distribute_transpiler.py 102.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306 307
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
308 309 310 311
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
312 313
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
314 315 316 317 318 319
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
320 321
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
322 323 324

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
325 326 327 328 329 330 331 332 333

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
334 335 336 337
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
338 339 340 341 342
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
343 344 345 346 347
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
348 349 350 351 352 353 354
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
355 356 357 358 359
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
386
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
387
        elif collective_mode == 'local_sgd':
388
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
389 390 391 392 393 394 395 396 397 398 399
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
400
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
401
        sparse_update_ops = []
402
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
403 404
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
405
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
406 407 408
                sparse_update_ops.append(op)
        return sparse_update_ops

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
484

485 486
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
487 488 489 490 491 492

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
493

494 495 496 497 498
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
499
                  sync_mode=True,
W
Wu Yi 已提交
500 501
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
502
        """
503
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
504 505 506 507 508 509

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
510 511
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
512 513
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
514 515 516
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
517
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
518 519
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
520 521 522
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
523 524 525 526 527 528 529 530 531 532 533

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
534 535 536
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
537 538
        if startup_program is None:
            startup_program = default_startup_program()
539
        self.origin_program = program
W
Wu Yi 已提交
540 541
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
542

W
Wu Yi 已提交
543 544
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
545
            self.origin_program._trainers_endpoints = trainers.split(",")
546 547
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
548 549 550 551 552
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
553
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
554 555 556 557 558 559 560 561 562 563 564
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
565 566 567 568
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
569 570
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
571 572
            return

573 574 575 576 577 578 579 580 581 582 583
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

584
        self.trainer_num = trainers
585
        self.sync_mode = sync_mode
586 587 588
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
589
        self.vars_overview = VarsDistributed()
590 591
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
592
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
593 594
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
595
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
596
        self.grad_name_to_param_name = dict()
597 598
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
599
            self.grad_name_to_param_name[grad_var.name] = param_var.name
600

Q
Qiao Longfei 已提交
601
        # get all sparse update ops
Q
Qiao Longfei 已提交
602
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
603
            self.origin_program)
Q
Qiao Longfei 已提交
604
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
605 606
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
607 608 609
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
610
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
611 612 613
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

614
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
615
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
616
        self._init_splited_vars()
617

G
gongweibao 已提交
618
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
619
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
620
        send_vars = []
621 622 623 624 625 626

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
627
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
628

G
gongweibao 已提交
629
        if not self.config.slice_var_up:
630 631
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
632

633
        self.grad_name_to_send_dummy_out = dict()
634
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
635
            eplist = ps_dispatcher.dispatch(splited_vars)
636

G
gongweibao 已提交
637
            if not self.config.slice_var_up:
638 639
                assert (len(splited_vars) == 1)

640
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
641
            if len(splited_vars) == 1:
642
                splited_grad_varname = splited_vars[0].name
643 644
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
645

Y
Yancey1989 已提交
646
            elif len(splited_vars) > 1:
647
                orig_var = program.global_block().vars[splited_grad_varname]
648 649
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
650

Q
Qiao Longfei 已提交
651 652 653 654
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
655 656
            else:
                AssertionError("Can not insert the send op by original "
657
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
658

659 660 661 662 663 664 665
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
666 667
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
668
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
669

Q
Qiao Longfei 已提交
670 671 672 673 674 675 676 677 678 679 680
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
681 682 683 684
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
685
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
686
                index=index + 1,
687
                type="send",
Q
Qiao Longfei 已提交
688
                inputs={"X": send_input_vars},
689
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
690 691
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
692 693
                    "sections": sections,
                    "send_varnames": send_varnames,
694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
695 696 697
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
698
                    ]
Y
Yancey1989 已提交
699
                })
Y
update  
Yancey1989 已提交
700 701
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
702 703

        if self.sync_mode:
704
            fetch_barrier_input = []
W
Wu Yi 已提交
705 706
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
707 708 709 710
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
711
            input_deps = list(self.grad_name_to_send_dummy_out.values())
712

Y
Yancey1989 已提交
713 714
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
715
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
716
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
717 718
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
719
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
720
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
721
                })
722
            fetch_barrier_input.append(send_barrier_out)
Y
Yancey1989 已提交
723

G
gongweibao 已提交
724
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
725
        recv_vars = []
Y
update  
Yancey1989 已提交
726
        for _, var in enumerate(send_vars):
727
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
728
        ps_dispatcher.reset()
Y
Yancey1989 已提交
729 730
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
731
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
732 733
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
734

