distribute_transpiler.py 105.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
44
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
307
        self.counter_var = None
G
gongweibao 已提交
308

W
Wu Yi 已提交
309 310 311 312
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
313 314
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
315 316 317 318 319 320
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
321 322
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
323 324 325

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
326 327 328 329 330 331 332 333 334

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
335 336 337 338
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
339 340 341 342 343
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
344 345 346 347 348
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
349 350 351 352 353 354 355
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
356 357 358 359 360
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

361 362 363 364 365 366 367 368 369 370 371 372
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
373
        elif collective_mode != "single_process_multi_thread":
374 375
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
376 377
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
378 379 380 381 382 383 384 385 386 387
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
388
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
389
        elif collective_mode == 'local_sgd':
390
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
391 392
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
393 394 395 396 397 398 399 400 401 402 403
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
404
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
405
        sparse_update_ops = []
406
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
407 408
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
409
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
410 411 412
                sparse_update_ops.append(op)
        return sparse_update_ops

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
488

489 490
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
491 492 493 494 495 496

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
497

498 499 500 501 502
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
503
                  sync_mode=True,
W
Wu Yi 已提交
504 505
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
506
        """
507
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
508 509 510 511 512 513

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
514 515
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
516 517
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
518 519 520
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
521
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
522 523
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
524 525 526
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
527 528 529 530 531 532 533 534 535 536 537

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
538 539 540
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
541 542
        if startup_program is None:
            startup_program = default_startup_program()
543
        self.origin_program = program
W
Wu Yi 已提交
544 545
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
546

W
Wu Yi 已提交
547 548
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
549
            self.origin_program._trainers_endpoints = trainers.split(",")
550 551
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
552 553 554 555 556
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
557
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
558 559 560 561 562 563 564 565 566 567 568
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
569 570 571 572
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
573 574
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
575 576
            return

577 578 579 580 581 582 583 584 585 586 587
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

588
        self.trainer_num = trainers
589
        self.sync_mode = sync_mode
590 591 592
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
593
        self.vars_overview = VarsDistributed()
594 595
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
596
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
597 598
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
599
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
600
        self.grad_name_to_param_name = dict()
601 602
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
603
            self.grad_name_to_param_name[grad_var.name] = param_var.name
604

Q
Qiao Longfei 已提交
605
        # get all sparse update ops
Q
Qiao Longfei 已提交
606
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
607
            self.origin_program)
Q
Qiao Longfei 已提交
608
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
609 610
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
611 612 613
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
614
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
615 616 617
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

618
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
619
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
620
        self._init_splited_vars()
621

G
gongweibao 已提交
622
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
623
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
624
        send_vars = []
625 626 627 628 629 630

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
631
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
632

G
gongweibao 已提交
633
        if not self.config.slice_var_up:
634 635
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
636

637
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
638

639
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
640
            eplist = ps_dispatcher.dispatch(splited_vars)
641

G
gongweibao 已提交
642
            if not self.config.slice_var_up:
643 644
                assert (len(splited_vars) == 1)

645
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
646
            if len(splited_vars) == 1:
647
                splited_grad_varname = splited_vars[0].name
648 649
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
650

Y
Yancey1989 已提交
651
            elif len(splited_vars) > 1:
652
                orig_var = program.global_block().vars[splited_grad_varname]
653 654
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
655

Q
Qiao Longfei 已提交
656 657 658 659
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
660 661
            else:
                AssertionError("Can not insert the send op by original "
662
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
663

664 665 666 667 668 669 670
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
671 672
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
673
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
674

Q
Qiao Longfei 已提交
675 676 677 678 679 680 681 682 683 684 685
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
686 687 688 689
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
690
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
691
                index=index + 1,
692
                type="send",
Q
Qiao Longfei 已提交
693
                inputs={"X": send_input_vars},
694
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
695 696
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
697 698
                    "sections": sections,
                    "send_varnames": send_varnames,
699
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
700 701 702
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
703
                    ]
Y
Yancey1989 已提交
704
                })
Y
update  
Yancey1989 已提交
705 706
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
707 708

        if self.sync_mode:
709
            fetch_barrier_input = []
W
Wu Yi 已提交
710 711
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
712 713 714 715
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
716
            input_deps = list(self.grad_name_to_send_dummy_out.values())
717

Y
Yancey1989 已提交
718 719
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
720
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
721
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
722 723
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
724
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
725
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
726
                })
727
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
753

