distribute_transpiler.py 109.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
55
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
56 57
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
58
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
59
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
60 61 62 63 64 65 66 67 68
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
69 70


T
typhoonzero 已提交
71 72 73 74 75 76
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
77

T
typhoonzero 已提交
78 79
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
80 81


82 83 84 85
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
86
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
87
    """
88 89 90 91 92 93
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
94
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
95 96 97

    Args:
        var_list (list): List of variables.
98 99
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
100 101
        min_block_size (int): Minimum splitted block size.
    Returns:
102
        blocks (list[(varname, block_id, current_block_size)]): A list
103
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
104 105 106
    """
    blocks = []
    for var in var_list:
107
        split_count = slice_count
T
typhoonzero 已提交
108 109 110 111
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
112
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
113 114 115 116 117 118 119 120 121
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123
        split_count = int(math.ceil(var_numel / float(block_size)))
124
        for block_id in range(split_count):
T
typhoonzero 已提交
125 126 127 128 129 130 131
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
132 133
class DistributeTranspilerConfig(object):
    """
134
    A configuration class that provide support for transpiler distributed jobs.
135 136 137
    Some important parameters are explained as follows:


H
haowang101779990 已提交
138 139
    .. py:attribute:: slice_var_up (bool)

140
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
141 142 143

    .. py:attribute:: split_method (PSDispatcher)

144 145 146 147
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
148 149 150

    .. py:attribute:: min_block_size (int)

151
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
152 153

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
154
          We can use bandwidth effiently when data size is larger than 2MB.If you
155 156 157 158
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
159

160 161 162
    Examples:
        .. code-block:: python

163 164 165
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

166 167
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
168 169
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
170 171 172 173 174
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
175
    enable_dc_asgd = False
176
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
177
    mode = "pserver"
178
    print_log = False
W
Wu Yi 已提交
179
    wait_port = True
Q
Qiao Longfei 已提交
180
    # split the send recv var in runtime
1
123malin 已提交
181 182
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
183

184 185 186 187
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

188 189 190 191 192 193 194
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

195
    # if mode is collective
196
    # supported modes: grad_allreduce, local_sgd
197 198
    collective_mode = None

199 200 201 202 203
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
204
        return self.__runtime_split_send_recv
205 206 207 208 209

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
210
        if value and self.__sync_mode:
211 212 213
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
214
        self.__runtime_split_send_recv = value
215 216 217

    @property
    def sync_mode(self):
1
123malin 已提交
218
        return self.__sync_mode
219 220 221 222 223

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
224
        if value and self.__runtime_split_send_recv:
225 226 227
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
228 229 230 231 232 233 234 235 236 237 238
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
239

G
gongweibao 已提交
240

Y
gen rst  
yi.wu 已提交
241
class DistributeTranspiler(object):
Y
yi.wu 已提交
242 243 244 245
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
246
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
247

W
Wu Yi 已提交
248 249 250 251 252 253 254 255 256
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
257 258 259 260

    Examples:
        .. code-block:: python

261 262
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
263 264 265 266 267 268 269 270
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
271 272 273 274 275 276
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
277
            role = "PSERVER"
T
Tink_Y 已提交
278 279 280 281 282 283
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
284
                                                                pserver_program)
T
Tink_Y 已提交
285 286 287 288
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
289 290
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
291 292
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
293
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
294
            t = fluid.DistributeTranspiler(config=config)
295
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
296
            exe = fluid.ParallelExecutor(
297 298 299
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
300 301
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
302
    """
Y
Yancey1989 已提交
303

G
gongweibao 已提交
304 305 306 307 308
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
309
        self._set_server_config()
G
gongweibao 已提交
310 311 312 313

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

314 315 316
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
317 318
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
319
        self.counter_var = None
G
gongweibao 已提交
320

1
123malin 已提交
321 322 323 324 325 326 327 328 329 330
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
331 332 333 334
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
335 336
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
337 338 339 340 341 342
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
343 344
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
345 346 347

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
348 349 350 351 352 353 354 355 356

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
357 358 359 360
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
361 362 363 364 365
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
366 367 368 369 370
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
371 372 373 374 375 376 377
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
378 379 380 381 382
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

