layers.py 257.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272
    @staticmethod
    def is_layer_type(type_name):
        """
R
ranqiu 已提交
273
        Whether type_name is a layer type.
Z
zhangjinchao01 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

R
ranqiu 已提交
444
    2. When used as an independent object like this, you must set the size:
Z
zhangjinchao01 已提交
445 446 447 448 449 450 451

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453
    :type input: LayerOutput
R
ranqiu 已提交
454
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
455
    :type size: int
R
ranqiu 已提交
456
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
457
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
458
    :return: FullMatrixProjection Object.
Z
zhangjinchao01 已提交
459 460
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
R
ranqiu 已提交
471
    multiplication, using the transpose of weight.
472 473 474 475

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

R
ranqiu 已提交
476
    :math:`w^\mathrm{T}` means the transpose of weight.
477 478 479 480 481 482 483 484 485 486 487
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
R
ranqiu 已提交
492
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
493
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
494
    :return: TransposedFullMatrixProjection Object.
495 496
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

R
ranqiu 已提交
524
    2. When used as an independent object like this, you must set the size:
Z
zhangjinchao01 已提交
525 526 527 528 529 530 531 532

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534
    :type input: LayerOutput
R
ranqiu 已提交
535
    :param size: The dimension of the output.
Z
zhangjinchao01 已提交
536
    :type size: int
R
ranqiu 已提交
537
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
538
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
539
    :return: TableProjection Object.
Z
zhangjinchao01 已提交
540 541
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549
    """
R
ranqiu 已提交
550
    1. If offset=None, it performs IdentityProjection as follows:
Z
zhangjinchao01 已提交
551 552 553 554 555 556 557 558 559 560 561

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


R
ranqiu 已提交
562 563
    2. If offset!=None, It executes IdentityOffsetProjection and takes the
       elements of the input in the range [offset, offset+size) as output.
Z
zhangjinchao01 已提交
564 565 566 567 568 569 570 571 572 573 574

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

R
ranqiu 已提交
575
    Note that neither of the projections have trainable parameter.
Z
zhangjinchao01 已提交
576

R
ranqiu 已提交
577
    :param input: The input of this layer.
578
    :type input: LayerOutput
R
ranqiu 已提交
579 580 581 582
    :param offset: The offset from the start of the input. The input's
                   elements in the range [offset, offset+size) will be
                   taken as output. If this parameter is not set or set
                   to None, the output will be the same as the input.
Z
zhangjinchao01 已提交
583
    :type offset: int
R
ranqiu 已提交
584 585 586 587 588
    :param size: The dimension of this layer. It will be neglected
                 when offset is None or not set.
    :type size: int
    :return: IdentityProjection or IdentityOffsetProjection object
    :rtype: IdentityProjection | IdentityOffsetProjection
Z
zhangjinchao01 已提交
589 590 591 592 593
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
594 595
        if size is None:
            size = input.size - offset
Q
qijun 已提交
596
        proj = IdentityOffsetProjection(
597
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
598 599 600 601
        proj.origin = input
    return proj


602 603
def slice_projection(input, slices):
    """
R
ranqiu 已提交
604 605
    slice_projection slices the input value into multiple parts,
    then selects and merges some of them into a new output.
606 607

    .. math::
608
       output = [input.slices()]
609 610 611 612 613 614 615

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

R
ranqiu 已提交
616
    Note that slice_projection has no trainable parameter.
617

R
ranqiu 已提交
618
    :param input: The input of this layer.
619
    :type input: LayerOutput
R
ranqiu 已提交
620 621 622
    :param slices: A list of start and end offsets of each slice.
    :type slices: list of tuple
    :return: SliceProjection object.
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
639 640 641
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
R
ranqiu 已提交
642
    scaling_projection multiplies the input with a scalar parameter.
X
xuwei06 已提交
643 644 645 646 647 648 649 650 651 652

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
653
    :param input: The input of this layer.
X
xuwei06 已提交
654
    :type input: LayerOutput
R
ranqiu 已提交
655
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
X
xuwei06 已提交
656
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
657
    :return: ScalingProjection object.
X
xuwei06 已提交
658 659
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
660
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
661 662 663 664
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
665
@wrap_param_attr_default()
666
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
667
    """
R
ranqiu 已提交
668 669
    DotMulProjection takes a layer as input and performs
    element-wise multiplication with weight.
Z
zhangjinchao01 已提交
670 671 672 673 674 675 676 677 678 679 680 681

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
682
    :param input: The input of this layer.
683
    :type input: LayerOutput
R
ranqiu 已提交
684
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
685
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
686
    :return: DotMulProjection object.
687 688
    :rtype: DotMulProjection
    """
Q
qijun 已提交
689 690
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
691
    proj.origin = input
692
    return proj
Z
zhangjinchao01 已提交
693

694 695

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
696 697
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
698

Z
zhangjinchao01 已提交
699
    .. math::
L
Luo Tao 已提交
700
       out.row[i] += scale * (a.row[i] .* b.row[i])
701

Z
zhangjinchao01 已提交
702
    where :math:`.*` means element-wise multiplication, and
R
ranqiu 已提交
703
    scale is a config scalar, its default value is 1.
704

Z
zhangjinchao01 已提交
705
    The example usage is:
706

Z
zhangjinchao01 已提交
707
    .. code-block:: python
708

L
Luo Tao 已提交
709
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
710

R
ranqiu 已提交
711
    :param a: The first input of this layer.
712
    :type a: LayerOutput
R
ranqiu 已提交
713
    :param b: The second input of this layer.
714
    :type b: LayerOutput
R
ranqiu 已提交
715
    :param scale: A scalar to scale the product. Its default value is 1.
Z
zhangjinchao01 已提交
716
    :type scale: float
R
ranqiu 已提交
717
    :return: DotMulOperator object.
718
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
719
    """
720 721 722
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
723
    a = kwargs.get('x', a)  # For Backward capacity.
724 725 726 727 728 729
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
730
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
731
    op.origin = [a, b]
732
    return op
Z
zhangjinchao01 已提交
733

734

Z
zhangjinchao01 已提交
735
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
736 737 738
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
739 740 741 742
                       padding_attr=False):
    """
    Context Projection.

R
ranqiu 已提交
743 744 745
    It just reorganizes input sequence, combines "context_len" elements of the
    sequence to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. When context position is out of sequence
Z
zhangjinchao01 已提交
746 747 748
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

R
ranqiu 已提交
749 750
    For example, origin sequence is [A B C D E F G], context len is 3, padding_attr
    is not set, then after context projection, sequence will
Z
zhangjinchao01 已提交
751 752
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
753
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
754
    :type input: LayerOutput
R
ranqiu 已提交
755
    :param context_len: The length of the context.
Z
zhangjinchao01 已提交
756
    :type context_len: int
R
ranqiu 已提交
757
    :param context_start: The start position of the context. The default value is
Z
zhangjinchao01 已提交
758 759
                          -(context_len - 1)/2
    :type context_start: int
R
ranqiu 已提交
760 761 762 763
    :param padding_attr: Parameter attribute of the padding. If the parameter is
                         set to False, padding will be zero. In other cases, the
                         padding is trainable, and its parameter attribute is set
                         by this parameter.
R
ranqiu 已提交
764
    :type padding_attr: bool | ParameterAttribute
R
ranqiu 已提交
765
    :return: Projection object.
Z
zhangjinchao01 已提交
766 767 768 769 770 771 772 773 774 775
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
776 777 778 779 780 781
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
795
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
796
        """
R
ranqiu 已提交
797
        :param name: The name of this layer.
Z
zhangjinchao01 已提交
798
        :type name: basestring
R
ranqiu 已提交
799
        :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
800
        :type size: int
R
ranqiu 已提交
801
        :param act: Activation type.
Z
zhangjinchao01 已提交
802
        :type act: BaseActivation
R
ranqiu 已提交
803 804 805
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
806
        :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
807 808 809
        :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                           details.
        :type layer_attr: ExtraLayerAttribute | None
Z
zhangjinchao01 已提交
810
        """
Q
qijun 已提交
811 812 813 814 815 816 817
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
818 819 820 821 822
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

823
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
824 825 826 827 828 829 830 831
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
832
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
833
            self.inputs.append(other)
834 835 836 837
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
838 839 840 841 842 843 844 845
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

846
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
847 848
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
849
        assert len(self.inputs) != 0
850
        ml = MixedLayer(
Z
zhangjinchao01 已提交
851 852 853 854 855
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
856
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
857 858 859
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
860
        self.finalized = True
Z
zhangjinchao01 已提交
861 862 863 864 865 866


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
867 868 869 870 871
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
872 873
                layer_attr=None):
    """
R
ranqiu 已提交
874 875
    Mixed Layer. A mixed layer will add all inputs together, then activate the sum.
    Each input is a projection or operator.
Z
zhangjinchao01 已提交
876 877 878

    There are two styles of usages.