G
gongweibao 已提交
754
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
755
        recv_vars = []
Y
update  
Yancey1989 已提交
756
        for _, var in enumerate(send_vars):
757
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
758
        ps_dispatcher.reset()
Y
Yancey1989 已提交
759 760
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
761
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
762 763
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
764

765 766 767 768
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

769 770
        need_sparse_update_params = {}

Y
Yancey1989 已提交
771
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
772
        all_recv_outputs = []
773
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
774
            eps = []
Q
Qiao Longfei 已提交
775
            table_names = []
Y
Yancey1989 已提交
776 777 778
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
779
                table_names.append(var.name)
W
Wu Yi 已提交
780 781 782 783
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
784
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
785
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
786

W
Wu Yi 已提交
787 788 789 790 791 792 793 794 795
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
796
            if param_varname in self.sparse_param_to_height_sections:
797 798 799 800 801
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

802
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
803
            else:
Q
Qiao Longfei 已提交
804 805 806
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
807
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
808
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
809
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
810

Q
Qiao Longfei 已提交
811 812 813 814 815 816
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
817
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
818 819 820
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
821
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
822
                    })
823 824
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
825

826 827
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
828
        if self.sync_mode:
W
Wu Yi 已提交
829
            # form a WAW dependency
Q
qiaolongfei 已提交
830 831
            program.global_block().append_op(
                type="fetch_barrier",
832
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
833
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
834 835
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
836
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
837 838
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
839

840 841
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
842
            if param_varname not in self.sparse_param_to_height_sections:
843 844
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
845 846 847 848 849 850 851 852
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
853

G
gongweibao 已提交
854 855
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

856
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
857 858
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
859
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
860

861 862 863
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
864
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
865
        """
C
Chengmo 已提交
866 867 868 869 870 871 872 873 874
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
875 876 877

        Returns:
            Program: trainer side program.
878 879 880 881 882 883 884 885 886 887 888 889

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
890
        """
T
typhoonzero 已提交
891
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
892
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
893

T
typhoonzero 已提交
894
        lr_ops = self._get_lr_ops()
895
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
896 897
        delete_ops(self.origin_program.global_block(), lr_ops)

898 899
        # delete table init op
        if self.has_distributed_lookup_table:
900 901 902
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
903 904
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
905 906 907 908 909
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
910
            table_init_op = table_param_init_op[0]
911 912 913 914 915 916
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
917

918
        self.origin_program.__str__()
G
gongweibao 已提交
919

W
Wu Yi 已提交
920 921 922
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

923
        return self.origin_program
T
typhoonzero 已提交
924

W
Wu Yi 已提交
925
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
926 927 928 929
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
930
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
931
            eplist (list): A list of strings indicating
G
gongweibao 已提交
932 933 934 935

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
936
        startup_program = self.startup_program
G
gongweibao 已提交
937 938 939 940

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
941
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
962
                inputs={"X": []},
G
gongweibao 已提交
963 964 965
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
966
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
967 968 969
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
970 971
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
972 973 974
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
975
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
976 977
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
978
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
979 980 981
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
982
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
983
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
984 985
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
986
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
987
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
988 989 990 991 992 993 994 995 996 997
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
998 999 1000 1001 1002 1003 1004 1005
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1006 1007
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1008 1009 1010 1011 1012 1013
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1014

Y
yi.wu 已提交
1015 1016
        Args:
            endpoint (str): current parameter server endpoint.
1017

Y
yi.wu 已提交
1018 1019
        Returns:
            Program: the program for current parameter server to run.
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1034
        """
Y
yi.wu 已提交
1035 1036 1037 1038
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1039 1040 1041
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1042 1043
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1044
        pserver_program.random_seed = self.origin_program.random_seed
1045 1046
        pserver_program._copy_dist_param_info_from(self.origin_program)

1047
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1048 1049 1050 1051 1052 1053 1054 1055
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1056 1057 1058 1059 1060
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1070
            if self.sync_mode and self.trainer_num > 1:
1071
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1081

Q
qiaolongfei 已提交
1082
        # step 3
1083
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1084 1085 1086
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1087
        # step 3.2
T
typhoonzero 已提交
1088 1089 1090 1091
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1092 1093
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1094
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1095
        # step 3.3
W
Wu Yi 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1114
        # Iterate through the ops, and if an op and the optimize ops
1115
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1116
        # append it into the sub program.
T
typhoonzero 已提交
1117 1118 1119

        global_ops = []