735 736 737 738
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

739 740
        need_sparse_update_params = {}

Y
Yancey1989 已提交
741
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
742
        all_recv_outputs = []
743
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
744
            eps = []
Q
Qiao Longfei 已提交
745
            table_names = []
Y
Yancey1989 已提交
746 747 748
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
749
                table_names.append(var.name)
W
Wu Yi 已提交
750 751 752 753
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
754
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
755
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
756

W
Wu Yi 已提交
757 758 759 760 761 762 763 764 765
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
766
            if param_varname in self.sparse_param_to_height_sections:
767 768 769 770 771
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

772
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
773
            else:
Q
Qiao Longfei 已提交
774 775 776
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
777
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
778
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
779
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
780

Q
Qiao Longfei 已提交
781 782 783 784 785 786
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
787
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
788 789 790
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
791
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
792
                    })
793 794
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
795

Q
qiaolongfei 已提交
796
        if self.sync_mode:
W
Wu Yi 已提交
797
            # form a WAW dependency
Q
qiaolongfei 已提交
798 799
            program.global_block().append_op(
                type="fetch_barrier",
800
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
801
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
802 803
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
804
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
805 806
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
807

808
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
809 810
            if len(splited_var) <= 1:
                continue
811
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
812
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
813 814 815 816 817 818 819 820 821
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
822

823 824
            self._update_remote_sparse_update_op(program,
                                                 need_sparse_update_params)
825 826 827 828 829 830 831 832 833 834 835 836
        if not self.sync_mode:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0:
                program.global_block().append_op(
                    type="distributed_notify",
                    inputs={},
                    outputs={},
                    attrs={
                        "epmap": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "type": "LRDECAY@RECV"
                    })
837

G
gongweibao 已提交
838 839
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

840
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
841 842
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
843
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
844

845 846 847
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
848
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
849
        """
C
Chengmo 已提交
850 851 852 853 854 855 856 857 858
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
859 860 861

        Returns:
            Program: trainer side program.
862 863 864 865 866 867 868 869 870 871 872 873

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
874
        """
T
typhoonzero 已提交
875
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
876
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
877

T
typhoonzero 已提交
878
        lr_ops = self._get_lr_ops()
879
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
880 881
        delete_ops(self.origin_program.global_block(), lr_ops)

882 883
        # delete table init op
        if self.has_distributed_lookup_table:
884 885 886
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
887 888
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
889 890 891 892 893
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
894
            table_init_op = table_param_init_op[0]
895 896 897 898 899 900
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
901

902
        self.origin_program.__str__()
G
gongweibao 已提交
903

W
Wu Yi 已提交
904 905 906
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

907
        return self.origin_program
T
typhoonzero 已提交
908

W
Wu Yi 已提交
909
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
910 911 912 913
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
914
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
915
            eplist (list): A list of strings indicating
G
gongweibao 已提交
916 917 918 919

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
920
        startup_program = self.startup_program
G
gongweibao 已提交
921 922 923 924

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
925
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
946
                inputs={"X": []},
G
gongweibao 已提交
947 948 949
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
950
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
951 952 953
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
954 955
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
956 957 958
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
959
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
960 961
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
962
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
963 964 965
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
966
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
967
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
968 969
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
970
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
971
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
972 973 974 975 976 977 978 979 980 981
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
982 983 984 985 986 987 988 989
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
990 991
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
992 993 994 995 996 997
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
998

Y
yi.wu 已提交
999 1000
        Args:
            endpoint (str): current parameter server endpoint.
1001

Y
yi.wu 已提交
1002 1003
        Returns:
            Program: the program for current parameter server to run.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1018
        """
Y
yi.wu 已提交
1019 1020 1021 1022
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1023 1024 1025
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1026 1027
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1028
        pserver_program.random_seed = self.origin_program.random_seed
1029 1030
        pserver_program._copy_dist_param_info_from(self.origin_program)

1031
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1032 1033 1034 1035 1036 1037 1038 1039
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1040 1041 1042 1043 1044
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1054
            if self.sync_mode and self.trainer_num > 1:
1055
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1065

