distribute_transpiler.py 88.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
Q
Qiao Longfei 已提交
159 160
    # split the send recv var in runtime
    runtime_split_send_recv = False
161
    sync_mode = True
G
gongweibao 已提交
162 163


Y
gen rst  
yi.wu 已提交
164
class DistributeTranspiler(object):
Y
yi.wu 已提交
165 166 167 168
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
169
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
170

W
Wu Yi 已提交
171 172 173 174 175 176 177 178 179
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
180 181 182 183

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
197
                                                                pserver_program)
T
Tink_Y 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
212
    """
Y
Yancey1989 已提交
213

G
gongweibao 已提交
214 215 216 217 218 219 220 221 222
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

223 224 225
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
226 227 228
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
229 230 231 232
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
233 234
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
235 236 237 238 239 240
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
241 242
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
259
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
260
        sparse_update_ops = []
261
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
262 263
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
264
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
265 266 267
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
268
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
269
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
270 271 272
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
273
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
274
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
275 276 277 278 279 280 281
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
282

283 284 285 286 287
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
288
                  sync_mode=True,
W
Wu Yi 已提交
289 290
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
291
        """
Y
yi.wu 已提交
292 293 294 295 296 297 298
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
299 300
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
301 302
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
303 304 305
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
306
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
307 308
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
309 310 311
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
312 313 314
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
315 316
        if startup_program is None:
            startup_program = default_startup_program()
317
        self.origin_program = program
W
Wu Yi 已提交
318 319
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
320

W
Wu Yi 已提交
321 322
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
323
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
324 325 326 327
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
328 329
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
330 331
            return

332
        self.trainer_num = trainers
333
        self.sync_mode = sync_mode
334 335 336
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
337
        self.vars_overview = VarsDistributed()
338 339
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
340
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
341 342
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
343
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
344
        self.grad_name_to_param_name = dict()
345 346
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
347
            self.grad_name_to_param_name[grad_var.name] = param_var.name
348

Q
Qiao Longfei 已提交
349
        # get all sparse update ops
Q
Qiao Longfei 已提交
350
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
351
            self.origin_program)
Q
Qiao Longfei 已提交
352
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
353 354
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
355 356 357
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
358
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
359 360 361
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

362
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
363
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
364
        self._init_splited_vars()
365

G
gongweibao 已提交
366
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
367
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
368
        send_vars = []
369 370 371 372 373 374

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
375
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
376

G
gongweibao 已提交
377
        if not self.config.slice_var_up:
378 379
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
380

381
        self.grad_name_to_send_dummy_out = dict()
382
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
383
            eplist = ps_dispatcher.dispatch(splited_vars)
384

G
gongweibao 已提交
385
            if not self.config.slice_var_up:
386 387
                assert (len(splited_vars) == 1)

388
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
389
            if len(splited_vars) == 1:
390
                splited_grad_varname = splited_vars[0].name
391 392
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
393 394
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
395
                        grad_varname]
Q
Qiao Longfei 已提交
396 397 398 399
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
400
            elif len(splited_vars) > 1:
401
                orig_var = program.global_block().vars[splited_grad_varname]
402 403
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
404 405 406 407
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
408 409
            else:
                AssertionError("Can not insert the send op by original "
410
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
411

W
Wu Yi 已提交
412 413
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
414
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
415

Q
Qiao Longfei 已提交
416 417 418 419 420 421 422 423 424 425 426
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
427 428 429 430
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
431
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
432
                index=index + 1,
433
                type="send",
Q
Qiao Longfei 已提交
434
                inputs={"X": send_input_vars},
435
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
436 437
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
438 439
                    "sections": sections,
                    "send_varnames": send_varnames,
440
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
441 442 443 444
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
445
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
446
                })
Y
update  
Yancey1989 已提交
447 448
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
449 450

        if self.sync_mode:
W
Wu Yi 已提交
451 452
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
453 454 455 456
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
457
            input_deps = list(self.grad_name_to_send_dummy_out.values())
458

Y
Yancey1989 已提交
459 460
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
461
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
462
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
463 464
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
465 466
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
467
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
468
                })
Y
Yancey1989 已提交
469