1120 1121 1122
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1123 1124
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1125
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1126
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1127 1128
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1129
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1130
                self._append_pserver_non_opt_ops(block, op)
1131

Y
Yancey1989 已提交
1132
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1133 1134 1135 1136 1137 1138 1139 1140
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1141
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1142 1143 1144

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1145
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1146 1147

            # clone ops
Y
Yancey1989 已提交
1148 1149
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1150
                # clone sub_block of op
Y
Yancey1989 已提交
1151
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1152 1153

            # reset the block of op
W
Wu Yi 已提交
1154
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1155

1156
        # append lr decay ops to the child block if exists
1157
        lr_ops = self._get_lr_ops()
1158 1159
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1160 1161

        lr_decay_block_id = -1
1162
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1163
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1164
                pserver_program.num_blocks - 1)
1165
            optimize_blocks.append(lr_decay_block)
1166
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1167
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1168
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1169 1170
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1171
            lr_decay_block_id = lr_decay_block.idx
1172

T
typhoonzero 已提交
1173
        # append op to the current block
Q
qiaolongfei 已提交
1174
        grad_to_block_id = []
Q
qiaolongfei 已提交
1175
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1176
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1177
            per_opt_block = pserver_program._create_block(pre_block_idx)
1178
            optimize_blocks.append(per_opt_block)
1179
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1180
            # append grad merging ops before clip and weight decay
1181 1182
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1183
            for _, op in enumerate(self.optimize_ops):
1184
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1185
                # merged_var should be the input var name of L2Decay
1186 1187 1188
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1189 1190 1191
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1192 1193 1194 1195 1196 1197
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1198
                            op not in global_ops:
1199 1200 1201 1202 1203
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1204

1205
        # dedup grad to ids list
W
Wu Yi 已提交
1206
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1207
        # append global ops
1208
        if global_ops:
W
Wu Yi 已提交
1209
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1210
                pserver_program.num_blocks - 1)
1211
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1212
            for glb_op in global_ops:
X
Xi Chen 已提交
1213
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1214
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1215

1216
        # process distributed lookup_table
Q
qiaolongfei 已提交
1217
        prefetch_var_name_to_block_id = []
1218 1219
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1220
            table_opt_block = self._create_table_optimize_block(
1221
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1222
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1223
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1224
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1225 1226
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1227

T
tangwei12 已提交
1228
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1229 1230
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1231

1232
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1233 1234
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1235 1236 1237 1238 1239 1240
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1241
        attrs = {
1242
            "optimize_blocks": optimize_blocks,
1243
            "endpoint": endpoint,
1244
            "pserver_id": self.pserver_endpoints.index(endpoint),
1245 1246
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1247
            "grad_to_block_id": grad_to_block_id,
1248
            "sparse_grad_to_param": sparse_grad_to_param,
1249
            "lr_decay_block_id": lr_decay_block_id,
1250
        }
T
tangwei12 已提交
1251 1252

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1253
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1254 1255
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1256

T
tangwei12 已提交
1257 1258 1259 1260
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1261 1262 1263 1264 1265
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1266
            attrs=attrs)
1267

W
Wu Yi 已提交
1268
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1269 1270
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1271 1272
        return pserver_program

W
Wu Yi 已提交
1273 1274 1275
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1276 1277
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1278 1279 1280

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1281

W
Wu Yi 已提交
1282 1283
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1298 1299
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1300 1301
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1302 1303
        return pserver_prog, pserver_startup

1304 1305
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1306
                            pserver_program=None,
1307
                            startup_program=None):
T
typhoonzero 已提交
1308
        """
W
Wu Yi 已提交
1309 1310
        **Deprecated**

T
typhoonzero 已提交
1311 1312 1313
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1314 1315 1316

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1317 1318
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1319
                when initalizing
1320

Y
yi.wu 已提交
1321 1322
        Returns:
            Program: parameter server side startup program.
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1338 1339
        """
        s_prog = Program()
W
Wu Yi 已提交
1340
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1341
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1353
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1354
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1355
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1356 1357 1358 1359
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1360
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1361 1362
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1373 1374

            if op_on_pserver:
1375 1376 1377
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1378
                if op.type in [
1379 1380
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1381
                ]:
W
Wu Yi 已提交
1382
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1383 1384 1385 1386
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1387
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1397

