292
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1303 1304

            if op_on_pserver:
1305 1306 1307
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1308
                if op.type in [
1309 1310
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1311
                ]:
W
Wu Yi 已提交
1312
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1313 1314 1315 1316
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1317
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1327

T
typhoonzero 已提交
1328 1329
        return s_prog

1330 1331
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1332
        block_suffix = "block"
1333 1334 1335
        block_idx = 0
        offset = 0
        is_slice = False
1336

1337
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1338

1339 1340
        if not block_name:
            return is_slice, block_idx, offset
1341

1342 1343 1344 1345
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1346 1347 1348 1349 1350
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1414

Y
yi.wu 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1454
    def _init_splited_vars(self):
Y
yi.wu 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1478
        if self.config.slice_var_up:
Y
yi.wu 已提交
1479 1480
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1481 1482 1483
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1484
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1485 1486
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1487 1488 1489
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1490 1491 1492 1493
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1494 1495
        assert (len(grad_blocks) == len(param_blocks))

1496
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1497 1498
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1515
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1516 1517 1518 1519
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1520
        # dict(grad_splited_var -> param_splited_var)
1521
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1522 1523 1524
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1525
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1526
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1527 1528

        # create mapping of endpoint -> split var to create pserver side program
1529
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1539
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1540 1541
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1542
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1543
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1544 1545
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1546 1547
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1548 1549 1550 1551 1552 1553

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1554 1555
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1556
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1557 1558 1559
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1560 1561
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1562 1563
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1564 1565 1566
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1567
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1568
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1569 1570

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1571
                    self.all_out_emb_vars.append(out_var)
1572 1573

                    # delete lookup_table_op
1574
                    delete_ops(program.global_block(), [op])
1575 1576 1577
                    # break for loop
                    break

S
seiriosPlus 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1624
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1625
        # 2. add split_ids_op and send_op to send gradient to pservers
1626

1627 1628
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1629
        table_grad_name = grad_var_name(self.table_name)
1630 1631 1632 1633
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1634
                program.global_block()._insert_op(
1635 1636 1637 1638 1639
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1640 1641
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1642
                program.global_block()._insert_op(
1643
                    index=op_index + 2,
1644
                    type="send",
1645
                    inputs={'X': self.trainer_side_table_grad_list},
1646 1647 1648 1649 1650
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1651 1652
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1653
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1654 1655 1656 1657 1658
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1659
                    })
1660 1661 1662 1663 1664 1665
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1666
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1692
        return prefetch_var_name_to_block_id
1693 1694

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1695
                                     pre_block_idx, grad_to_block_id):
1696
        # STEP: create table optimize block
1697
        table_opt_block = pserver_program._create_block(pre_block_idx)
1698
        # create table param and grad var in pserver program
1699 1700
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1701 1702 1703
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1704 1705
        ][0]

Y
Yancey1989 已提交
1706 1707
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1708

T
tangwei12 已提交
1709
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1710 1711
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1712 1713 1714
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1715 1716
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1717
            shape=table_shape,
Y
Yancey1989 已提交
1718 1719 1720
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1721

1722 1723
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1724
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1725
            self.origin_program.global_block().vars[grad_var_name(
1726
                self.table_name)])
1727

1728 1729 1730
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1731

1732 1733 1734
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1735
            pserver_side_table_grad_list = [
1736 1737 1738 1739 1740 1741 1742 1743 1744
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1745
            # append sum op for pserver_side_table_grad_list
1746 1747
            table_opt_block.append_op(
                type="sum",
1748
                inputs={"X": pserver_side_table_grad_list},
1749 1750
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1751 1752
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1753
            origin_grad_name = grad_var.name
1754 1755
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1756 1757
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1758
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1759
            grad_var = pserver_program.global_block()._rename_var(
1760
                origin_grad_name, splited_grad_name)
1761 1762 1763 1764 1765 1766 1767

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1768
        # only support sgd now
1769 1770 1771
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1772
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1773

1774 1775 1776
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1777 1778
        return table_opt_block

T
tangwei12 已提交
1779 1780 1781 1782 1783
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1784
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1785
            name="kLookupTablePath",
T
tangwei12 已提交
1786 1787
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1788

W
Wu Yi 已提交
1789
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1790
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1791 1792 1793 1794
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1795
            attrs={'file_path': "none"})
T
tangwei12 已提交
1796 1797 1798