R
ranqiu 已提交
879
    1. When the parameter input is not set, use mixed_layer like this:
Z
zhangjinchao01 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

R
ranqiu 已提交
895
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
896
    :type name: basestring
R
ranqiu 已提交
897
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
898
    :type size: int
R
ranqiu 已提交
899
    :param input: The input of this layer. It is an optional parameter.
900
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
901
    :type act: BaseActivation
R
ranqiu 已提交
902 903 904
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
905
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
906 907
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
908
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
909
    :return: MixedLayerType object.
Z
zhangjinchao01 已提交
910 911 912 913 914 915
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
916 917 918 919 920 921
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
922
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
923 924 925 926 927 928 929 930
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
931 932
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
933 934 935 936 937 938 939
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
940
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
941

R
ranqiu 已提交
942
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
943
    :type name: basestring
R
ranqiu 已提交
944
    :param size: The dimension of this data layer.
Z
zhangjinchao01 已提交
945
    :type size: int
R
ranqiu 已提交
946
    :param height: The height of the input image data.
R
ranqiu 已提交
947
    :type height: int | None
R
ranqiu 已提交
948
    :param width: The width of the input image data.
R
ranqiu 已提交
949
    :type width: int | None
R
ranqiu 已提交
950 951 952
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
953
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
954 955
    :rtype: LayerOutput
    """
Q
qijun 已提交
956 957 958 959
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
960
        depth=depth,
L
Luo Tao 已提交
961 962
        height=height,
        width=width,
Q
qijun 已提交
963
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
964

C
chengduoZH 已提交
965 966
    if depth is None:
        depth = 1
967 968
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
969 970
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
971
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
972 973

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
974 975 976 977


@wrap_name_default("embedding")
@wrap_param_attr_default()
978
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
979 980 981 982
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

983
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
984
    :type name: basestring
R
ranqiu 已提交
985
    :param input: The input of this layer, whose type must be Index Data.
Z
zhangjinchao01 已提交
986
    :type input: LayerOutput
R
ranqiu 已提交
987
    :param size: The dimension of the embedding vector.
Z
zhangjinchao01 已提交
988 989 990
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
991 992 993
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
994
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
995
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
996 997
    :rtype: LayerOutput
    """
Q
qijun 已提交
998 999 1000 1001 1002 1003
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1013 1014 1015 1016 1017 1018 1019
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1020
    """
R
ranqiu 已提交
1021
    The fully connected layer.
Z
zhangjinchao01 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1032
    which is equal to:
Z
zhangjinchao01 已提交
1033 1034 1035 1036 1037 1038

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1039
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1040
    :type name: basestring
R
ranqiu 已提交
1041 1042
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1043
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
1044
    :type size: int
1045
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1046
    :type act: BaseActivation
R
ranqiu 已提交
1047
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
1048
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1049 1050 1051
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1052
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1053 1054
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1055
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1056
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1057 1058 1059 1060
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1061
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1062 1063
        param_attr = [param_attr]
    else:
1064
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1065 1066
            assert len(input) == len(param_attr)
        else:
1067
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1068
                logger.fatal(
W
wangmeng28 已提交
1069 1070 1071 1072 1073
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1074 1075
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1076
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1077 1078

    Layer(
Q
qijun 已提交
1079 1080 1081
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1082 1083 1084 1085 1086
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1087 1088 1089
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1090

1091

1092
@wrap_name_default("print")
1093
def printer_layer(input, format=None, name=None):
1094
    """
R
ranqiu 已提交
1095 1096
    Print the output value of the layers specified by the parameter input.
    This layer is useful for debugging.
1097

1098
    :param name: The name of this layer. It is optional.
1099
    :type name: basestring
R
ranqiu 已提交
1100 1101
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1102 1103
    :return: LayerOutput object.
    :rtype: LayerOutput
1104
    """
1105 1106 1107 1108 1109
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1110 1111 1112

    Layer(
        name=name,
1113
        format=format,
1114
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1115
        inputs=[l.name for l in input], )
1116
    # this layer don't return anything, can not be input of other layer.
1117

X
xuwei06 已提交
1118 1119 1120 1121 1122 1123 1124
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1125

Y
yuan 已提交
1126
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1127
def priorbox_layer(input,
G
gaoyuan 已提交
1128
                   image,
G
gaoyuan 已提交
1129 1130 1131 1132 1133
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1134 1135 1136
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1137
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1138
    :type name: basestring
R
ranqiu 已提交
1139
    :param input: The input of this layer.
Y
yuan 已提交
1140
    :type input: LayerOutput
G
gaoyuan 已提交
1141 1142
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1143 1144 1145
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
R
ranqiu 已提交
1146
    :type min_size: The minimum size of the priorbox width/height.
Y
yuan 已提交
1147
    :param min_size: list
R
ranqiu 已提交
1148
    :type max_size: The maximum size of the priorbox width/height. It could be NULL.
Y
yuan 已提交
1149
    :param max_size: list
R
ranqiu 已提交
1150 1151
    :return: LayerOutput object.
    :rtype: LayerOutput
Y
yuan 已提交
1152 1153 1154
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1155
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1156 1157 1158
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1159
        inputs=[input.name, image.name],
Y
yuan 已提交
1160 1161 1162 1163 1164 1165
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1166 1167
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1168
        parents=[input, image],
G
gaoyuan 已提交
1169 1170 1171
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1187
    :param name: The name of this layer. It is optional.
1188
    :type name: basestring
R
ranqiu 已提交
1189
    :param input_loc: The input predicted locations.
Y
yangyaming 已提交
1190
    :type input_loc: LayerOutput | List of LayerOutput
1191
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1192
    :type input_conf: LayerOutput | List of LayerOutput
1193 1194 1195 1196 1197 1198 1199 1200
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
R
ranqiu 已提交
1201 1202
    :param neg_pos_ratio: The ratio of the negative bounding box to
                          the positive bounding box.
1203
    :type neg_pos_ratio: float
R
ranqiu 已提交
1204
    :param neg_overlap: The negative bounding box overlap threshold.
1205 1206 1207
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1208 1209
    :return: LayerOutput object.
    :rtype: LayerOutput
1210 1211 1212 1213 1214 1215
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1216
    input_loc_num = len(input_loc)
1217 1218 1219 1220 1221 1222

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1223
    input_conf_num = len(input_conf)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1261 1262
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1263

1264
    :param name: The name of this layer. It is optional.
1265
    :type name: basestring
Y
yangyaming 已提交
1266 1267
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1268
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1269
    :type input_conf: LayerOutput | List of LayerOutput.
1270 1271
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
R
ranqiu 已提交
1272
    :param num_classes: The number of the classes.
1273 1274 1275
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
R
ranqiu 已提交
1276
    :param nms_top_k: The bounding boxes number kept of the NMS's output.
1277
    :type nms_top_k: int
R
ranqiu 已提交
1278
    :param keep_top_k: The bounding boxes number kept of the layer's output.
1279
    :type keep_top_k: int
R
ranqiu 已提交
1280
    :param confidence_threshold: The classification confidence threshold.
1281 1282 1283
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1284 1285
    :return: LayerOutput object.
    :rtype: LayerOutput
1286 1287 1288 1289 1290 1291
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1292
    input_loc_num = len(input_loc)
1293 1294 1295 1296 1297 1298