383 384 385 386 387 388 389 390 391 392 393 394
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
395
        elif collective_mode != "single_process_multi_thread":
396 397
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
398 399
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
400 401 402 403 404 405 406 407 408 409
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
410
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
411
        elif collective_mode == 'local_sgd':
412
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
413 414
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
415 416 417 418 419 420 421 422 423 424 425
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
426
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
427
        sparse_update_ops = []
T
tangwei12 已提交
428
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
429 430
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
431
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
432 433 434
                sparse_update_ops.append(op)
        return sparse_update_ops

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
510

511 512
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
513 514 515 516 517 518

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
519

520 521 522 523 524
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
525
                  sync_mode=True,
W
Wu Yi 已提交
526 527
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
528
        """
529
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
530 531 532 533 534 535

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
536 537
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
538 539
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
540 541 542
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
543
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
544 545
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
546 547 548
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
549 550 551 552 553 554 555 556 557 558 559

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
560 561 562
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
563 564
        if startup_program is None:
            startup_program = default_startup_program()
565
        self.origin_program = program
W
Wu Yi 已提交
566 567
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
568

W
Wu Yi 已提交
569 570
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
571
            self.origin_program._trainers_endpoints = trainers.split(",")
572 573
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
574 575 576 577 578
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
579
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
580 581 582 583 584 585 586 587 588 589 590
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
591 592 593 594
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
595 596
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
597 598
            return

599 600 601 602 603 604 605 606 607 608 609
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

610
        self.trainer_num = trainers
611
        self.sync_mode = sync_mode
612 613 614
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
615
        self.vars_overview = VarsDistributed()
616 617
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
618
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
619 620
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
621
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
622
        self.grad_name_to_param_name = dict()
623 624
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
625
            self.grad_name_to_param_name[grad_var.name] = param_var.name
626

Q
Qiao Longfei 已提交
627
        # get all sparse update ops
Q
Qiao Longfei 已提交
628
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
629
            self.origin_program)
Q
Qiao Longfei 已提交
630
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
631
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
632
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
633

T
tangwei12 已提交
634 635 636
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
637
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
638 639 640
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

641
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
642
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
643
        self._init_splited_vars()
644

G
gongweibao 已提交
645
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
646
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
647
        send_vars = []
648 649 650 651 652 653

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
654
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
655

G
gongweibao 已提交
656
        if not self.config.slice_var_up:
657 658
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
659

660
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
661

662
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
663
            eplist = ps_dispatcher.dispatch(splited_vars)
664

G
gongweibao 已提交
665
            if not self.config.slice_var_up:
666 667
                assert (len(splited_vars) == 1)

668
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
669
            if len(splited_vars) == 1:
670
                splited_grad_varname = splited_vars[0].name
671 672
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
673

Y
Yancey1989 已提交
674
            elif len(splited_vars) > 1:
675
                orig_var = program.global_block().vars[splited_grad_varname]
676 677
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
678

Q
Qiao Longfei 已提交
679 680 681 682
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
683 684
            else:
                AssertionError("Can not insert the send op by original "
685
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
686

687 688 689 690 691 692 693
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
694 695
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
696
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
697

Q
Qiao Longfei 已提交
698 699 700 701 702 703 704 705 706 707 708
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
709 710 711 712
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
713
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
714
                index=index + 1,
715
                type="send",
Q
Qiao Longfei 已提交
716
                inputs={"X": send_input_vars},
717
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
718 719
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
720 721
                    "sections": sections,
                    "send_varnames": send_varnames,
722
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
723 724 725
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
726
                    ]
Y
Yancey1989 已提交
727
                })
Y
update  
Yancey1989 已提交
728 729
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
730 731

        if self.sync_mode:
732
            fetch_barrier_input = []
W
Wu Yi 已提交
733 734
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
735 736 737 738
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
739
            input_deps = list(self.grad_name_to_send_dummy_out.values())
740

Y
Yancey1989 已提交
741 742
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
743
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
744
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
745 746
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
747
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
748
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
749
                })
750
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
776

G
gongweibao 已提交
777
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
778
        recv_vars = []
Y
update  
Yancey1989 已提交
779
        for _, var in enumerate(send_vars):
780
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
781
        ps_dispatcher.reset()
Y
Yancey1989 已提交
782 783
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
784
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
785 786
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
787