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1799 1800 1801 1802 1803
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1804
        Create vars for each split.
T
typhoonzero 已提交
1805 1806
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1807 1808 1809 1810
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1811
        Returns:
1812
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1813
                from original var name to each var split.
T
typhoonzero 已提交
1814
        """
1815 1816

        # varname->[(block_id, current_block_size)]
1817
        block_map = collections.OrderedDict()
1818

1819
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1820 1821
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1822
            if varname not in block_map:
T
typhoonzero 已提交
1823
                block_map[varname] = []
1824
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1825

M
minqiyang 已提交
1826
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1827
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1828
            if len(splited) == 1:
1829
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1830
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1831
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1832
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1833 1834 1835 1836 1837
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1838
                continue
T
typhoonzero 已提交
1839
            var_mapping[varname] = []
T
typhoonzero 已提交
1840 1841 1842 1843
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1844

T
typhoonzero 已提交
1845
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1846
                size = block[1]
M
minqiyang 已提交
1847
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1848 1849 1850
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1851
                new_var_name = ""
1852
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1853
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1854
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1855 1856
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1857
                                   (varname, i)
T
typhoonzero 已提交
1858
                var = program.global_block().create_var(
T
typhoonzero 已提交
1859 1860
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1861
                    dtype=orig_var.dtype,
1862
                    type=orig_var.type,
T
typhoonzero 已提交
1863
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1864
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1865
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1866
        return var_mapping
T
done  
typhoonzero 已提交
1867

1868
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1869 1870 1871 1872 1873 1874
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1875
            persistable=persistable)
T
done  
typhoonzero 已提交
1876

Q
Qiao Longfei 已提交
1877 1878 1879 1880 1881 1882 1883
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1884
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1885 1886
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1887
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1888
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1889
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1890 1891
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1892
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1893 1894 1895 1896
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1897 1898 1899 1900
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1901
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1902
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1903 1904 1905 1906
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1907
                attrs={
Q
Qiao Longfei 已提交
1908
                    "sections": height_sections,
1909 1910
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1911 1912 1913
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1914

T
typhoonzero 已提交
1915 1916 1917 1918
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1919
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1932
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1933 1934
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1935 1936
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1937
                return param_shape
1938 1939 1940
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1941 1942 1943
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1944 1945
        elif op_type == "sgd":
            pass
1946 1947 1948 1949
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1950 1951
        return orig_shape

1952 1953
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1954
        orig_var_name = ""
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1965
        else:
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1988
            return None
1989 1990 1991 1992
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1993
        else:
1994
            merged_var_name = orig_varname
1995 1996

        merged_var = pserver_block.vars[merged_var_name]
1997 1998 1999
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2000
            for i in range(self.trainer_num):
2001
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2002
                                   (merged_var_name, i)
2003 2004 2005 2006
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2007 2008
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2009 2010 2011 2012 2013
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2014
        return merged_var
T
typhoonzero 已提交
2015

W
Wu Yi 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2078
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2079 2080
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2081
        program = optimize_block.program
T
typhoonzero 已提交
2082
        pserver_block = program.global_block()
2083
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2094 2095 2096 2097
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2098
        for key in opt_op.input_names:
T
typhoonzero 已提交
2099
            if key == "Grad":
W
Wu Yi 已提交
2100 2101 2102
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2113
            elif key == "Param":
W
Wu Yi 已提交
2114
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2115 2116
                if not param_block:
                    return
T
typhoonzero 已提交
2117
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2118
                    name=param_block.name,
T
typhoonzero 已提交
2119
                    persistable=True,
T
typhoonzero 已提交
2120 2121 2122
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2123
            elif key == "LearningRate":
2124
                # learning rate variable has already be created by non-optimize op,
2125
                # don't create it once again.
2126
                lr_varname = opt_op.input(key)[0]
2127
                if lr_varname in pserver_block.vars:
2128 2129 2130 2131 2132 2133 2134 2135 2136
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2137

T
typhoonzero 已提交
2138
        for key in opt_op.input_names:
2139
            new_shape = None
W
Wu Yi 已提交
2140
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2141
                continue
2142
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2143
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2144
            # update accumulator variable shape
2145 2146
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2147
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2148 2149 2150 2151 2152
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2153

2154
        # change output's ParamOut variable
2155 2156
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2157
        outputs["ParamOut"] = new_inputs["Param"]
2158
        optimize_block.append_op(
T
typhoonzero 已提交
2159 2160
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2161
            outputs=outputs,
G
gongweibao 已提交
2162
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2163