T
typhoonzero 已提交
1398 1399
        return s_prog

1400 1401
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1402
        block_suffix = "block"
1403 1404 1405
        block_idx = 0
        offset = 0
        is_slice = False
1406

1407
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1408

1409 1410
        if not block_name:
            return is_slice, block_idx, offset
1411

1412 1413 1414 1415
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1416 1417 1418 1419 1420
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1446 1447 1448 1449
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1487

Y
yi.wu 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1527
    def _init_splited_vars(self):
Y
yi.wu 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1551
        if self.config.slice_var_up:
Y
yi.wu 已提交
1552 1553
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1554 1555 1556
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1557
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1558 1559
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1560 1561 1562
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1563 1564 1565 1566
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1567 1568
        assert (len(grad_blocks) == len(param_blocks))

1569
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1570 1571
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1588
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1589 1590 1591 1592
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1593
        # dict(grad_splited_var -> param_splited_var)
1594
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1595 1596 1597
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1598
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1599
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1600 1601

        # create mapping of endpoint -> split var to create pserver side program
1602
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1612
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1613 1614
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1615
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1616
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1617 1618
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1619 1620
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1621 1622 1623 1624 1625 1626

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1627 1628
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1629
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1630 1631 1632
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1633 1634
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1635 1636
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1637 1638 1639
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1640
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1641
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1642 1643

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1644
                    self.all_out_emb_vars.append(out_var)
1645 1646

                    # delete lookup_table_op
1647
                    delete_ops(program.global_block(), [op])
1648 1649 1650
                    # break for loop
                    break

S
seiriosPlus 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1697
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1698
        # 2. add split_ids_op and send_op to send gradient to pservers
1699

1700 1701
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1702
        table_grad_name = grad_var_name(self.table_name)
1703 1704 1705 1706
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1707
                program.global_block()._insert_op(
1708 1709 1710 1711 1712
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1713 1714
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1715
                program.global_block()._insert_op(
1716
                    index=op_index + 2,
1717
                    type="send",
1718
                    inputs={'X': self.trainer_side_table_grad_list},
1719 1720 1721 1722 1723
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1724 1725
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1726
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1727 1728 1729 1730 1731
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1732
                    })
1733 1734 1735 1736 1737 1738
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1739
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1765
        return prefetch_var_name_to_block_id
1766 1767

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1768
                                     pre_block_idx, grad_to_block_id):
1769
        # STEP: create table optimize block
1770
        table_opt_block = pserver_program._create_block(pre_block_idx)
1771
        # create table param and grad var in pserver program
1772 1773
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1774 1775 1776
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1777 1778
        ][0]

Y
Yancey1989 已提交
1779 1780
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1781

T
tangwei12 已提交
1782
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1783 1784
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1785 1786 1787
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1788 1789
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1790
            shape=table_shape,
Y
Yancey1989 已提交
1791 1792 1793
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1794

1795 1796
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1797
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1798
            self.origin_program.global_block().vars[grad_var_name(
1799
                self.table_name)])
1800

1801 1802 1803
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1804

1805 1806 1807
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1808
            pserver_side_table_grad_list = [
1809 1810 1811 1812 1813 1814 1815 1816 1817
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1818
            # append sum op for pserver_side_table_grad_list
1819 1820
            table_opt_block.append_op(
                type="sum",
1821
                inputs={"X": pserver_side_table_grad_list},
1822 1823
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1824 1825
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1826
            origin_grad_name = grad_var.name
1827 1828
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1829 1830
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1831
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1832
            grad_var = pserver_program.global_block()._rename_var(
1833
                origin_grad_name, splited_grad_name)
1834 1835 1836 1837 1838 1839 1840

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1841
        # only support sgd now
1842 1843 1844
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1845
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1846

1847 1848 1849
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1850 1851
        return table_opt_block

T
tangwei12 已提交
1852 1853 1854 1855 1856
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1857
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1858
            name="kLookupTablePath",
T
tangwei12 已提交
1859 1860
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1861

W
Wu Yi 已提交
1862
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1863
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1864 1865 1866 1867
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1868
            attrs={'file_path': "none"})
T
tangwei12 已提交
1869 1870 1871