Q
qiaolongfei 已提交
1066
        # step 3
1067
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1068 1069 1070
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1071
        # step 3.2
T
typhoonzero 已提交
1072 1073 1074 1075
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1076 1077
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1078
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1079
        # step 3.3
W
Wu Yi 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1098
        # Iterate through the ops, and if an op and the optimize ops
1099
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1100
        # append it into the sub program.
T
typhoonzero 已提交
1101 1102 1103

        global_ops = []

1104 1105 1106
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1107 1108
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1109
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1110
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1111 1112
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1113
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1114
                self._append_pserver_non_opt_ops(block, op)
1115

Y
Yancey1989 已提交
1116
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1117 1118 1119 1120 1121 1122 1123 1124
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1125
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1126 1127 1128

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1129
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1130 1131

            # clone ops
Y
Yancey1989 已提交
1132 1133
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1134
                # clone sub_block of op
Y
Yancey1989 已提交
1135
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1136 1137

            # reset the block of op
W
Wu Yi 已提交
1138
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1139

1140
        # append lr decay ops to the child block if exists
1141
        lr_ops = self._get_lr_ops()
1142 1143
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1144 1145

        lr_decay_block_id = -1
1146
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1147
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1148
                pserver_program.num_blocks - 1)
1149
            optimize_blocks.append(lr_decay_block)
1150
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1151
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1152
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1153 1154
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1155
            lr_decay_block_id = lr_decay_block.idx
1156

T
typhoonzero 已提交
1157
        # append op to the current block
Q
qiaolongfei 已提交
1158
        grad_to_block_id = []
Q
qiaolongfei 已提交
1159
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1160
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1161
            per_opt_block = pserver_program._create_block(pre_block_idx)
1162
            optimize_blocks.append(per_opt_block)
1163
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1164
            # append grad merging ops before clip and weight decay
1165 1166
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1167
            for _, op in enumerate(self.optimize_ops):
1168
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1169
                # merged_var should be the input var name of L2Decay
1170 1171 1172
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1173 1174 1175
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1176 1177 1178 1179 1180 1181
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1182
                            op not in global_ops:
1183 1184 1185 1186 1187
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1188

1189
        # dedup grad to ids list
W
Wu Yi 已提交
1190
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1191
        # append global ops
1192
        if global_ops:
W
Wu Yi 已提交
1193
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1194
                pserver_program.num_blocks - 1)
1195
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1196
            for glb_op in global_ops:
X
Xi Chen 已提交
1197
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1198
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1199

1200
        # process distributed lookup_table
Q
qiaolongfei 已提交
1201
        prefetch_var_name_to_block_id = []
1202 1203
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1204
            table_opt_block = self._create_table_optimize_block(
1205
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1206
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1207
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1208
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1209 1210
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1211

T
tangwei12 已提交
1212
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1213 1214
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1215

1216
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1217 1218
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1219 1220 1221 1222 1223 1224
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1225
        attrs = {
1226
            "optimize_blocks": optimize_blocks,
1227
            "endpoint": endpoint,
1228
            "pserver_id": self.pserver_endpoints.index(endpoint),
1229 1230
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1231
            "grad_to_block_id": grad_to_block_id,
1232
            "sparse_grad_to_param": sparse_grad_to_param,
1233
            "lr_decay_block_id": lr_decay_block_id,
1234
        }
T
tangwei12 已提交
1235 1236

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1237
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1238 1239
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1240

T
tangwei12 已提交
1241 1242 1243 1244
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1245 1246 1247 1248 1249
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1250
            attrs=attrs)
1251

W
Wu Yi 已提交
1252
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1253 1254
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1255 1256
        return pserver_program

W
Wu Yi 已提交
1257 1258 1259
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1260 1261
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1262 1263 1264

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1265

W
Wu Yi 已提交
1266 1267
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1282 1283
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1284 1285
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1286 1287
        return pserver_prog, pserver_startup

1288 1289
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1290
                            pserver_program=None,
1291
                            startup_program=None):
T
typhoonzero 已提交
1292
        """
W
Wu Yi 已提交
1293 1294
        **Deprecated**

T
typhoonzero 已提交
1295 1296 1297
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1298 1299 1300

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1301 1302
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1303
                when initalizing
1304

Y
yi.wu 已提交
1305 1306
        Returns:
            Program: parameter server side startup program.
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1322 1323
        """
        s_prog = Program()
W
Wu Yi 已提交
1324
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1325
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1337
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1338
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1339
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1340 1341 1342 1343
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1344
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1345 1346
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1357 1358

            if op_on_pserver:
1359 1360 1361
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1362
                if op.type in [
1363 1364
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1365
                ]:
W
Wu Yi 已提交
1366
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1367 1368 1369 1370
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1371
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1381