788 789 790 791
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

792 793
        need_sparse_update_params = {}

Y
Yancey1989 已提交
794
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
795
        all_recv_outputs = []
796
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
797
            eps = []
Q
Qiao Longfei 已提交
798
            table_names = []
Y
Yancey1989 已提交
799 800 801
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
802
                table_names.append(var.name)
W
Wu Yi 已提交
803 804 805 806
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
807
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
808
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
809

W
Wu Yi 已提交
810 811 812 813 814 815 816 817 818
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
819
            if param_varname in self.sparse_param_to_height_sections:
820 821 822 823 824
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

825
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
826
            else:
Q
Qiao Longfei 已提交
827 828 829
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
830
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
831
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
832
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
833

Q
Qiao Longfei 已提交
834 835 836 837 838 839
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
840
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
841 842 843
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
844
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
845
                    })
846 847
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
848

849 850
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
851
        if self.sync_mode:
W
Wu Yi 已提交
852
            # form a WAW dependency
Q
qiaolongfei 已提交
853 854
            program.global_block().append_op(
                type="fetch_barrier",
855
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
856
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
857 858
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
859
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
860 861
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
862

863 864
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
865
            if param_varname not in self.sparse_param_to_height_sections:
866 867
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
868 869 870 871 872 873 874 875
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
876

G
gongweibao 已提交
877 878
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

879
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
880 881
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
882
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
883

884 885 886
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
959
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
960
        """
C
Chengmo 已提交
961 962 963 964 965 966 967 968 969
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
970 971 972

        Returns:
            Program: trainer side program.
973 974 975 976 977 978 979 980 981 982 983 984

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
985
        """
T
typhoonzero 已提交
986
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
987
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
988

T
tangwei12 已提交
989 990 991 992
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
993 994
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
995
        self._delete_trainer_optimizer(is_startup=False)
996

997
        self.origin_program.__str__()
T
tangwei12 已提交
998
        self.startup_program.__str__()
G
gongweibao 已提交
999

W
Wu Yi 已提交
1000 1001 1002
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1003
        return self.origin_program
T
typhoonzero 已提交
1004

W
Wu Yi 已提交
1005
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1006 1007 1008 1009
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1010
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1011
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1012 1013 1014 1015

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1016
        startup_program = self.startup_program
G
gongweibao 已提交
1017 1018 1019

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1020 1021 1022 1023
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1024

M
minqiyang 已提交
1025
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1026 1027
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1048
                inputs={"X": []},
G
gongweibao 已提交
1049 1050 1051
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1052
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1053 1054 1055
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1056 1057
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1058 1059 1060
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1061
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1062 1063
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1064
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1065 1066 1067
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1068
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1069 1070
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1071
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1072 1073
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1074
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1075
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1086 1087 1088 1089 1090 1091 1092 1093
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1094 1095
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1096 1097 1098 1099 1100 1101
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1102

Y
yi.wu 已提交
1103 1104
        Args:
            endpoint (str): current parameter server endpoint.
1105

Y
yi.wu 已提交
1106 1107
        Returns:
            Program: the program for current parameter server to run.
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1122
        """
Y
yi.wu 已提交
1123 1124 1125 1126
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1127 1128 1129
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1130 1131
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1132
        pserver_program.random_seed = self.origin_program.random_seed
1133 1134
        pserver_program._copy_dist_param_info_from(self.origin_program)

1135
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1136 1137 1138 1139 1140 1141 1142 1143
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1144 1145 1146 1147 1148
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1158
            if self.sync_mode and self.trainer_num > 1:
1159
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1169

Q
qiaolongfei 已提交
1170
        # step 3
1171
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1172 1173 1174
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1175
        # step 3.2
T
typhoonzero 已提交
1176 1177 1178 1179
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1180 1181
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1182
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1183
        # step 3.3
W
Wu Yi 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1202
        # Iterate through the ops, and if an op and the optimize ops
1203
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1204
        # append it into the sub program.
T
typhoonzero 已提交
1205 1206 1207

        global_ops = []

1208 1209 1210
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1211 1212
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1213
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1214
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1215 1216
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1217
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1218
                self._append_pserver_non_opt_ops(block, op)
1219

Y
Yancey1989 已提交
1220
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1221 1222 1223 1224 1225 1226 1227 1228
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1229
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1230 1231 1232