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1872 1873 1874 1875 1876
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1877
        Create vars for each split.
T
typhoonzero 已提交
1878 1879
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1880 1881 1882 1883
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1884
        Returns:
1885
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1886
                from original var name to each var split.
T
typhoonzero 已提交
1887
        """
1888 1889

        # varname->[(block_id, current_block_size)]
1890
        block_map = collections.OrderedDict()
1891

1892
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1893 1894
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1895
            if varname not in block_map:
T
typhoonzero 已提交
1896
                block_map[varname] = []
1897
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1898

M
minqiyang 已提交
1899
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1900
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1901
            if len(splited) == 1:
1902
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1903
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1904
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1905
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1906 1907 1908 1909 1910
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1911
                continue
T
typhoonzero 已提交
1912
            var_mapping[varname] = []
T
typhoonzero 已提交
1913 1914 1915 1916
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1917

T
typhoonzero 已提交
1918
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1919
                size = block[1]
M
minqiyang 已提交
1920
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1921 1922 1923
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1924
                new_var_name = ""
1925
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1926
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1927
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1928 1929
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1930
                                   (varname, i)
T
typhoonzero 已提交
1931
                var = program.global_block().create_var(
T
typhoonzero 已提交
1932 1933
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1934
                    dtype=orig_var.dtype,
1935
                    type=orig_var.type,
T
typhoonzero 已提交
1936
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1937
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1938
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1939
        return var_mapping
T
done  
typhoonzero 已提交
1940

1941
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1942 1943 1944 1945 1946 1947
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1948
            persistable=persistable)
T
done  
typhoonzero 已提交
1949

Q
Qiao Longfei 已提交
1950 1951 1952 1953 1954 1955 1956
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1957
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1958 1959
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1960
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1961
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1962
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1963 1964
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1965
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1966 1967 1968 1969
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1970 1971 1972 1973
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1974
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1975
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1976 1977 1978 1979
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1980
                attrs={
Q
Qiao Longfei 已提交
1981
                    "sections": height_sections,
1982 1983
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1984 1985 1986
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1987

T
typhoonzero 已提交
1988 1989 1990 1991
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1992
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2005
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2006 2007
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2008 2009
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2010
                return param_shape
2011 2012 2013
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2014 2015 2016
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2017 2018
        elif op_type == "sgd":
            pass
2019 2020 2021 2022
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2023 2024
        return orig_shape

2025 2026
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2027
        orig_var_name = ""
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2038
        else:
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2061
            return None
2062 2063 2064 2065
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2066
        else:
2067
            merged_var_name = orig_varname
2068 2069

        merged_var = pserver_block.vars[merged_var_name]
2070 2071 2072
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2073
            for i in range(self.trainer_num):
2074
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2075
                                   (merged_var_name, i)
2076 2077 2078 2079
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2080 2081
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2082 2083 2084 2085 2086
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2087
        return merged_var
T
typhoonzero 已提交
2088

W
Wu Yi 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2151
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2152 2153
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2154
        program = optimize_block.program
T
typhoonzero 已提交
2155
        pserver_block = program.global_block()
2156
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2167 2168 2169 2170
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2171
        for key in opt_op.input_names:
T
typhoonzero 已提交
2172
            if key == "Grad":
W
Wu Yi 已提交
2173 2174 2175
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2186
            elif key == "Param":
W
Wu Yi 已提交
2187
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2188 2189
                if not param_block:
                    return
T
typhoonzero 已提交
2190
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2191
                    name=param_block.name,
T
typhoonzero 已提交
2192
                    persistable=True,
T
typhoonzero 已提交
2193 2194 2195
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2196
            elif key == "LearningRate":
2197
                # learning rate variable has already be created by non-optimize op,
2198
                # don't create it once again.
2199
                lr_varname = opt_op.input(key)[0]
2200
                if lr_varname in pserver_block.vars:
2201 2202 2203 2204 2205 2206 2207 2208 2209
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2210

T
typhoonzero 已提交
2211
        for key in opt_op.input_names:
2212
            new_shape = None
2213 2214 2215 2216
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2217
                continue
2218
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2219
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2220
            # update accumulator variable shape
2221 2222
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2223
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2224 2225 2226 2227 2228
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2229

2230
        # change output's ParamOut variable
2231 2232
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2233
        outputs["ParamOut"] = new_inputs["Param"]
2234
        optimize_block.append_op(
T
typhoonzero 已提交
2235 2236
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2237
            outputs=outputs,
G
gongweibao 已提交
2238
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2239