T
typhoonzero 已提交
1382 1383
        return s_prog

1384 1385
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1386
        block_suffix = "block"
1387 1388 1389
        block_idx = 0
        offset = 0
        is_slice = False
1390

1391
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1392

1393 1394
        if not block_name:
            return is_slice, block_idx, offset
1395

1396 1397 1398 1399
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1400 1401 1402 1403 1404
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1468

Y
yi.wu 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1508
    def _init_splited_vars(self):
Y
yi.wu 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1532
        if self.config.slice_var_up:
Y
yi.wu 已提交
1533 1534
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1535 1536 1537
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1538
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1539 1540
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1541 1542 1543
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1544 1545 1546 1547
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1548 1549
        assert (len(grad_blocks) == len(param_blocks))

1550
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1551 1552
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1569
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1570 1571 1572 1573
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1574
        # dict(grad_splited_var -> param_splited_var)
1575
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1576 1577 1578
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1579
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1580
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1581 1582

        # create mapping of endpoint -> split var to create pserver side program
1583
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1593
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1594 1595
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1596
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1597
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1598 1599
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1600 1601
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1602 1603 1604 1605 1606 1607

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1608 1609
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1610
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1611 1612 1613
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1614 1615
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1616 1617
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1618 1619 1620
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1621
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1622
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1623 1624

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1625
                    self.all_out_emb_vars.append(out_var)
1626 1627

                    # delete lookup_table_op
1628
                    delete_ops(program.global_block(), [op])
1629 1630 1631
                    # break for loop
                    break

S
seiriosPlus 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1678
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1679
        # 2. add split_ids_op and send_op to send gradient to pservers
1680

1681 1682
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1683
        table_grad_name = grad_var_name(self.table_name)
1684 1685 1686 1687
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1688
                program.global_block()._insert_op(
1689 1690 1691 1692 1693
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1694 1695
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1696
                program.global_block()._insert_op(
1697
                    index=op_index + 2,
1698
                    type="send",
1699
                    inputs={'X': self.trainer_side_table_grad_list},
1700 1701 1702 1703 1704
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1705 1706
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1707
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1708 1709 1710 1711 1712
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1713
                    })
1714 1715 1716 1717 1718 1719
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1720
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1746
        return prefetch_var_name_to_block_id
1747 1748

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1749
                                     pre_block_idx, grad_to_block_id):
1750
        # STEP: create table optimize block
1751
        table_opt_block = pserver_program._create_block(pre_block_idx)
1752
        # create table param and grad var in pserver program
1753 1754
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1755 1756 1757
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1758 1759
        ][0]

Y
Yancey1989 已提交
1760 1761
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1762

T
tangwei12 已提交
1763
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1764 1765
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1766 1767 1768
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1769 1770
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1771
            shape=table_shape,
Y
Yancey1989 已提交
1772 1773 1774
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1775

1776 1777
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1778
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1779
            self.origin_program.global_block().vars[grad_var_name(
1780
                self.table_name)])
1781

1782 1783 1784
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1785

1786 1787 1788
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1789
            pserver_side_table_grad_list = [
1790 1791 1792 1793 1794 1795 1796 1797 1798
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1799
            # append sum op for pserver_side_table_grad_list
1800 1801
            table_opt_block.append_op(
                type="sum",
1802
                inputs={"X": pserver_side_table_grad_list},
1803 1804
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1805 1806
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1807
            origin_grad_name = grad_var.name
1808 1809
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1810 1811
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1812
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1813
            grad_var = pserver_program.global_block()._rename_var(
1814
                origin_grad_name, splited_grad_name)
1815 1816 1817 1818 1819 1820 1821

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1822
        # only support sgd now
1823 1824 1825
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1826
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1827

1828 1829 1830
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1831 1832
        return table_opt_block

T
tangwei12 已提交
1833 1834 1835 1836 1837
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1838
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1839
            name="kLookupTablePath",
T
tangwei12 已提交
1840 1841
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1842

W
Wu Yi 已提交
1843
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1844
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1845 1846 1847 1848
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1849
            attrs={'file_path': "none"})
T
tangwei12 已提交
1850 1851 1852