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1299 1300
    input_conf_num = len(input_conf)

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1329 1330 1331 1332 1333 1334
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1335
                   num_channels=None,
G
guosheng 已提交
1336 1337 1338 1339 1340
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

R
ranqiu 已提交
1341
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
R
ranqiu 已提交
1353
    :param num_channels: The number of the input channels.
G
guosheng 已提交
1354
    :type num_channels: int
R
ranqiu 已提交
1355 1356
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
1357
    """
G
guosheng 已提交
1358 1359 1360 1361
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1362 1363 1364 1365 1366 1367
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1368 1369
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1370 1371
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1372 1373


1374 1375
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1376
    """
R
ranqiu 已提交
1377 1378 1379 1380
    Normalize a layer's output. This layer is necessary for ssd. This
    layer applys normalization across the channels of each sample to
    a convolutional layer's output and scales the output by a group of
    trainable factors whose dimensions equal to the channel's number.
G
gaoyuan 已提交
1381

1382
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1383
    :type name: basestring
R
ranqiu 已提交
1384
    :param input: The input of this layer.
G
gaoyuan 已提交
1385
    :type input: LayerOutput
R
ranqiu 已提交
1386
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
G
gaoyuan 已提交
1387
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1388 1389
    :return: LayerOutput object.
    :rtype: LayerOutput
G
gaoyuan 已提交
1390
    """
1391
    assert input.num_filters is not None
G
gaoyuan 已提交
1392 1393
    Layer(
        name=name,
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1407 1408
    return LayerOutput(
        name,
1409
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1410 1411 1412 1413 1414
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1415 1416 1417 1418
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1419 1420 1421 1422
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1423
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1424
                  stride=-1,
Z
zhangjinchao01 已提交
1425 1426 1427 1428
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1429
    If stride > 0, this layer slides a window whose size is determined by stride,
R
ranqiu 已提交
1430 1431 1432
    and returns the pooling value of the sequence in the window as the output. Thus,
    a long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1433

Z
zhangjinchao01 已提交
1434 1435 1436 1437 1438 1439
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1440
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1441

L
Luo Tao 已提交
1442 1443
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1444
    :type agg_level: AggregateLevel
1445
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1446
    :type name: basestring
R
ranqiu 已提交
1447
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1448
    :type input: LayerOutput
R
ranqiu 已提交
1449
    :param pooling_type: Type of pooling. MaxPooling is the default pooling.
R
ranqiu 已提交
1450
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1451
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1452
    :type stride: int
R
ranqiu 已提交
1453 1454 1455
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1456
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1457 1458
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1459
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1460
    :return: LayerOutput object.
Y
Yu Yang 已提交
1461
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1462 1463
    """
    extra_dict = dict()
1464
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1465 1466
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1467 1468 1469 1470
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1471 1472
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1473 1474 1475
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1476 1477 1478 1479 1480 1481
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1482
        stride=stride,
Q
qijun 已提交
1483
        **extra_dict)
Z
zhangjinchao01 已提交
1484

Q
qijun 已提交
1485 1486
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1487

Q
qijun 已提交
1488

Z
zhangjinchao01 已提交
1489 1490
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1491
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1492 1493
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1494
@layer_support()
Q
qijun 已提交
1495 1496
def lstmemory(input,
              name=None,
1497
              size=None,
Q
qijun 已提交
1498 1499 1500 1501 1502 1503
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1504 1505 1506 1507 1508 1509 1510 1511
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1512
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1513

L
luotao02 已提交
1514
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1515

L
luotao02 已提交
1516
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1517

L
luotao02 已提交
1518
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1519

L
luotao02 已提交
1520
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1521 1522


C
caoying03 已提交
1523
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1524
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1525 1526 1527 1528
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1529

C
caoying03 已提交
1530
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1531 1532
    to config a simple plain lstm layer.

R
ranqiu 已提交
1533 1534 1535
    Reference:
        `Generating Sequences With Recurrent Neural Networks
        <https://arxiv.org/pdf/1308.0850.pdf>`_
Z
zhangjinchao01 已提交
1536

R
ranqiu 已提交
1537
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1538
    :type name: basestring
R
ranqiu 已提交
1539
    :param size: DEPRECATED. The dimension of the lstm cell.
1540
    :type size: int
R
ranqiu 已提交
1541
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1542
    :type input: LayerOutput
R
ranqiu 已提交
1543
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1544
    :type reverse: bool
1545
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1546
    :type act: BaseActivation
R
ranqiu 已提交
1547 1548
    :param gate_act: Activation type of this layer's gates. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
1549
    :type gate_act: BaseActivation
R
ranqiu 已提交
1550
    :param state_act: Activation type of the state. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1551
    :type state_act: BaseActivation
R
ranqiu 已提交
1552 1553 1554
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1555
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1556 1557 1558 1559
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1560
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1561
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1562 1563 1564 1565 1566 1567
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1568
    assert input.size is not None and input.size % 4 == 0
1569

1570 1571 1572 1573 1574
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1575 1576 1577
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1578

Q
qijun 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1589

Q
qijun 已提交
1590 1591 1592 1593 1594
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1595

Z
zhangjinchao01 已提交
1596 1597 1598

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1599
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1600 1601
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1602
@layer_support()
Q
qijun 已提交
1603
def grumemory(input,
1604
              size=None,
Q
qijun 已提交
1605 1606 1607 1608 1609 1610
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1632 1633
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1634 1635 1636 1637 1638

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1639 1640 1641
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1642 1643 1644 1645 1646

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1647
    NOTE: In PaddlePaddle's implementation, the multiplication operations
R
ranqiu 已提交
1648 1649
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed
    in gate_recurrent layer. Consequently, an additional mixed_layer with
C
caoying03 已提交
1650 1651
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1652

R
ranqiu 已提交
1653 1654 1655
    Reference:
        `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
        <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1656 1657 1658 1659 1660 1661 1662

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

R
ranqiu 已提交
1663 1664
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
1665
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1666
    :type input: LayerOutput.
R
ranqiu 已提交
1667
    :param size: DEPRECATED. The dimension of the gru cell.
1668
    :type size: int
R
ranqiu 已提交
1669
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1670
    :type reverse: bool
R
ranqiu 已提交
1671
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1672 1673
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
R
ranqiu 已提交
1674 1675 1676
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation. This activation affects the :math:`z_t`
                     and :math:`r_t`. It is the :math:`\\sigma` in the above formula.
Z
zhangjinchao01 已提交
1677
    :type gate_act: BaseActivation
R
ranqiu 已提交
1678 1679 1680
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1681
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1682 1683 1684 1685
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1686
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1687
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1688 1689 1690 1691
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1692 1693 1694 1695 1696 1697
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1698 1699 1700
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1701

Q
qijun 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1711

Q
qijun 已提交
1712 1713 1714 1715 1716
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1717

Z
zhangjinchao01 已提交
1718 1719 1720

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1721 1722
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1723
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1724
             stride=-1,
Z
zhangjinchao01 已提交
1725 1726 1727 1728
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

R
ranqiu 已提交
1729 1730 1731 1732
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the last value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1733

L
Luo Tao 已提交
1734 1735 1736 1737 1738 1739
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1740
    :param agg_level: Aggregated level
R
ranqiu 已提交
1741
    :type agg_level: AggregateLevel
1742
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1743
    :type name: basestring
R
ranqiu 已提交
1744
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1745
    :type input: LayerOutput
L
Luo Tao 已提交
1746
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1747 1748 1749 1750
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1751
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1752 1753
    :rtype: LayerOutput
    """
1754 1755 1756 1757 1758 1759
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1760
    if agg_level == AggregateLevel.TO_SEQUENCE:
1761 1762
        assert stride == -1

Z
zhangjinchao01 已提交
1763 1764 1765 1766 1767
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1768
        stride=stride,
Q
qijun 已提交
1769 1770 1771 1772 1773 1774
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1775 1776 1777 1778


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1779 1780
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1781
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1782
              stride=-1,
Z
zhangjinchao01 已提交
1783 1784 1785 1786
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