G
gongweibao 已提交
470
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
471
        recv_vars = []
Y
update  
Yancey1989 已提交
472
        for _, var in enumerate(send_vars):
473
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
474
        ps_dispatcher.reset()
Y
Yancey1989 已提交
475 476
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
477
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
478 479
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
480

481 482 483 484
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
485
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
486
        all_recv_outputs = []
487
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
488
            eps = []
Q
Qiao Longfei 已提交
489
            table_names = []
Y
Yancey1989 已提交
490 491 492
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
493
                table_names.append(var.name)
W
Wu Yi 已提交
494 495 496 497
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
498
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
499
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
500

W
Wu Yi 已提交
501 502 503 504 505 506 507 508 509
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
510
            if param_varname in self.sparse_param_to_height_sections:
511 512 513 514 515 516

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
517 518
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
519 520
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
521
            else:
Q
Qiao Longfei 已提交
522 523 524
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
525
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
526
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
527
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
528

Q
Qiao Longfei 已提交
529 530 531 532 533 534
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
535
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
536 537 538 539 540 541
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
542

Q
qiaolongfei 已提交
543
        if self.sync_mode:
W
Wu Yi 已提交
544
            # form a WAW dependency
Q
qiaolongfei 已提交
545 546 547
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
548
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
549 550
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
551
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
552 553
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
554

555
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
556 557
            if len(splited_var) <= 1:
                continue
558
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
559
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
560 561 562 563 564 565 566 567 568
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
569

G
gongweibao 已提交
570 571
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

572
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
573 574
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
575
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
576

577 578 579
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
580
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
581 582 583 584 585 586
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
587
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
588
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
589

T
typhoonzero 已提交
590
        lr_ops = self._get_lr_ops()
591
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
592 593
        delete_ops(self.origin_program.global_block(), lr_ops)

594 595
        # delete table init op
        if self.has_distributed_lookup_table:
596 597 598
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
599 600
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
601 602 603 604 605
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
606
            table_init_op = table_param_init_op[0]
607 608 609 610 611 612
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
613

614
        self.origin_program.__str__()
G
gongweibao 已提交
615

W
Wu Yi 已提交
616 617 618
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

619
        return self.origin_program
T
typhoonzero 已提交
620

W
Wu Yi 已提交
621
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
622 623 624 625
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
626
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
627
            eplist (list): A list of strings indicating
G
gongweibao 已提交
628 629 630 631

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
632
        startup_program = self.startup_program
G
gongweibao 已提交
633 634 635 636

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
637
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
658
                inputs={"X": []},
G
gongweibao 已提交
659 660 661
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
662
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
663 664 665
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
666 667
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
668 669 670
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
671
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
672 673
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
674
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
675 676 677
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
678
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
679
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
680 681
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
682
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
683
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
684 685 686 687 688 689 690 691 692 693
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
694 695 696 697 698 699 700 701
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
702 703
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
704
        Get parameter server side program.
705

Y
yi.wu 已提交
706 707
        Args:
            endpoint (str): current parameter server endpoint.
708

Y
yi.wu 已提交
709 710
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
711
        """
Y
yi.wu 已提交
712 713 714 715
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
716 717 718
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
719 720
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
721
        pserver_program.random_seed = self.origin_program.random_seed
722 723
        pserver_program._copy_dist_param_info_from(self.origin_program)

724
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
725 726 727 728 729 730 731 732
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
733 734 735 736 737
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
738 739 740 741 742 743 744 745 746
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
747
            if self.sync_mode and self.trainer_num > 1:
748
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
749 750 751 752 753 754 755 756 757
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
758

Q
qiaolongfei 已提交
759
        # step 3
760
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
761 762 763
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
764
        # step 3.2
T
typhoonzero 已提交
765 766 767 768
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
769 770
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
771
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
772
        # step 3.3
W
Wu Yi 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
791
        # Iterate through the ops, and if an op and the optimize ops
792
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
793
        # append it into the sub program.
T
typhoonzero 已提交
794 795 796

        global_ops = []

797 798 799
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
800 801
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
802
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
803
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
804 805
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
806
            elif op not in lr_ops:
Q
Qiyang Min 已提交
807
                self._append_pserver_non_opt_ops(block, op)
808