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1853 1854 1855 1856 1857
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1858
        Create vars for each split.
T
typhoonzero 已提交
1859 1860
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1861 1862 1863 1864
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1865
        Returns:
1866
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1867
                from original var name to each var split.
T
typhoonzero 已提交
1868
        """
1869 1870

        # varname->[(block_id, current_block_size)]
1871
        block_map = collections.OrderedDict()
1872

1873
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1874 1875
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1876
            if varname not in block_map:
T
typhoonzero 已提交
1877
                block_map[varname] = []
1878
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1879

M
minqiyang 已提交
1880
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1881
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1882
            if len(splited) == 1:
1883
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1884
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1885
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1886
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1887 1888 1889 1890 1891
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1892
                continue
T
typhoonzero 已提交
1893
            var_mapping[varname] = []
T
typhoonzero 已提交
1894 1895 1896 1897
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1898

T
typhoonzero 已提交
1899
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1900
                size = block[1]
M
minqiyang 已提交
1901
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1902 1903 1904
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1905
                new_var_name = ""
1906
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1907
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1908
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1909 1910
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1911
                                   (varname, i)
T
typhoonzero 已提交
1912
                var = program.global_block().create_var(
T
typhoonzero 已提交
1913 1914
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1915
                    dtype=orig_var.dtype,
1916
                    type=orig_var.type,
T
typhoonzero 已提交
1917
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1918
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1919
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1920
        return var_mapping
T
done  
typhoonzero 已提交
1921

1922
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1923 1924 1925 1926 1927 1928
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1929
            persistable=persistable)
T
done  
typhoonzero 已提交
1930

Q
Qiao Longfei 已提交
1931 1932 1933 1934 1935 1936 1937
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1938
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1939 1940
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1941
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1942
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1943
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1944 1945
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1946
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1947 1948 1949 1950
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1951 1952 1953 1954
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1955
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1956
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1957 1958 1959 1960
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1961
                attrs={
Q
Qiao Longfei 已提交
1962
                    "sections": height_sections,
1963 1964
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1965 1966 1967
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1968

T
typhoonzero 已提交
1969 1970 1971 1972
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1973
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1986
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1987 1988
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1989 1990
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1991
                return param_shape
1992 1993 1994
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1995 1996 1997
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1998 1999
        elif op_type == "sgd":
            pass
2000 2001 2002 2003
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2004 2005
        return orig_shape

2006 2007
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2008
        orig_var_name = ""
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2019
        else:
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2042
            return None
2043 2044 2045 2046
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2047
        else:
2048
            merged_var_name = orig_varname
2049 2050

        merged_var = pserver_block.vars[merged_var_name]
2051 2052 2053
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2054
            for i in range(self.trainer_num):
2055
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2056
                                   (merged_var_name, i)
2057 2058 2059 2060
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2061 2062
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2063 2064 2065 2066 2067
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2068
        return merged_var
T
typhoonzero 已提交
2069

W
Wu Yi 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2132
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2133 2134
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2135
        program = optimize_block.program
T
typhoonzero 已提交
2136
        pserver_block = program.global_block()
2137
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2148 2149 2150 2151
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2152
        for key in opt_op.input_names:
T
typhoonzero 已提交
2153
            if key == "Grad":
W
Wu Yi 已提交
2154 2155 2156
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2167
            elif key == "Param":
W
Wu Yi 已提交
2168
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2169 2170
                if not param_block:
                    return
T
typhoonzero 已提交
2171
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2172
                    name=param_block.name,
T
typhoonzero 已提交
2173
                    persistable=True,
T
typhoonzero 已提交
2174 2175 2176
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2177
            elif key == "LearningRate":
2178
                # learning rate variable has already be created by non-optimize op,
2179
                # don't create it once again.
2180
                lr_varname = opt_op.input(key)[0]
2181
                if lr_varname in pserver_block.vars:
2182 2183 2184 2185 2186 2187 2188 2189 2190
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2191

T
typhoonzero 已提交
2192
        for key in opt_op.input_names:
2193
            new_shape = None
W
Wu Yi 已提交
2194
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2195
                continue
2196
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2197
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2198
            # update accumulator variable shape
2199 2200
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2201
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2202 2203 2204 2205 2206
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2207

2208
        # change output's ParamOut variable
2209 2210
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2211
        outputs["ParamOut"] = new_inputs["Param"]
2212
        optimize_block.append_op(
T
typhoonzero 已提交
2213 2214
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2215
            outputs=outputs,
G
gongweibao 已提交
2216
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2217