R
ranqiu 已提交
1787 1788 1789 1790
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the first value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1791

L
Luo Tao 已提交
1792 1793 1794 1795 1796 1797
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1798
    :param agg_level: aggregation level
R
ranqiu 已提交
1799
    :type agg_level: AggregateLevel
1800
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1801
    :type name: basestring
R
ranqiu 已提交
1802
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1803
    :type input: LayerOutput
L
Luo Tao 已提交
1804
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1805 1806 1807
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1808
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1809
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1810 1811
    :rtype: LayerOutput
    """
1812 1813 1814 1815 1816 1817 1818

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1819
    if agg_level == AggregateLevel.TO_SEQUENCE:
1820 1821
        assert stride == -1

Z
zhangjinchao01 已提交
1822 1823 1824 1825 1826
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1827
        stride=stride,
Q
qijun 已提交
1828 1829 1830 1831 1832 1833
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1834 1835 1836


class ExpandLevel(object):
1837 1838 1839 1840 1841
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1842 1843
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1844 1845
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1846 1847
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1848 1849
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1850 1851
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1852 1853
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1854

1855

Z
zhangjinchao01 已提交
1856 1857
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1858 1859
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1860 1861
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1862
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1863 1864
                 layer_attr=None):
    """
R
ranqiu 已提交
1865 1866
    A layer for expanding dense data or (sequence data where the length of each
    sequence is one) to sequence data.
Z
zhangjinchao01 已提交
1867 1868 1869 1870 1871 1872 1873

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1874
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1875

R
ranqiu 已提交
1876
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1877
    :type input: LayerOutput
R
ranqiu 已提交
1878 1879 1880
    :param expand_as: Expand the input according to this layer's sequence infomation. And
                      after the operation, the input expanded will have the same number of
                      elememts as this layer.
Z
zhangjinchao01 已提交
1881
    :type expand_as: LayerOutput
1882
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1883
    :type name: basestring
R
ranqiu 已提交
1884 1885 1886
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1887
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1888
    :param expand_level: Whether the input layer is a sequence or the element of a sequence.
Z
zhangjinchao01 已提交
1889
    :type expand_level: ExpandLevel
R
ranqiu 已提交
1890 1891
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1892
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1893
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1903 1904 1905 1906 1907 1908
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1909 1910


X
xuwei06 已提交
1911
@wrap_name_default()
X
xuwei06 已提交
1912
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1913
@layer_support()
X
xuwei06 已提交
1914 1915 1916
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1917
                 act=None,
X
xuwei06 已提交
1918 1919
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1920
    """
X
xuwei06 已提交
1921
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1922

X
xuwei06 已提交
1923
    If as_row_vector:
R
ranqiu 已提交
1924

X
xuwei06 已提交
1925
    .. math::
X
xuwei06 已提交
1926
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1927

X
xuwei06 已提交
1928
    If not as_row_vector:
R
ranqiu 已提交
1929

X
xuwei06 已提交
1930 1931 1932
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1933 1934 1935 1936 1937

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1938
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1939

R
ranqiu 已提交
1940
    :param input: The input of this layer.
X
xuwei06 已提交
1941
    :type input: LayerOutput
R
ranqiu 已提交
1942
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1943
    :type num_repeats: int
1944
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1945 1946 1947 1948 1949
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1950
    :type as_row_vector: bool
1951
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1952
    :type act: BaseActivation
R
ranqiu 已提交
1953 1954
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1955 1956 1957 1958 1959 1960 1961 1962
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1963
        active_type=act.name,
X
xuwei06 已提交
1964
        num_filters=num_repeats,
X
xuwei06 已提交
1965
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1966
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1967 1968 1969 1970 1971
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1972
        activation=act,
Q
qijun 已提交
1973 1974
        parents=[input])

X
xuwei06 已提交
1975

1976 1977 1978
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1979
@layer_support(ERROR_CLIPPING, DROPOUT)
1980 1981 1982 1983 1984 1985 1986 1987
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1988
    the dimension of each instance is M, and the input reshape_size is N, then the
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1999
    :param input: The input of this layer.
2000
    :type input: LayerOutput
R
ranqiu 已提交
2001
    :param reshape_size: The dimension of the reshaped sequence.
2002
    :type reshape_size: int
2003
    :param name: The name of this layer. It is optional.
2004
    :type name: basestring
2005
    :param act: Activation type. IdentityActivation is the default activation.
2006
    :type act: BaseActivation
R
ranqiu 已提交
2007 2008
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2009
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
2010 2011 2012
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2013
    :type bias_attr: ParameterAttribute | None | bool | Any
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2032 2033 2034 2035
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2036
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2052 2053
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2054 2055
    :param weight: Weight layer.
    :type weight: LayerOutput
2056
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2057
    :type name: basestring
R
ranqiu 已提交
2058 2059
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2060
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2061
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2062 2063
    :rtype: LayerOutput
    """
2064
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2065
    assert len(input) == 2
2066 2067 2068 2069 2070 2071 2072
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2073 2074 2075 2076
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2077 2078 2079 2080 2081 2082
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2083 2084


L
liaogang 已提交
2085 2086 2087 2088 2089 2090 2091 2092
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2093
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2094 2095 2096 2097 2098 2099 2100

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2101
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2102

R
ranqiu 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2114
    :return: LayerOutput object.
R
ranqiu 已提交
2115
    :rtype: LayerOutput
L
liaogang 已提交
2116 2117 2118 2119
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2120
    assert input.num_filters is not None
L
liaogang 已提交
2121
    num_channels = input.num_filters
Q
qijun 已提交
2122 2123 2124 2125 2126 2127 2128
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2129
                channels=num_channels)),
Q
qijun 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2139

Z
zhangjinchao01 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2150 2151
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2152 2153 2154 2155 2156 2157 2158

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2159
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2160
    :type input: LayerOutput
R
ranqiu 已提交
2161
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2162
    :type weight: LayerOutput
2163
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2164
    :type name: basestring
R
ranqiu 已提交
2165 2166
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2167
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2168
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2169 2170
    :rtype: LayerOutput
    """
2171 2172 2173
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2174 2175 2176
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2177
        inputs=[weight.name, input.name],
Q
qijun 已提交
2178 2179 2180
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2181 2182 2183 2184 2185 2186


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2187
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2188 2189

    .. math::
2190
       y  = w x
Z
zhangjinchao01 已提交
2191

2192 2193 2194 2195 2196
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2197 2198 2199 2200 2201 2202 2203

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2204
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2205
    :type input: LayerOutput
R
ranqiu 已提交
2206
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2207
    :type weight: LayerOutput
2208
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2209
    :type name: basestring
R
ranqiu 已提交
2210 2211
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2212
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2213
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2214 2215
    :rtype: LayerOutput
    """
2216 2217 2218
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2219 2220 2221 2222
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2223 2224 2225
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2226 2227 2228 2229 2230 2231


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2232
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2245
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2246
    :type input: LayerOutput
2247
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2248
    :type name: basestring
R
ranqiu 已提交
2249 2250
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2251
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2252
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2253 2254 2255 2256 2257 2258
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2259 2260 2261
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2262 2263


2264 2265
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2266
def rotate_layer(input, height, width, name=None, layer_attr=None):
2267
    """
H
Haonan 已提交
2268 2269
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2270 2271

    .. math::
H
Haonan 已提交
2272
       y(j,i,:) = x(M-i-1,j,:)
2273

H
Haonan 已提交
2274
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2275 2276 2277 2278 2279 2280

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2281 2282
                          height=100,
                          width=100)
2283

R
ranqiu 已提交
2284
    :param input: The input of this layer.
2285
    :type input: LayerOutput
R
ranqiu 已提交
2286
    :param height: The height of the sample matrix.
2287
    :type height: int
R
ranqiu 已提交
2288 2289
    :param width: The width of the sample matrix.
    :type width: int
2290
    :param name: The name of this layer. It is optional.
2291
    :type name: basestring
R
ranqiu 已提交
2292 2293
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2294 2295 2296 2297 2298
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2299 2300 2301
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2302
        width=width,
H
Haonan 已提交
2303 2304 2305 2306 2307 2308 2309 2310
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2311 2312