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1233
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1234 1235

            # clone ops
Y
Yancey1989 已提交
1236 1237
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1238
                # clone sub_block of op
Y
Yancey1989 已提交
1239
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1240 1241

            # reset the block of op
W
Wu Yi 已提交
1242
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1243

1244
        # append lr decay ops to the child block if exists
1245
        lr_ops = self._get_lr_ops()
1246 1247
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1248 1249

        lr_decay_block_id = -1
1250
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1251
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1252
                pserver_program.num_blocks - 1)
1253
            optimize_blocks.append(lr_decay_block)
1254
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1255
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1256
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1257 1258
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1259
            lr_decay_block_id = lr_decay_block.idx
1260

T
typhoonzero 已提交
1261
        # append op to the current block
Q
qiaolongfei 已提交
1262
        grad_to_block_id = []
Q
qiaolongfei 已提交
1263
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1264
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1265
            per_opt_block = pserver_program._create_block(pre_block_idx)
1266
            optimize_blocks.append(per_opt_block)
1267
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1268
            # append grad merging ops before clip and weight decay
1269 1270
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1271
            for _, op in enumerate(self.optimize_ops):
1272
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1273
                # merged_var should be the input var name of L2Decay
1274 1275 1276
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1277 1278 1279
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1280 1281 1282 1283 1284 1285
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1286
                            op not in global_ops:
1287 1288 1289 1290 1291
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1292

1293
        # dedup grad to ids list
W
Wu Yi 已提交
1294
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1295
        # append global ops
1296
        if global_ops:
W
Wu Yi 已提交
1297
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1298
                pserver_program.num_blocks - 1)
1299
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1300
            for glb_op in global_ops:
X
Xi Chen 已提交
1301
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1302
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1303

1304
        # process distributed lookup_table
Q
qiaolongfei 已提交
1305
        prefetch_var_name_to_block_id = []
1306 1307
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1308
            table_opt_block = self._create_table_optimize_block(
1309
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1310
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1311
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1312
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1313 1314
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1315

T
tangwei12 已提交
1316
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1317 1318
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1319

1320
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1321 1322
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1323 1324 1325 1326 1327 1328
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1329
        attrs = {
1330
            "optimize_blocks": optimize_blocks,
1331
            "endpoint": endpoint,
1332
            "pserver_id": self.pserver_endpoints.index(endpoint),
1333 1334
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1335
            "grad_to_block_id": grad_to_block_id,
1336
            "sparse_grad_to_param": sparse_grad_to_param,
1337
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1338 1339 1340 1341
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1342
        }
T
tangwei12 已提交
1343 1344

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1345
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1346 1347
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1348

T
tangwei12 已提交
1349 1350 1351 1352
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1353 1354 1355 1356 1357
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1358
            attrs=attrs)
1359

W
Wu Yi 已提交
1360
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1361 1362
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1363 1364
        return pserver_program

W
Wu Yi 已提交
1365 1366 1367
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1368 1369
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1370 1371 1372

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1373

W
Wu Yi 已提交
1374 1375
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1390 1391
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1392 1393
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1394 1395
        return pserver_prog, pserver_startup

1396 1397
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1398
                            pserver_program=None,
1399
                            startup_program=None):
T
typhoonzero 已提交
1400
        """
W
Wu Yi 已提交
1401 1402
        **Deprecated**

T
typhoonzero 已提交
1403 1404 1405
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1406 1407 1408

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1409 1410
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1411
                when initalizing
1412

Y
yi.wu 已提交
1413 1414
        Returns:
            Program: parameter server side startup program.
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1430 1431
        """
        s_prog = Program()
W
Wu Yi 已提交
1432
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1433
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1445
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1446
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1447
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1448 1449 1450 1451
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1452
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1453 1454
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1465 1466

            if op_on_pserver:
1467 1468 1469
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1470
                if op.type in [
1471 1472
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1473
                ]:
W
Wu Yi 已提交
1474
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1475 1476 1477 1478
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1479
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1489

T
typhoonzero 已提交
1490 1491
        return s_prog

1492 1493
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1494
        block_suffix = "block"
1495 1496 1497
        block_idx = 0
        offset = 0
        is_slice = False
1498