Y
Yancey1989 已提交
809
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
810 811 812 813 814 815 816 817
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
818
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
819 820 821

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
822
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
823 824

            # clone ops
Y
Yancey1989 已提交
825 826
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
827
                # clone sub_block of op
Y
Yancey1989 已提交
828
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
829 830

            # reset the block of op
W
Wu Yi 已提交
831
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
832

833
        # append lr decay ops to the child block if exists
834
        lr_ops = self._get_lr_ops()
835 836
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
837
        if len(lr_ops) > 0:
W
Wu Yi 已提交
838
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
839
                pserver_program.num_blocks - 1)
840
            optimize_blocks.append(lr_decay_block)
841
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
842
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
843
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
844 845
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
846

T
typhoonzero 已提交
847
        # append op to the current block
Q
qiaolongfei 已提交
848
        grad_to_block_id = []
Q
qiaolongfei 已提交
849
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
850
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
851
            per_opt_block = pserver_program._create_block(pre_block_idx)
852
            optimize_blocks.append(per_opt_block)
853
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
854
            # append grad merging ops before clip and weight decay
855 856
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
857
            for _, op in enumerate(self.optimize_ops):
858
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
859
                # merged_var should be the input var name of L2Decay
860 861 862
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
863 864 865
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
866 867 868 869 870 871
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
872
                            op not in global_ops:
873 874 875 876 877
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
878

879
        # dedup grad to ids list
W
Wu Yi 已提交
880
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
881
        # append global ops
882
        if global_ops:
W
Wu Yi 已提交
883
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
884
                pserver_program.num_blocks - 1)
885
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
886
            for glb_op in global_ops:
X
Xi Chen 已提交
887
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
888
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
889

890
        # process distributed lookup_table
Q
qiaolongfei 已提交
891
        prefetch_var_name_to_block_id = []
892 893
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
894
            table_opt_block = self._create_table_optimize_block(
895
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
896
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
897
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
898
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
899 900
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
901

T
tangwei12 已提交
902
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
903 904
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
905

906
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
907 908
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
909 910 911 912 913 914
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
915
        attrs = {
916
            "optimize_blocks": optimize_blocks,
917 918 919
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
920
            "grad_to_block_id": grad_to_block_id,
921
            "sparse_grad_to_param": sparse_grad_to_param,
922
        }
T
tangwei12 已提交
923 924

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
925
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
926 927
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
928

T
tangwei12 已提交
929 930 931 932
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
933 934 935 936 937
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
938
            attrs=attrs)
939

W
Wu Yi 已提交
940
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
941 942
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
943 944
        return pserver_program

W
Wu Yi 已提交
945 946 947 948 949 950
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
951

W
Wu Yi 已提交
952 953 954 955
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
956 957
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
958 959
        return pserver_prog, pserver_startup

960 961
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
962
                            pserver_program=None,
963
                            startup_program=None):
T
typhoonzero 已提交
964
        """
W
Wu Yi 已提交
965 966
        **Deprecated**

T
typhoonzero 已提交
967 968 969
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
970 971 972

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
973 974
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
975
                when initalizing
976

Y
yi.wu 已提交
977 978
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
979 980
        """
        s_prog = Program()
W
Wu Yi 已提交
981
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
982
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
983 984 985 986 987 988 989 990 991 992 993
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
994
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
995
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
996
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
997 998 999 1000
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1001
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1002 1003
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1014 1015

            if op_on_pserver:
1016 1017 1018
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1019
                if op.type in [
1020 1021
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1022
                ]:
W
Wu Yi 已提交
1023
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1024 1025 1026 1027
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1028
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1038

T
typhoonzero 已提交
1039 1040
        return s_prog

1041 1042
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1043
        block_suffix = "block"
1044 1045 1046
        block_idx = 0
        offset = 0
        is_slice = False
1047

1048
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1049

1050 1051
        if not block_name:
            return is_slice, block_idx, offset
1052

1053 1054 1055 1056
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1057 1058 1059 1060 1061
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1125