Z
zhangjinchao01 已提交
2313 2314
@wrap_name_default()
@layer_support()
2315
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2316 2317 2318 2319
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2320
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2321 2322 2323 2324 2325
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2326

2327 2328
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2329

L
Luo Tao 已提交
2330 2331 2332 2333 2334 2335
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2336
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2337
    :type name: basestring
R
ranqiu 已提交
2338
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2339
    :type a: LayerOutput
R
ranqiu 已提交
2340
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2341
    :type b: LayerOutput
R
ranqiu 已提交
2342
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2343
    :type scale: float
R
ranqiu 已提交
2344
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2345
    :type size: int
R
ranqiu 已提交
2346
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2347
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2348
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2349 2350
    :rtype: LayerOutput
    """
2351
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2352 2353 2354 2355 2356 2357
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2358
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2359
    else:
2360 2361
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2362 2363 2364 2365 2366 2367
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2368
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2369
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2370

2371

C
caoying03 已提交
2372 2373 2374 2375
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2376
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2377
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2408
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2409 2410 2411
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2412
        inputs=[x.name, y.name],
C
caoying03 已提交
2413 2414 2415 2416
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2417 2418
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2419
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2420
@layer_support()
Q
qijun 已提交
2421 2422
def hsigmoid(input,
             label,
2423
             num_classes=None,
Q
qijun 已提交
2424 2425 2426 2427
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2428 2429 2430
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2431 2432 2433 2434

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2435 2436 2437 2438 2439 2440

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2441
                        label=data_layer)
Z
zhangjinchao01 已提交
2442

R
ranqiu 已提交
2443 2444
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2445
    :param label: The input label.
Z
zhangjinchao01 已提交
2446
    :type label: LayerOutput
R
ranqiu 已提交
2447 2448 2449 2450
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2451
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2452
    :type name: basestring
R
ranqiu 已提交
2453 2454 2455
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2456
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2457 2458 2459
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2460
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2461
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2462 2463 2464 2465
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2466 2467 2468 2469 2470 2471 2472 2473 2474
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2475 2476 2477
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2478 2479 2480 2481 2482
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2483 2484
    ipts_for_layer = []
    parents = []
2485
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2486
        assert isinstance(each_input, LayerOutput)
2487
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2488 2489 2490 2491
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2492
    l = Layer(
Z
zhangjinchao01 已提交
2493 2494 2495 2496 2497
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2498 2499 2500
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2501

2502

Z
zhangjinchao01 已提交
2503 2504 2505 2506 2507
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2517
                   dilation=1,
Q
qijun 已提交
2518 2519 2520 2521 2522 2523 2524
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2525
                   dilation_y=None,
2526 2527
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2528
    """
2529
    Convolution layer for image. Paddle can support both square and non-square
2530
    input currently.
Z
zhangjinchao01 已提交
2531 2532 2533 2534

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2535

2536
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2537
    and non-square input currently.
2538

X
xuwei06 已提交
2539
    The details of convolution transpose layer,
2540 2541 2542
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2543 2544 2545 2546
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2547 2548
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2549
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2550 2551 2552
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2553

L
Luo Tao 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2564
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2565
    :type name: basestring
R
ranqiu 已提交
2566
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2567
    :type input: LayerOutput
R
ranqiu 已提交
2568 2569 2570 2571 2572 2573
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2574
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2575 2576 2577
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2578
    :param num_filters: Each filter group's number of filter
2579
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2580
    :type act: BaseActivation
R
ranqiu 已提交
2581
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2582
    :type groups: int
R
ranqiu 已提交
2583 2584 2585 2586 2587
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2588
    :type stride: int | tuple | list
R
ranqiu 已提交
2589
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2590
    :type stride_y: int
R
ranqiu 已提交
2591 2592 2593 2594 2595
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2596
    :type padding: int | tuple | list
R
ranqiu 已提交
2597
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2598
    :type padding_y: int
R
ranqiu 已提交
2599 2600 2601 2602 2603
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2604
    :type dilation: int | tuple | list
R
ranqiu 已提交
2605
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2606
    :type dilation_y: int
R
ranqiu 已提交
2607 2608 2609
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2610
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2611 2612 2613
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2614
    :type num_channels: int
R
ranqiu 已提交
2615 2616
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2617
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2618
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2619
    :type shared_biases: bool
R
ranqiu 已提交
2620 2621
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2622
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2623
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2624
    :type trans: bool
R
ranqiu 已提交
2625 2626 2627 2628 2629
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2630
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2631 2632 2633 2634 2635
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2636

Z
zhangjinchao01 已提交
2637
    if filter_size_y is None:
2638 2639 2640 2641 2642 2643
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2644
    if stride_y is None:
2645 2646 2647 2648 2649 2650
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2651
    if padding_y is None:
2652 2653 2654 2655 2656 2657
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2658 2659 2660 2661 2662 2663 2664
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2665 2666
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2667
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2668 2669 2670 2671
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2672

2673
    if layer_type:
W
wanghaoshuang 已提交
2674
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2675 2676 2677
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2678
        if trans:
2679
            assert layer_type in ["exconvt", "cudnn_convt"]
2680 2681 2682 2683 2684
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2685

X
xuwei06 已提交
2686
    l = Layer(
Z
zhangjinchao01 已提交
2687
        name=name,
Q
qijun 已提交
2688 2689 2690 2691 2692
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2693
                dilation=dilation,
Q
qijun 已提交
2694 2695 2696 2697 2698
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2699
                dilation_y=dilation_y,
Q
qijun 已提交
2700 2701
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2702 2703 2704 2705
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2706
        type=lt,
Q
qijun 已提交
2707 2708 2709 2710 2711 2712 2713 2714
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2715 2716 2717 2718


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2729
                   padding_y=None,
2730
                   ceil_mode=True,
2731
                   exclude_mode=None):
Z
zhangjinchao01 已提交
2732 2733 2734
    """
    Image pooling Layer.

R
ranqiu 已提交
2735
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2736 2737 2738

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2739 2740 2741 2742
    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2743 2744
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2745 2746 2747 2748 2749

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2750 2751
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2767
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2768
    :type padding: int
R
ranqiu 已提交
2769 2770 2771 2772
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2773
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2774
    :type input: LayerOutput
R
ranqiu 已提交
2775
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2776
    :type pool_size: int
R
ranqiu 已提交
2777 2778 2779 2780 2781 2782 2783
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2784
    :type num_channels: int
R
ranqiu 已提交
2785
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2786
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2787
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2788
    :type stride: int
R
ranqiu 已提交
2789 2790 2791 2792 2793
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2794
    :type layer_attr: ExtraLayerAttribute
2795
    :param ceil_mode: Whether to use the ceil function to calculate output height and width.
R
ranqiu 已提交
2796 2797
                      True is the default. If it is set to False, the floor function will
                      be used.
2798
    :type ceil_mode: bool
2799
    :param exclude_mode: Whether to exclude the padding cells when calculating, but only 
2800 2801 2802
                         work when pool_type is AvgPooling. If None, also exclude the padding 
                         cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling 
                         as pool_type to identify the mode.
2803
    :type exclude_mode: bool
D
dangqingqing 已提交
2804 2805
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2816
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
2817
                               CudnnMaxPooling, CudnnAvgInclPadPooling], \
X
xzl 已提交
2818
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2819

2820
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2821
        if (
Y
Yu Yang 已提交
2822
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2823
        else pool_type.name
2824 2825 2826 2827
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2828
    l = Layer(
Z
zhangjinchao01 已提交
2829 2830
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2843
                    padding_y=padding_y))
Q
qijun 已提交
2844
        ],
2845
        ceil_mode=ceil_mode,
2846
        exclude_mode=exclude_mode,
Q
qijun 已提交
2847 2848 2849 2850 2851 2852 2853
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2854 2855


C
chengduoZH 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2884 2885 2886
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z}
C
chengduoZH 已提交
2887 2888 2889 2890 2891