2240 2241 2242 2243 2244 2245
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2257
        grad_block = None
M
minqiyang 已提交
2258
        for _, g in six.iteritems(var_dict):
2259
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2260
                # skip per trainer vars
2261
                if g.name.find(".trainer_") == -1:
2262
                    # only param or grads have splited blocks
2263 2264
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2265 2266
                        grad_block = g
                        break
2267 2268
        return grad_block

Q
Qiyang Min 已提交
2269 2270 2271
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2272
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2273 2274 2275 2276
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2277
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2278 2279 2280

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2281
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2282 2283 2284 2285
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2286
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2287

Y
Yancey1989 已提交
2288
        return block.append_op(
G
gongweibao 已提交
2289
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2290 2291

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2292
        program = optimize_block.program
2293
        # Append the ops for parameters that do not need to be optimized/updated
2294 2295
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2296
        for key, varlist in six.iteritems(inputs):
2297 2298
            if not isinstance(varlist, list):
                varlist = [varlist]
2299 2300 2301
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2302
                # for inputs/outputs
2303
                grad_block = self._get_pserver_grad_param_var(
2304 2305
                    var, program.global_block().vars)
                if grad_block:
2306
                    varlist[i] = grad_block
2307
                elif var.name not in program.global_block().vars:
2308 2309 2310 2311 2312
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2313

2314 2315
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2316
        for key, varlist in six.iteritems(outputs):
2317 2318
            if not isinstance(varlist, list):
                varlist = [varlist]
2319 2320 2321
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2322 2323
                    var, program.global_block().vars)
                if grad_block:
2324
                    varlist[i] = grad_block
2325
                elif var.name not in program.global_block().vars:
2326 2327 2328 2329 2330
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2331

Y
Yancey1989 已提交
2332
        return optimize_block.append_op(
T
typhoonzero 已提交
2333
            type=opt_op.type,
T
typhoonzero 已提交
2334 2335
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2336
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2337

2338 2339 2340 2341
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2342
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2343
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2344 2345 2346 2347 2348 2349
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2350 2351
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2352 2353 2354 2355 2356 2357
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2358
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2359
        if "Param" in op.input_names and \
T
tangwei12 已提交
2360
                "LearningRate" in op.input_names:
2361 2362 2363 2364 2365 2366 2367
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2368
        if op.input("Param")[0] in param_names:
2369 2370 2371
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2372
                param = op.input("Param")[0]
T
typhoonzero 已提交
2373
                if same_or_split_var(n, param) and n != param:
2374 2375 2376
                    return True
            return False

T
typhoonzero 已提交
2377
    def _get_input_map_from_op(self, varmap, op):
2378
        """Returns a dict from op input name to the vars in varmap."""
2379
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2391
        """Returns a dict from op output name to the vars in varmap."""
2392
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2402 2403

    def _get_lr_ops(self):
2404 2405
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2406
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2407 2408 2409 2410
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2457 2458 2459 2460 2461
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2462 2463 2464 2465
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2466
            if self._is_optimizer_op(op):
2467 2468 2469 2470
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2471
        block = self.origin_program.global_block()
2472 2473 2474 2475 2476
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2477

2478 2479 2480 2481 2482
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2483
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2484 2485 2486 2487 2488 2489
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2490 2491
                    # we only need to append op for once
                    break
2492
        return lr_ops
Y
Yancey1989 已提交
2493

W
Wu Yi 已提交
2494 2495 2496 2497 2498
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2499 2500
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2501 2502 2503
            return True
        return False

Y
Yancey1989 已提交
2504
    def _get_optimize_pass(self):
2505
        """
2506
        Get optimizer operators, parameters and gradients from origin_program
2507 2508
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2509
            params_grads (dict): parameter->gradient.
2510
        """
Y
Yancey1989 已提交
2511 2512 2513
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2514 2515
        # tmp set to dedup
        optimize_params = set()
2516
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2517
        for op in block.ops:
W
Wu Yi 已提交
2518
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2519
                opt_ops.append(op)
2520 2521 2522 2523 2524 2525
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2526 2527
                        params_grads.append([
                            origin_var_dict[param_name],
2528
                            origin_var_dict[grad_name]
2529
                        ])
Y
Yancey1989 已提交
2530 2531 2532
            else:
                pass
        return opt_ops, params_grads