1499
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1500

1501 1502
        if not block_name:
            return is_slice, block_idx, offset
1503

1504 1505 1506 1507
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1508 1509 1510 1511 1512
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1538 1539 1540 1541
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1579

Y
yi.wu 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1619
    def _init_splited_vars(self):
Y
yi.wu 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1643
        if self.config.slice_var_up:
Y
yi.wu 已提交
1644 1645
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1646 1647 1648
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1649
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1650 1651
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1652 1653 1654
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1655 1656 1657 1658
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1659 1660
        assert (len(grad_blocks) == len(param_blocks))

1661
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1662 1663
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1680
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1681 1682 1683 1684
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1685
        # dict(grad_splited_var -> param_splited_var)
1686
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1687 1688 1689
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1690
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1691
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1692 1693

        # create mapping of endpoint -> split var to create pserver side program
1694
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1704
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1705 1706
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1707
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1708
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1709 1710
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1711 1712
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1713 1714 1715 1716 1717 1718

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1719 1720
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1721
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1722 1723 1724
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1725 1726
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1727 1728
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1729 1730 1731
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1732
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1733
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1734 1735

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1736
                    self.all_out_emb_vars.append(out_var)
1737 1738

                    # delete lookup_table_op
1739
                    delete_ops(program.global_block(), [op])
1740 1741 1742
                    # break for loop
                    break

S
seiriosPlus 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1789
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1790
        # 2. add split_ids_op and send_op to send gradient to pservers
1791

1792 1793
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1794
        table_grad_name = grad_var_name(self.table_name)
1795 1796 1797 1798
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1799
                program.global_block()._insert_op(
1800 1801 1802 1803 1804
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1805 1806
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1807
                program.global_block()._insert_op(
1808
                    index=op_index + 2,
1809
                    type="send",
1810
                    inputs={'X': self.trainer_side_table_grad_list},
1811 1812 1813 1814 1815
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1816 1817
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1818
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1819 1820 1821 1822 1823
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1824
                    })
1825 1826 1827 1828 1829 1830
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1831
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1857
        return prefetch_var_name_to_block_id
1858 1859

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1860
                                     pre_block_idx, grad_to_block_id):
1861
        # STEP: create table optimize block
1862
        table_opt_block = pserver_program._create_block(pre_block_idx)
1863
        # create table param and grad var in pserver program
1864 1865
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1866 1867 1868
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1869 1870
        ][0]

Y
Yancey1989 已提交
1871 1872
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1873

T
tangwei12 已提交
1874
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1875 1876
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1877 1878 1879
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1880 1881
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1882
            shape=table_shape,
Y
Yancey1989 已提交
1883 1884 1885
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1886

1887 1888
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1889
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1890
            self.origin_program.global_block().vars[grad_var_name(
1891
                self.table_name)])
1892

1893 1894 1895
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1896

1897 1898 1899
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1900
            pserver_side_table_grad_list = [
1901 1902 1903 1904 1905 1906 1907 1908 1909
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1910
            # append sum op for pserver_side_table_grad_list
1911 1912
            table_opt_block.append_op(
                type="sum",
1913
                inputs={"X": pserver_side_table_grad_list},
1914 1915
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1916 1917
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1918
            origin_grad_name = grad_var.name
1919 1920
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1921 1922
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1923
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1924
            grad_var = pserver_program.global_block()._rename_var(
1925
                origin_grad_name, splited_grad_name)
1926 1927 1928 1929 1930 1931 1932

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1933
        # only support sgd now
1934 1935 1936
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1937
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1938

1939 1940 1941
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1942 1943
        return table_opt_block

T
tangwei12 已提交
1944 1945 1946 1947 1948
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1949
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1950
            name="kLookupTablePath",
T
tangwei12 已提交
1951 1952
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1953

W
Wu Yi 已提交
1954
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1955
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1956 1957 1958 1959
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1960
            attrs={'file_path': "none"})
T
tangwei12 已提交
1961 1962 1963

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1964 1965 1966 1967 1968
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1969
        Create vars for each split.
T
typhoonzero 已提交
1970 1971
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1972 1973 1974 1975
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1976
        Returns:
1977
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1978
                from original var name to each var split.
T
typhoonzero 已提交
1979
        """
1980 1981