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2892 2893 2894
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} \\\\
C
chengduoZH 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2908
    :type padding: int | tuple | list
R
ranqiu 已提交
2909
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2910
    :type name: basestring.
R
ranqiu 已提交
2911
    :param input: The input of this layer.
C
chengduoZH 已提交
2912
    :type input: LayerOutput
R
ranqiu 已提交
2913 2914
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2915
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2916 2917 2918
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2919
    :type num_channels: int
R
ranqiu 已提交
2920
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2921
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2922 2923 2924
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2925
    :type stride: int | tuple | list
R
ranqiu 已提交
2926 2927 2928 2929 2930
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2931
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2932 2933 2934
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
3004 3005
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
3006 3007 3008 3009 3010 3011
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
3012
    """
R
ranqiu 已提交
3013 3014 3015
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
3016
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
R
ranqiu 已提交
3017
        <https://arxiv.org/abs/1406.4729>`_
Q
qijun 已提交
3018

L
Luo Tao 已提交
3019 3020 3021 3022
    The example usage is:

    ..  code-block:: python

3023 3024 3025
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3026 3027
                        pool_type=MaxPooling())

3028
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3029
    :type name: basestring
R
ranqiu 已提交
3030
    :param input: The input of this layer.
Q
qijun 已提交
3031
    :type input: LayerOutput
R
ranqiu 已提交
3032 3033 3034
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3035
    :type num_channels: int
R
ranqiu 已提交
3036
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3037
    :type scale: BasePoolingType
R
ranqiu 已提交
3038
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3039
    :type pyramid_height: int
R
ranqiu 已提交
3040 3041
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3059
    l = Layer(
Q
qijun 已提交
3060 3061
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3062 3063 3064 3065 3066
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3067
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3079 3080 3081 3082
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3083
    l = Layer(
Q
qijun 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3103 3104 3105 3106


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3107 3108 3109 3110 3111 3112
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3113
                      layer_attr=None):
Z
zhangjinchao01 已提交
3114
    """
3115
    Response normalization across feature maps.
R
ranqiu 已提交
3116 3117

    Reference:
R
ranqiu 已提交
3118
        `ImageNet Classification with Deep Convolutional Neural Networks
R
ranqiu 已提交
3119
        <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_
Z
zhangjinchao01 已提交
3120

L
Luo Tao 已提交
3121 3122 3123
    The example usage is:

    ..  code-block:: python
3124

L
Luo Tao 已提交
3125 3126
        norm = img_cmrnorm_layer(input=net, size=5)

3127
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3128
    :type name: basestring
R
ranqiu 已提交
3129
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3130
    :type input: LayerOutput
3131
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3132
    :type size: int
D
dangqingqing 已提交
3133
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3134
    :type scale: float
D
dangqingqing 已提交
3135
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3136
    :type power: float
R
ranqiu 已提交
3137 3138 3139 3140 3141
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3142
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3143
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3144 3145 3146
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3147
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3148 3149 3150


@wrap_bias_attr_default()
3151 3152
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3153 3154
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3155
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3156 3157 3158
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3159
                     img3D=False,
Q
qijun 已提交
3160 3161 3162 3163
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3164
                     batch_norm_type=None,
P
peterzhang2029 已提交
3165
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3166
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3167 3168
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3169
    """
R
ranqiu 已提交
3170
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3184
    Reference:
R
ranqiu 已提交
3185
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3186
        Internal Covariate Shift
R
ranqiu 已提交
3187
        <http://arxiv.org/abs/1502.03167>`_
Z
zhangjinchao01 已提交
3188

L
Luo Tao 已提交
3189 3190 3191
    The example usage is:

    ..  code-block:: python
3192

L
Luo Tao 已提交
3193 3194
        norm = batch_norm_layer(input=net, act=ReluActivation())

3195
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3196
    :type name: basestring
R
ranqiu 已提交
3197
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3198
    :type input: LayerOutput
3199 3200 3201 3202 3203
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3204 3205
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3206
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3207 3208 3209
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3210
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3211
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3212
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3213
    :type act: BaseActivation
R
ranqiu 已提交
3214 3215 3216
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3217
    :type num_channels: int
R
ranqiu 已提交
3218 3219 3220 3221
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3222
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3223 3224
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3225
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3226 3227
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3228
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3229 3230 3231 3232 3233 3234
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3235
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3236
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3237
    :type epsilon: float.
R
ranqiu 已提交
3238 3239
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3240
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3241 3242
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3243
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3253
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3254
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3255

X
xuwei06 已提交
3256
    l = Layer(
Z
zhangjinchao01 已提交
3257
        name=name,
C
chengduoZH 已提交
3258
        img3D=img3D,
Q
qijun 已提交
3259 3260
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3261 3262 3263 3264
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3265
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3266 3267
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3268
        mean_var_names=mean_var_names,
Q
qijun 已提交
3269
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3270

Q
qijun 已提交
3271 3272 3273 3274 3275 3276 3277
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3299
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3300
    :type input: LayerOutput
3301
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3302
    :type name: basestring
R
ranqiu 已提交
3303 3304 3305
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3306
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3307 3308 3309 3310 3311 3312
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3313 3314 3315
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3316 3317


G
guosheng 已提交
3318 3319 3320 3321 3322 3323 3324
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
R
ranqiu 已提交
3325
       out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}}
G
guosheng 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3336
    :param input: The input of this layer.
G
guosheng 已提交
3337
    :type input: LayerOutput
3338
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3339
    :type name: basestring
R
ranqiu 已提交
3340 3341
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3355 3356 3357
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3358
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3359
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3378 3379 3380
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3381

C
caoying03 已提交
3382 3383 3384
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3385

3386
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3387
    :type name: basestring
R
ranqiu 已提交
3388
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3389
                 LayerOutput.
R
ranqiu 已提交
3390
    :type input: LayerOutput | list | tuple
3391
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3392
    :type act: BaseActivation
R
ranqiu 已提交
3393 3394 3395
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3396
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3397 3398
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3399
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3400
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3401 3402 3403 3404 3405 3406
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3407
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3408 3409 3410 3411 3412 3413 3414
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3415
    l = Layer(
Q
qijun 已提交
3416 3417 3418
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3419 3420
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3421
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3422

Q
qijun 已提交
3423 3424 3425 3426 3427 3428 3429
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3430 3431 3432 3433


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3434
@layer_support(DROPOUT, ERROR_CLIPPING)
3435
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3436
    """
R
ranqiu 已提交
3437 3438
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3439

3440 3441 3442 3443 3444 3445
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3446
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3447
    :type name: basestring
R
ranqiu 已提交
3448
    :param input: The input layers or projections
R
ranqiu 已提交
3449
    :type input: list | tuple | collections.Sequence
3450
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3451
    :type act: BaseActivation
R
ranqiu 已提交
3452 3453
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3454
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3455
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3456 3457 3458 3459 3460 3461 3462 3463
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3464
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3465 3466

    def __is_type__(o, tp):
3467
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3489 3490
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3491

Q
qijun 已提交
3492 3493
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3494

3495 3496
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3497

3498
    layer = Layer(
Q
qijun 已提交
3499 3500
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3501 3502
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3503
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3504
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3505

3506
    sz = layer.config.size
Z
zhangjinchao01 已提交
3507

Q
qijun 已提交
3508 3509 3510 3511 3512 3513 3514 3515
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3516 3517
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3518
@wrap_bias_attr_default(has_bias=False)
3519
@layer_support(DROPOUT, ERROR_CLIPPING)
3520 3521 3522
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3523
    Concatenate sequence a and sequence b.
3524

3525
    Inputs:
X
xuwei06 已提交
3526
      - a = [a1, a2, ..., am]
3527
      - b = [b1, b2, ..., bn]
3528

X
xuwei06 已提交
3529 3530 3531 3532
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3533 3534 3535 3536 3537 3538 3539