Y
yi.wu 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1165
    def _init_splited_vars(self):
Y
yi.wu 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1189
        if self.config.slice_var_up:
Y
yi.wu 已提交
1190 1191
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1192 1193 1194
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1195
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1196 1197
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1198 1199 1200
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1201 1202 1203 1204
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1205 1206
        assert (len(grad_blocks) == len(param_blocks))

1207
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1208 1209
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1226
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1227 1228 1229 1230
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1231
        # dict(grad_splited_var -> param_splited_var)
1232
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1233 1234 1235
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1236
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1237
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1238 1239

        # create mapping of endpoint -> split var to create pserver side program
1240
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1250
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1251 1252
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1253
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1254
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1255 1256
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1257 1258
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1259 1260 1261 1262 1263 1264

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1265 1266
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1267
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1268 1269 1270
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1271 1272
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1273 1274
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1275 1276 1277
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1278
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1279
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1280 1281

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1282
                    self.all_out_emb_vars.append(out_var)
1283 1284

                    # delete lookup_table_op
1285
                    delete_ops(program.global_block(), [op])
1286 1287 1288
                    # break for loop
                    break

S
seiriosPlus 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1335
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1336
        # 2. add split_ids_op and send_op to send gradient to pservers
1337

1338 1339
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1340
        table_grad_name = grad_var_name(self.table_name)
1341 1342 1343 1344
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1345
                program.global_block()._insert_op(
1346 1347 1348 1349 1350
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1351 1352
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1353
                program.global_block()._insert_op(
1354
                    index=op_index + 2,
1355
                    type="send",
1356
                    inputs={'X': self.trainer_side_table_grad_list},
1357 1358 1359 1360 1361
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1362
                    attrs={
1363
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1364
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1365
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1366 1367 1368 1369 1370
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1371
                    })
1372 1373 1374 1375 1376 1377
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1378
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1404
        return prefetch_var_name_to_block_id
1405 1406

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1407
                                     pre_block_idx, grad_to_block_id):
1408
        # STEP: create table optimize block
1409
        table_opt_block = pserver_program._create_block(pre_block_idx)
1410
        # create table param and grad var in pserver program
1411 1412
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1413 1414 1415
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1416 1417
        ][0]

Y
Yancey1989 已提交
1418 1419
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1420

T
tangwei12 已提交
1421
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1422 1423
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1424 1425 1426
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1427 1428
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1429
            shape=table_shape,
Y
Yancey1989 已提交
1430 1431 1432
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1433

1434 1435
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1436
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1437
            self.origin_program.global_block().vars[grad_var_name(
1438
                self.table_name)])
1439

1440 1441 1442
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1443

1444 1445 1446
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1447
            pserver_side_table_grad_list = [
1448 1449 1450 1451 1452 1453 1454 1455 1456
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1457
            # append sum op for pserver_side_table_grad_list
1458 1459
            table_opt_block.append_op(
                type="sum",
1460
                inputs={"X": pserver_side_table_grad_list},
1461 1462
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1463 1464
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1465
            origin_grad_name = grad_var.name
1466 1467
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1468 1469
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1470
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1471
            grad_var = pserver_program.global_block()._rename_var(
1472
                origin_grad_name, splited_grad_name)
1473 1474 1475 1476 1477 1478 1479

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1480
        # only support sgd now
1481 1482 1483
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1484
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1485

1486 1487 1488
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1489 1490
        return table_opt_block

T
tangwei12 已提交
1491 1492 1493 1494 1495
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1496
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1497
            name="kLookupTablePath",
T
tangwei12 已提交
1498 1499
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1500

W
Wu Yi 已提交
1501
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1502
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1503 1504 1505 1506
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1507
            attrs={'file_path': "none"})
T
tangwei12 已提交
1508 1509 1510

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1511 1512 1513 1514 1515
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1516
        Create vars for each split.
T
typhoonzero 已提交
1517 1518
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1519 1520 1521 1522
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1523
        Returns:
1524
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1525
                from original var name to each var split.
T
typhoonzero 已提交
1526
        """
1527 1528

        # varname->[(block_id, current_block_size)]
1529
        block_map = collections.OrderedDict()
1530

1531
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1532 1533
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1534
            if varname not in block_map:
T
typhoonzero 已提交
1535
                block_map[varname] = []
1536
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1537