2164 2165 2166 2167 2168 2169
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2181
        grad_block = None
M
minqiyang 已提交
2182
        for _, g in six.iteritems(var_dict):
2183
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2184
                # skip per trainer vars
2185
                if g.name.find(".trainer_") == -1:
2186
                    # only param or grads have splited blocks
2187 2188
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2189 2190
                        grad_block = g
                        break
2191 2192
        return grad_block

Q
Qiyang Min 已提交
2193 2194 2195
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2196
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2197 2198 2199 2200
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2201
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2202 2203 2204

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2205
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2206 2207 2208 2209
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2210
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2211

Y
Yancey1989 已提交
2212
        return block.append_op(
G
gongweibao 已提交
2213
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2214 2215

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2216
        program = optimize_block.program
2217
        # Append the ops for parameters that do not need to be optimized/updated
2218 2219
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2220
        for key, varlist in six.iteritems(inputs):
2221 2222
            if not isinstance(varlist, list):
                varlist = [varlist]
2223 2224 2225
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2226
                # for inputs/outputs
2227
                grad_block = self._get_pserver_grad_param_var(
2228 2229
                    var, program.global_block().vars)
                if grad_block:
2230
                    varlist[i] = grad_block
2231
                elif var.name not in program.global_block().vars:
2232 2233 2234 2235 2236
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2237

2238 2239
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2240
        for key, varlist in six.iteritems(outputs):
2241 2242
            if not isinstance(varlist, list):
                varlist = [varlist]
2243 2244 2245
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2246 2247
                    var, program.global_block().vars)
                if grad_block:
2248
                    varlist[i] = grad_block
2249
                elif var.name not in program.global_block().vars:
2250 2251 2252 2253 2254
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2255

Y
Yancey1989 已提交
2256
        return optimize_block.append_op(
T
typhoonzero 已提交
2257
            type=opt_op.type,
T
typhoonzero 已提交
2258 2259
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2260
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2261

2262 2263 2264 2265
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2266
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2267
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2268 2269 2270 2271 2272 2273
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2274 2275
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2276 2277 2278 2279 2280 2281
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2282
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2283
        if "Param" in op.input_names and \
T
tangwei12 已提交
2284
                "LearningRate" in op.input_names:
2285 2286 2287 2288 2289 2290 2291
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2292
        if op.input("Param")[0] in param_names:
2293 2294 2295
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2296
                param = op.input("Param")[0]
T
typhoonzero 已提交
2297
                if same_or_split_var(n, param) and n != param:
2298 2299 2300
                    return True
            return False

T
typhoonzero 已提交
2301
    def _get_input_map_from_op(self, varmap, op):
2302
        """Returns a dict from op input name to the vars in varmap."""
2303
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2315
        """Returns a dict from op output name to the vars in varmap."""
2316
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2326 2327

    def _get_lr_ops(self):
2328 2329 2330
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2331 2332 2333 2334
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2335 2336 2337 2338 2339
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2340 2341 2342 2343
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2344
            if self._is_optimizer_op(op):
2345 2346 2347 2348
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2349
        block = self.origin_program.global_block()
2350 2351 2352 2353 2354
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2355

2356 2357 2358 2359 2360
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2361
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2362 2363 2364 2365 2366 2367
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2368 2369
                    # we only need to append op for once
                    break
2370
        return lr_ops
Y
Yancey1989 已提交
2371

W
Wu Yi 已提交
2372 2373 2374 2375 2376
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2377 2378
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2379 2380 2381
            return True
        return False

Y
Yancey1989 已提交
2382
    def _get_optimize_pass(self):
2383
        """
2384
        Get optimizer operators, parameters and gradients from origin_program
2385 2386
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2387
            params_grads (dict): parameter->gradient.
2388
        """
Y
Yancey1989 已提交
2389 2390 2391
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2392 2393
        # tmp set to dedup
        optimize_params = set()
2394
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2395
        for op in block.ops:
W
Wu Yi 已提交
2396
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2397
                opt_ops.append(op)
2398 2399 2400 2401 2402 2403
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2404 2405
                        params_grads.append([
                            origin_var_dict[param_name],
2406
                            origin_var_dict[grad_name]
2407
                        ])
Y
Yancey1989 已提交
2408 2409 2410
            else:
                pass
        return opt_ops, params_grads