        # varname->[(block_id, current_block_size)]
1982
        block_map = collections.OrderedDict()
1983

1984
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1985 1986
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1987
            if varname not in block_map:
T
typhoonzero 已提交
1988
                block_map[varname] = []
1989
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1990

M
minqiyang 已提交
1991
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1992
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1993
            if len(splited) == 1:
1994
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1995
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1996
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1997
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1998 1999 2000 2001 2002
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2003
                continue
T
typhoonzero 已提交
2004
            var_mapping[varname] = []
T
typhoonzero 已提交
2005 2006 2007 2008
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2009

T
typhoonzero 已提交
2010
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2011
                size = block[1]
M
minqiyang 已提交
2012
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2013 2014 2015
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2016
                new_var_name = ""
2017
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2018
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2019
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2020 2021
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2022
                                   (varname, i)
T
typhoonzero 已提交
2023
                var = program.global_block().create_var(
T
typhoonzero 已提交
2024 2025
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2026
                    dtype=orig_var.dtype,
2027
                    type=orig_var.type,
T
typhoonzero 已提交
2028
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2029
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2030
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2031
        return var_mapping
T
done  
typhoonzero 已提交
2032

2033
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2034 2035 2036 2037 2038 2039
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2040
            persistable=persistable)
T
done  
typhoonzero 已提交
2041

Q
Qiao Longfei 已提交
2042 2043 2044 2045 2046 2047 2048
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2049
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2050 2051
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2052
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2053
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2054
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2055 2056
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2057
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2058 2059 2060 2061
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2062 2063 2064 2065
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2066
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2067
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2068 2069 2070 2071
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2072
                attrs={
Q
Qiao Longfei 已提交
2073
                    "sections": height_sections,
2074 2075
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2076 2077 2078
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2079

T
typhoonzero 已提交
2080 2081 2082 2083
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2084
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2097
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2098 2099
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2100 2101
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2102
                return param_shape
2103 2104 2105
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2106 2107 2108
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2109 2110
        elif op_type == "sgd":
            pass
2111 2112 2113 2114
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2115 2116
        return orig_shape

2117 2118
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2119
        orig_var_name = ""
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2130
        else:
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2153
            return None
2154 2155 2156 2157
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2158
        else:
2159
            merged_var_name = orig_varname
2160 2161

        merged_var = pserver_block.vars[merged_var_name]
2162 2163 2164
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2165
            for i in range(self.trainer_num):
2166
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2167
                                   (merged_var_name, i)
2168 2169 2170 2171
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2172 2173
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2174 2175 2176 2177 2178
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2179
        return merged_var
T
typhoonzero 已提交
2180

W
Wu Yi 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2243
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2244 2245
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2246
        program = optimize_block.program
T
typhoonzero 已提交
2247
        pserver_block = program.global_block()
2248
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2259 2260 2261 2262
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2263
        for key in opt_op.input_names:
T
typhoonzero 已提交
2264
            if key == "Grad":
W
Wu Yi 已提交
2265 2266 2267
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2278
            elif key == "Param":
W
Wu Yi 已提交
2279
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2280 2281
                if not param_block:
                    return
T
typhoonzero 已提交
2282
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2283
                    name=param_block.name,
T
typhoonzero 已提交
2284
                    persistable=True,
T
typhoonzero 已提交
2285 2286 2287
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2288
            elif key == "LearningRate":
2289
                # learning rate variable has already be created by non-optimize op,
2290
                # don't create it once again.
2291
                lr_varname = opt_op.input(key)[0]
2292
                if lr_varname in pserver_block.vars:
2293 2294 2295 2296 2297 2298 2299 2300 2301
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2302

T
typhoonzero 已提交
2303
        for key in opt_op.input_names:
2304
            new_shape = None
2305 2306 2307 2308
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2309
                continue
2310
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2311
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2312
            # update accumulator variable shape
2313 2314
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2315
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2316 2317 2318 2319 2320
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2321

2322
        # change output's ParamOut variable
2323 2324
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2325
        outputs["ParamOut"] = new_inputs["Param"]
2326
        optimize_block.append_op(
T
typhoonzero 已提交
2327 2328
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2329
            outputs=outputs,
G
gongweibao 已提交
2330
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2331