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3540
    :param name: The name of this layer. It is optional.
3541
    :type name: basestring
R
ranqiu 已提交
3542
    :param a: The first input sequence layer
3543
    :type a: LayerOutput
R
ranqiu 已提交
3544
    :param b: The second input sequence layer
3545
    :type b: LayerOutput
3546
    :param act: Activation type. IdentityActivation is the default activation.
3547
    :type act: BaseActivation
R
ranqiu 已提交
3548 3549
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3550
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3551 3552 3553
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3554
    :type bias_attr: ParameterAttribute | None | bool | Any
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3576
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3577 3578
def memory(name,
           size,
3579
           memory_name=None,
Q
qijun 已提交
3580 3581 3582 3583
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3584 3585
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3586
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3587

R
ranqiu 已提交
3588
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3589

R
ranqiu 已提交
3590 3591
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3592

R
ranqiu 已提交
3593 3594
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3595

R
ranqiu 已提交
3596
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3597

3598 3599 3600 3601 3602
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3603 3604
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3605 3606

    .. code-block:: python
L
Liu Yiqun 已提交
3607

3608 3609 3610 3611
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3612
    :param name: The name of the layer which this memory remembers.
3613 3614
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3615
    :type name: basestring
R
ranqiu 已提交
3616
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3617
    :type size: int
R
ranqiu 已提交
3618
    :param memory_name: The name of the memory. It is ignored when name is provided.
3619
    :type memory_name: basestring
3620
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3621
    :type is_seq: bool
R
ranqiu 已提交
3622 3623
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3624
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3625 3626 3627 3628
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3629
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3630 3631
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3632
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3633 3634
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3635
    :type boot_with_const_id: int
R
ranqiu 已提交
3636
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3647 3648
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3649

3650 3651 3652 3653 3654 3655 3656 3657
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3658 3659

    lout = LayerOutput(
3660
        name=memory_name,
Q
qijun 已提交
3661 3662 3663
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3664 3665 3666 3667
    return lout


@wrap_bias_attr_default()
3668 3669
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3670 3671 3672
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3673 3674
def lstm_step_layer(input,
                    state,
3675
                    size=None,
Q
qijun 已提交
3676 3677 3678 3679 3680 3681
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3682
    """
3683 3684
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3685 3686 3687

    ..  math::

3688
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3689

3690
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3691

3692
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3693

3694
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3695

L
luotao02 已提交
3696
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3697 3698


L
luotao02 已提交
3699
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3700
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3701
    input vectors.
Z
zhangjinchao01 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3712
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3713
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3714 3715
    :code:`get_output_layer` to extract this output.

3716
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3717
    :type name: basestring
R
ranqiu 已提交
3718 3719
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3720
    :type size: int
R
ranqiu 已提交
3721
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3722
    :type input: LayerOutput
3723
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3724
    :type state: LayerOutput
3725
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3726
    :type act: BaseActivation
3727 3728
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3729
    :type gate_act: BaseActivation
3730 3731
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3732
    :type state_act: BaseActivation
R
ranqiu 已提交
3733 3734 3735
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3736
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3737
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3738
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3739
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3740 3741
    :rtype: LayerOutput
    """
3742 3743 3744

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3745 3746 3747 3748 3749 3750 3751
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3752
        size=state.size,
Q
qijun 已提交
3753 3754
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3755

Q
qijun 已提交
3756 3757 3758 3759 3760 3761 3762
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3763 3764 3765


@wrap_bias_attr_default()
W
wangyang59 已提交
3766
@wrap_param_attr_default()
Q
qijun 已提交
3767
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3768 3769 3770
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3771 3772 3773 3774 3775 3776 3777
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3778
                   param_attr=None,
Q
qijun 已提交
3779
                   layer_attr=None):
Z
zhangjinchao01 已提交
3780 3781
    """

R
ranqiu 已提交
3782
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3783
    :type input: LayerOutput
R
ranqiu 已提交
3784 3785 3786 3787 3788 3789
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3790 3791
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3792
    :type act: BaseActivation
3793
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3794
    :type name: basestring
3795 3796
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3797
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3798 3799 3800 3801
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3802
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3803 3804 3805 3806
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3807
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3808 3809 3810 3811 3812 3813 3814 3815
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3816 3817 3818 3819
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3820
        # backward model compatibility.
3821
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3822 3823 3824 3825
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3826
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3827
    return LayerOutput(
Q
qijun 已提交
3828 3829
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3830
        parents=[input, output_mem],
Q
qijun 已提交
3831 3832
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3833 3834


Y
Yu Yang 已提交
3835 3836 3837 3838
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3839
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3851
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3852 3853
    and DROPOUT.

3854
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3855 3856 3857 3858 3859 3860
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3861
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3862
    :type name: basestring
3863 3864
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3865
    :type act: BaseActivation
3866 3867
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3868
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3869 3870 3871 3872
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3873
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3874 3875 3876 3877 3878
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3879
    :rtype: LayerOutput
Y
Yu Yang 已提交
3880 3881 3882 3883 3884 3885
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3886
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3887 3888 3889 3890
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3891

Y
Yu Yang 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3929 3930 3931 3932
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3933 3934 3935 3936
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3937

3938
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3939
    :type name: basestring
R
ranqiu 已提交
3940
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3941 3942
                   multiple outputs.
    :type input: LayerOutput
3943
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3944
    :type arg_name: basestring
R
ranqiu 已提交
3945 3946
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3947
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3948 3949 3950 3951 3952 3953 3954
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3955 3956 3957 3958 3959 3960 3961
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3962

Q
qijun 已提交
3963 3964 3965 3966 3967
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3968 3969 3970 3971 3972 3973 3974


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3975 3976 3977 3978 3979 3980 3981
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3982
    """
3983 3984
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
4001
    :param input: The input of this layer.
4002
    :type input: LayerOutput
4003
    :param act: Activation type. TanhActivation is the default activation.
4004
    :type act: BaseActivation
C
caoying03 已提交
4005
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
4006 4007 4008
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4009
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4010 4011
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4012
    :type param_attr: ParameterAttribute
4013
    :param name: The name of this layer. It is optional.
4014
    :type name: basestring
R
ranqiu 已提交
4015 4016
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4017
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4018
    :return: LayerOutput object.
4019
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4020
    """
Q
qijun 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4036 4037 4038 4039 4040


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4041
    and can be a sequence or non-sequence.
4042 4043
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4044
    """
4045

Z
zhangjinchao01 已提交
4046 4047 4048
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4049
        assert input.size is not None
Z
zhangjinchao01 已提交
4050
        if size is not None:
4051
            assert input.size == size
Z
zhangjinchao01 已提交
4052 4053


4054
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4055
    """
4056
    DEPRECATED.
Z
zhangjinchao01 已提交
4057 4058 4059 4060 4061 4062 4063 4064
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4065
    return input
Z
zhangjinchao01 已提交
4066 4067 4068


@wrap_name_default("recurrent_group")
4069
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4070
    """
C
caoying03 已提交
4071 4072 4073
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4074 4075
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4097 4098
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4099

R
ranqiu 已提交
4100 4101 4102
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4103 4104 4105 4106
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4107
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4108 4109 4110 4111 4112 4113 4114
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4115
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4116

R
ranqiu 已提交
4117
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4118

R
ranqiu 已提交
4119
    :param reverse: If reverse is set to True, the recurrent unit will process the
4120
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4121
    :type reverse: bool
4122

4123 4124
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4125 4126 4127 4128 4129 4130 4131

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4132
    :type targetInlink: LayerOutput | SubsequenceInput
4133

D
dangqingqing 已提交
4134
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4135 4136 4137 4138
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4139
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4140
        input = [input]
4141
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4142 4143

    def is_in_links(x):
4144
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4145 4146 4147 4148

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4149
        name=name,
4150 4151
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4152 4153
    in_args = []
    for each_input in input:
4154
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4155
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4156
            mem = memory(
4157
                name=None,
Q
qijun 已提交
4158 4159
                size=each_input.input.size,
                boot_layer=each_input.input)
4160
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4161
            in_args.append(mem)
4162 4163
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4164

Z
zhangjinchao01 已提交
4165 4166 4167 4168 4169
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4170 4171 4172 4173 4174 4175
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4176 4177 4178