2218 2219 2220 2221 2222 2223
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2235
        grad_block = None
M
minqiyang 已提交
2236
        for _, g in six.iteritems(var_dict):
2237
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2238
                # skip per trainer vars
2239
                if g.name.find(".trainer_") == -1:
2240
                    # only param or grads have splited blocks
2241 2242
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2243 2244
                        grad_block = g
                        break
2245 2246
        return grad_block

Q
Qiyang Min 已提交
2247 2248 2249
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2250
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2251 2252 2253 2254
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2255
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2256 2257 2258

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2259
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2260 2261 2262 2263
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2264
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2265

Y
Yancey1989 已提交
2266
        return block.append_op(
G
gongweibao 已提交
2267
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2268 2269

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2270
        program = optimize_block.program
2271
        # Append the ops for parameters that do not need to be optimized/updated
2272 2273
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2274
        for key, varlist in six.iteritems(inputs):
2275 2276
            if not isinstance(varlist, list):
                varlist = [varlist]
2277 2278 2279
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2280
                # for inputs/outputs
2281
                grad_block = self._get_pserver_grad_param_var(
2282 2283
                    var, program.global_block().vars)
                if grad_block:
2284
                    varlist[i] = grad_block
2285
                elif var.name not in program.global_block().vars:
2286 2287 2288 2289 2290
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2291

2292 2293
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2294
        for key, varlist in six.iteritems(outputs):
2295 2296
            if not isinstance(varlist, list):
                varlist = [varlist]
2297 2298 2299
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2300 2301
                    var, program.global_block().vars)
                if grad_block:
2302
                    varlist[i] = grad_block
2303
                elif var.name not in program.global_block().vars:
2304 2305 2306 2307 2308
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2309

Y
Yancey1989 已提交
2310
        return optimize_block.append_op(
T
typhoonzero 已提交
2311
            type=opt_op.type,
T
typhoonzero 已提交
2312 2313
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2314
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2315

2316 2317 2318 2319
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2320
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2321
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2322 2323 2324 2325 2326 2327
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2328 2329
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2330 2331 2332 2333 2334 2335
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2336
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2337
        if "Param" in op.input_names and \
T
tangwei12 已提交
2338
                "LearningRate" in op.input_names:
2339 2340 2341 2342 2343 2344 2345
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2346
        if op.input("Param")[0] in param_names:
2347 2348 2349
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2350
                param = op.input("Param")[0]
T
typhoonzero 已提交
2351
                if same_or_split_var(n, param) and n != param:
2352 2353 2354
                    return True
            return False

T
typhoonzero 已提交
2355
    def _get_input_map_from_op(self, varmap, op):
2356
        """Returns a dict from op input name to the vars in varmap."""
2357
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2369
        """Returns a dict from op output name to the vars in varmap."""
2370
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2380 2381

    def _get_lr_ops(self):
2382 2383 2384
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2385 2386 2387 2388
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2389 2390 2391 2392 2393
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2394 2395 2396 2397
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2398
            if self._is_optimizer_op(op):
2399 2400 2401 2402
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2403
        block = self.origin_program.global_block()
2404 2405 2406 2407 2408
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2409

2410 2411 2412 2413 2414
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2415
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2416 2417 2418 2419 2420 2421
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2422 2423
                    # we only need to append op for once
                    break
2424
        return lr_ops
Y
Yancey1989 已提交
2425

W
Wu Yi 已提交
2426 2427 2428 2429 2430
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2431 2432
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2433 2434 2435
            return True
        return False

Y
Yancey1989 已提交
2436
    def _get_optimize_pass(self):
2437
        """
2438
        Get optimizer operators, parameters and gradients from origin_program
2439 2440
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2441
            params_grads (dict): parameter->gradient.
2442
        """
Y
Yancey1989 已提交
2443 2444 2445
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2446 2447
        # tmp set to dedup
        optimize_params = set()
2448
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2449
        for op in block.ops:
W
Wu Yi 已提交
2450
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2451
                opt_ops.append(op)
2452 2453 2454 2455 2456 2457
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2458 2459
                        params_grads.append([
                            origin_var_dict[param_name],
2460
                            origin_var_dict[grad_name]
2461
                        ])
Y
Yancey1989 已提交
2462 2463 2464
            else:
                pass
        return opt_ops, params_grads