2332 2333 2334 2335 2336 2337
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2349
        grad_block = None
M
minqiyang 已提交
2350
        for _, g in six.iteritems(var_dict):
2351
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2352
                # skip per trainer vars
2353
                if g.name.find(".trainer_") == -1:
2354
                    # only param or grads have splited blocks
2355 2356
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2357 2358
                        grad_block = g
                        break
2359 2360
        return grad_block

Q
Qiyang Min 已提交
2361 2362 2363
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2364
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2365 2366 2367 2368
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2369
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2370 2371 2372

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2373
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2374 2375 2376 2377
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2378
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2379

Y
Yancey1989 已提交
2380
        return block.append_op(
G
gongweibao 已提交
2381
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2382 2383

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2384
        program = optimize_block.program
2385
        # Append the ops for parameters that do not need to be optimized/updated
2386 2387
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2388
        for key, varlist in six.iteritems(inputs):
2389 2390
            if not isinstance(varlist, list):
                varlist = [varlist]
2391 2392 2393
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2394
                # for inputs/outputs
2395
                grad_block = self._get_pserver_grad_param_var(
2396 2397
                    var, program.global_block().vars)
                if grad_block:
2398
                    varlist[i] = grad_block
2399
                elif var.name not in program.global_block().vars:
2400 2401 2402 2403 2404
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2405

2406 2407
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2408
        for key, varlist in six.iteritems(outputs):
2409 2410
            if not isinstance(varlist, list):
                varlist = [varlist]
2411 2412 2413
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2414 2415
                    var, program.global_block().vars)
                if grad_block:
2416
                    varlist[i] = grad_block
2417
                elif var.name not in program.global_block().vars:
2418 2419 2420 2421 2422
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2423

Y
Yancey1989 已提交
2424
        return optimize_block.append_op(
T
typhoonzero 已提交
2425
            type=opt_op.type,
T
typhoonzero 已提交
2426 2427
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2428
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2429

2430 2431 2432 2433
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2434
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2435
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2436 2437 2438 2439 2440 2441
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2442 2443
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2444 2445 2446 2447 2448 2449
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2450
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2451
        if "Param" in op.input_names and \
T
tangwei12 已提交
2452
                "LearningRate" in op.input_names:
2453 2454 2455 2456 2457 2458 2459
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2460
        if op.input("Param")[0] in param_names:
2461 2462 2463
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2464
                param = op.input("Param")[0]
T
typhoonzero 已提交
2465
                if same_or_split_var(n, param) and n != param:
2466 2467 2468
                    return True
            return False

T
typhoonzero 已提交
2469
    def _get_input_map_from_op(self, varmap, op):
2470
        """Returns a dict from op input name to the vars in varmap."""
2471
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2483
        """Returns a dict from op output name to the vars in varmap."""
2484
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2494 2495

    def _get_lr_ops(self):
2496 2497
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2498
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2499 2500 2501 2502
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2549 2550 2551 2552 2553
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2554 2555 2556 2557
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2558
            if self._is_optimizer_op(op):
2559 2560 2561 2562
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2563
        block = self.origin_program.global_block()
2564 2565 2566 2567 2568
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2569

2570 2571 2572 2573 2574
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2575
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2576 2577 2578 2579 2580 2581
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2582 2583
                    # we only need to append op for once
                    break
2584
        return lr_ops
Y
Yancey1989 已提交
2585

W
Wu Yi 已提交
2586 2587 2588 2589 2590
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2591 2592
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2593 2594 2595
            return True
        return False

Y
Yancey1989 已提交
2596
    def _get_optimize_pass(self):
2597
        """
2598
        Get optimizer operators, parameters and gradients from origin_program
2599 2600
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2601
            params_grads (dict): parameter->gradient.
2602
        """
Y
Yancey1989 已提交
2603 2604 2605
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2606 2607
        # tmp set to dedup
        optimize_params = set()
2608
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2609
        for op in block.ops:
W
Wu Yi 已提交
2610
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2611
                opt_ops.append(op)
2612 2613 2614 2615 2616 2617
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2618 2619
                        params_grads.append([
                            origin_var_dict[param_name],
2620
                            origin_var_dict[grad_name]
2621
                        ])
Y
Yancey1989 已提交
2622 2623 2624
            else:
                pass
        return opt_ops, params_grads