M
minqiyang 已提交
1538
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1539
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1540
            if len(splited) == 1:
1541
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1542
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1543
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1544
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1545 1546 1547 1548 1549
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1550
                continue
T
typhoonzero 已提交
1551
            var_mapping[varname] = []
T
typhoonzero 已提交
1552 1553 1554 1555
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1556

T
typhoonzero 已提交
1557
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1558
                size = block[1]
M
minqiyang 已提交
1559
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1560 1561 1562
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1563
                new_var_name = ""
1564
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1565
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1566
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1567 1568
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1569
                                   (varname, i)
T
typhoonzero 已提交
1570
                var = program.global_block().create_var(
T
typhoonzero 已提交
1571 1572
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1573
                    dtype=orig_var.dtype,
1574
                    type=orig_var.type,
T
typhoonzero 已提交
1575
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1576
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1577
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1578
        return var_mapping
T
done  
typhoonzero 已提交
1579

1580
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1581 1582 1583 1584 1585 1586
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1587
            persistable=persistable)
T
done  
typhoonzero 已提交
1588

Q
Qiao Longfei 已提交
1589 1590 1591 1592 1593 1594 1595
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1596
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1597 1598
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1599
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1600
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1601
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1602 1603
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1604
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1605 1606 1607 1608
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1609 1610 1611 1612
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1613
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1614
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1615 1616 1617 1618
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1619
                attrs={
Q
Qiao Longfei 已提交
1620
                    "sections": height_sections,
1621 1622
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1623 1624 1625
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1626

T
typhoonzero 已提交
1627 1628 1629 1630
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1631
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1644
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1645 1646
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1647 1648
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1649
                return param_shape
1650 1651 1652
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1653 1654 1655
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1656 1657
        elif op_type == "sgd":
            pass
1658 1659 1660 1661
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1662 1663
        return orig_shape

1664 1665
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1666
        orig_var_name = ""
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1677
        else:
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1700
            return None
1701 1702 1703 1704
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1705
        else:
1706
            merged_var_name = orig_varname
1707 1708

        merged_var = pserver_block.vars[merged_var_name]
1709 1710 1711
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1712
            for i in range(self.trainer_num):
1713
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1714
                                   (merged_var_name, i)
1715 1716 1717 1718
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1719 1720
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1721 1722 1723 1724 1725
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1726
        return merged_var
T
typhoonzero 已提交
1727

W
Wu Yi 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1790
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1791 1792
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1793
        program = optimize_block.program
T
typhoonzero 已提交
1794
        pserver_block = program.global_block()
1795
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1806 1807 1808 1809
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1810
        for key in opt_op.input_names:
T
typhoonzero 已提交
1811
            if key == "Grad":
W
Wu Yi 已提交
1812 1813 1814
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1825
            elif key == "Param":
W
Wu Yi 已提交
1826
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1827 1828
                if not param_block:
                    return
T
typhoonzero 已提交
1829
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1830
                    name=param_block.name,
T
typhoonzero 已提交
1831
                    persistable=True,
T
typhoonzero 已提交
1832 1833 1834
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1835
            elif key == "LearningRate":
1836
                # learning rate variable has already be created by non-optimize op,
1837
                # don't create it once again.
1838
                lr_varname = opt_op.input(key)[0]
1839
                if lr_varname in pserver_block.vars:
1840 1841 1842 1843 1844 1845 1846 1847 1848
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1849

T
typhoonzero 已提交
1850
        for key in opt_op.input_names:
1851
            new_shape = None
W
Wu Yi 已提交
1852
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1853
                continue
1854
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1855
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1856
            # update accumulator variable shape
1857 1858
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1859
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1860 1861 1862 1863 1864
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1865

1866
        # change output's ParamOut variable
1867 1868
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1869
        outputs["ParamOut"] = new_inputs["Param"]
1870
        optimize_block.append_op(
T
typhoonzero 已提交
1871 1872
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1873
            outputs=outputs,
G
gongweibao 已提交
1874
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1875

1876 1877 1878 1879 1880 1881
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1893
        grad_block = None
M
minqiyang 已提交
1894
        for _, g in six.iteritems(var_dict):
1895
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1896
                # skip per trainer vars
1897
                if g.name.find(".trainer_") == -1:
1898
                    # only param or grads have splited blocks
1899 1900
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1901 1902
                        grad_block = g
                        break
1903 1904
        return grad_block

Q
Qiyang Min 已提交
1905 1906 1907
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1908
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1909 1910 1911 1912
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1913
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1914 1915 1916

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1917
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1918 1919 1920 1921
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1922
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1923

Y
Yancey1989 已提交
1924
        return block.append_op(
G
gongweibao 已提交
1925
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1926 1927

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1928
        program = optimize_block.program
1929
        # Append the ops for parameters that do not need to be optimized/updated
1930 1931
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1932
        for key, varlist in six.iteritems(inputs):
1933 1934
            if not isinstance(varlist, list):
                varlist = [varlist]
1935 1936 1937
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1938
                # for inputs/outputs
1939
                grad_block = self._get_pserver_grad_param_var(
1940 1941
                    var, program.global_block().vars)
                if grad_block:
1942
                    varlist[i] = grad_block
1943
                elif var.name not in program.global_block().vars:
1944 1945 1946 1947 1948
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1949

1950 1951
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1952
        for key, varlist in six.iteritems(outputs):
1953 1954
            if not isinstance(varlist, list):
                varlist = [varlist]
1955 1956 1957
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1958 1959
                    var, program.global_block().vars)
                if grad_block:
1960
                    varlist[i] = grad_block
1961
                elif var.name not in program.global_block().vars:
1962 1963 1964 1965 1966
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1967

Y
Yancey1989 已提交
1968
        return optimize_block.append_op(
T
typhoonzero 已提交
1969
            type=opt_op.type,
T
typhoonzero 已提交
1970 1971
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1972
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1973

1974 1975 1976 1977
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1978
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1979
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1980 1981 1982 1983 1984 1985
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1986 1987
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1988 1989 1990 1991 1992 1993
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1994
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1995
        if "Param" in op.input_names and \
T
tangwei12 已提交
1996
                "LearningRate" in op.input_names:
1997 1998 1999 2000 2001 2002 2003
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2004
        if op.input("Param")[0] in param_names:
2005 2006 2007
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2008
                param = op.input("Param")[0]
T
typhoonzero 已提交
2009
                if same_or_split_var(n, param) and n != param:
2010 2011 2012
                    return True
            return False

T
typhoonzero 已提交
2013
    def _get_input_map_from_op(self, varmap, op):
2014
        """Returns a dict from op input name to the vars in varmap."""
2015
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2027
        """Returns a dict from op output name to the vars in varmap."""
2028
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2038 2039

    def _get_lr_ops(self):
2040 2041 2042
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2043 2044 2045 2046
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2047 2048 2049 2050 2051
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2052 2053 2054 2055
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2056
            if self._is_optimizer_op(op):
2057 2058 2059 2060
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2061
        block = self.origin_program.global_block()
2062 2063 2064 2065 2066
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2067

2068 2069 2070 2071 2072
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2073
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2074 2075 2076 2077 2078 2079
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2080 2081
                    # we only need to append op for once
                    break
2082
        return lr_ops
Y
Yancey1989 已提交
2083

W
Wu Yi 已提交
2084 2085 2086 2087 2088
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2089 2090
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2091 2092 2093
            return True
        return False

Y
Yancey1989 已提交
2094
    def _get_optimize_pass(self):
2095
        """
2096
        Get optimizer operators, parameters and gradients from origin_program
2097 2098
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2099
            params_grads (dict): parameter->gradient.
2100
        """
Y
Yancey1989 已提交
2101 2102 2103
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2104 2105
        # tmp set to dedup
        optimize_params = set()
2106
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2107
        for op in block.ops:
W
Wu Yi 已提交
2108
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2109
                opt_ops.append(op)
2110 2111 2112 2113 2114 2115
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2116 2117
                        params_grads.append([
                            origin_var_dict[param_name],
2118
                            origin_var_dict[grad_name]
2119
                        ])
Y
Yancey1989 已提交
2120 2121 2122
            else:
                pass
        return opt_ops, params_grads