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4179
    for layer_out in layer_outs:
4180 4181
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4182 4183
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4184 4185 4186 4187 4188
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4189

Z
zhangjinchao01 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4218 4219

    def before_real_step(self):
Q
qijun 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4229 4230 4231
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4232
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4250
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4251
    :type input: LayerOutput
4252
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4253
    :type name: basestring
R
ranqiu 已提交
4254 4255
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4256
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4257
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4258 4259 4260 4261
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4272

4273

R
ranqiu 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4288
    :type input1: LayerOutput
R
ranqiu 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4325
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4326
    :type name: basestring
R
ranqiu 已提交
4327
    :param input1: The first input layer.
H
Haonan 已提交
4328
    :type input: LayerOutput
R
ranqiu 已提交
4329
    :param input2: The second input layer.
H
Haonan 已提交
4330
    :type input2: LayerOutput
R
ranqiu 已提交
4331 4332
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4333 4334 4335 4336 4337 4338 4339
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4350

Z
zhangjinchao01 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4367
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4368
    :type name: basestring
R
ranqiu 已提交
4369
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4370
    :type input: LayerOutput
R
ranqiu 已提交
4371
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4372
    :type eos_id: int
R
ranqiu 已提交
4373 4374
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4375
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4376
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4377 4378
    :rtype: LayerOutput
    """
Q
qijun 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4390 4391 4392


@wrap_name_default()
Q
qijun 已提交
4393 4394 4395 4396 4397 4398 4399
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4400
                num_results_per_sample=None):
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4412
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4413 4414 4415 4416
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4417 4418 4419 4420 4421
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4422 4423
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4424 4425
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4426 4427
                               bos_id=0,
                               eos_id=1,
4428
                               beam_size=5)
4429 4430 4431 4432 4433 4434

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4435 4436
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4437
    :type name: basestring
4438
    :param step: A callable function that defines the calculation in a time
4439
                 step, and it is applied to sequences with arbitrary length by
4440 4441 4442 4443 4444
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4445 4446
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4447
                  In beam_search, none of the input's type should be LayerOutput.
4448
    :type input: list
4449 4450 4451
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4452
                   symbol is essential, since it is used to initialize the RNN
4453 4454 4455 4456 4457 4458 4459 4460
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4461 4462
    :param max_length: Max generated sequence length.
    :type max_length: int
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4473 4474
    :return: The generated word index.
    :rtype: LayerOutput
4475 4476
    """

Z
zhangjinchao01 已提交
4477 4478 4479 4480 4481
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4482
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4483 4484 4485 4486 4487 4488
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4489 4490 4491
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4492
        if isinstance(each_input, BaseGeneratedInput):
4493 4494
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4495
            generated_input_index = i
4496

Z
zhangjinchao01 已提交
4497 4498 4499
        else:
            real_input.append(each_input)

4500
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4501 4502 4503 4504 4505 4506 4507 4508

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4509 4510 4511 4512 4513 4514
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4515 4516 4517 4518 4519 4520

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4521
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4522 4523
        return predict

4524 4525
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4526

Q
qijun 已提交
4527

4528 4529
def __cost_input__(input, label, weight=None):
    """
4530
    inputs and parents for cost layers.
4531
    """
C
caoying03 已提交
4532 4533 4534 4535 4536 4537
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4538
    if weight is not None:
4539
        assert weight.size == 1
4540 4541 4542
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4543

Z
zhangjinchao01 已提交
4544 4545

@wrap_name_default()
L
luotao1 已提交
4546
@layer_support()
4547 4548 4549 4550 4551 4552
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4553
    """
4554
    sum of square error cost:
L
Luo Tao 已提交
4555 4556 4557

    ..  math::

4558
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4559

4560
    :param name: The name of this layer. It is optional.
4561
    :type name: basestring
R
ranqiu 已提交
4562
    :param input: The first input layer.
4563
    :type input: LayerOutput
R
ranqiu 已提交
4564
    :param label: The input label.
4565
    :type label: LayerOutput
R
ranqiu 已提交
4566 4567
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4568
    :type weight: LayerOutput
R
ranqiu 已提交
4569
    :param coeff: The weight of the gradient in the back propagation.
4570
                  1.0 is the default value.
4571
    :type coeff: float
R
ranqiu 已提交
4572 4573
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4574
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4575
    :return: LayerOutput object.
4576
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4577
    """
4578 4579
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4580 4581 4582 4583
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4584
        coeff=coeff,
Q
qijun 已提交
4585
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4586
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4587 4588


4589
regression_cost = square_error_cost
L
Luo Tao 已提交
4590 4591


Z
zhangjinchao01 已提交
4592
@wrap_name_default("cost")
4593
@layer_support()
Q
qijun 已提交
4594 4595 4596 4597
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4598
                        evaluator=classification_error_evaluator,
4599 4600
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4601 4602 4603
    """
    classification cost Layer.

4604
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4605
    :type name: basestring
R
ranqiu 已提交
4606
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4607
    :type input: LayerOutput
R
ranqiu 已提交
4608
    :param label: The input label.
Z
zhangjinchao01 已提交
4609
    :type label: LayerOutput
R
ranqiu 已提交
4610 4611
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4612
    :type weight: LayerOutput
R
ranqiu 已提交
4613 4614 4615 4616
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4617
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4618
    :param coeff: The weight of the gradient in the back propagation.
4619
                  1.0 is the default value.
4620
    :type coeff: float
D
dangqingqing 已提交
4621
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4622 4623 4624 4625 4626
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4627 4628 4629

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4630 4631 4632 4633
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4634
        coeff=coeff,
Q
qijun 已提交
4635
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4646
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4647

4648
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4649 4650 4651 4652 4653
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4654
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4655

4656

Q
qijun 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4666 4667
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4668 4669 4670 4671
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4672
    supports GPU mode.
Z
zhangjinchao01 已提交
4673 4674 4675 4676 4677

    The example usage is:

    .. code-block:: python

4678 4679
       op = conv_operator(img=input1,
                          filter=input2,
4680
                          filter_size=3,
Z
zhangjinchao01 已提交
4681 4682 4683
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4684
    :param img: The input image.
4685
    :type img: LayerOutput
R
ranqiu 已提交
4686
    :param filter: The input filter.
4687
    :type filter: LayerOutput
R
ranqiu 已提交
4688
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4689
    :type filter_size: int
R
ranqiu 已提交
4690 4691 4692
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4693
    :type filter_size_y: int
R
ranqiu 已提交
4694
    :param num_filters: The number of the output channels.
4695
    :type num_filters: int
R
ranqiu 已提交
4696 4697 4698
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4699
    :type num_channels: int
R
ranqiu 已提交
4700
    :param stride: The stride on the x axis.
L
luotao02 已提交
4701
    :type stride: int
R
ranqiu 已提交
4702 4703
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4704
    :type stride_y: int
R
ranqiu 已提交
4705
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4706
    :type padding: int
R
ranqiu 已提交
4707 4708
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4719

4720 4721
    if num_channels is None:
        num_channels = img.num_filters
4722 4723

    assert isinstance(filter, LayerOutput)
4724
    assert filter.size is not None
4725

4726 4727 4728
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4740

4741
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4742 4743
    return op

Q
qijun 已提交
4744

4745
@wrap_param_attr_default()
Q
qijun 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4756 4757
                    param_attr=None,
                    trans=False):
4758
    """
R
ranqiu 已提交
4759 4760 4761
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4762 4763 4764 4765 4766

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4767
       proj = conv_projection(input=input1,
4768 4769 4770 4771
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4772
    :param input: The input of this layer.
4773
    :type input: LayerOutput
R
ranqiu 已提交
4774 4775 4776 4777 4778
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4779
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4780 4781 4782
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4783
    :type filter_size_y: int
R
ranqiu 已提交
4784
    :param num_filters: The number of filters.
4785
    :type num_filters: int
R
ranqiu 已提交
4786
    :param num_channels: The number of the input channels.
4787
    :type num_channels: int
R
ranqiu 已提交
4788 4789 4790 4791 4792 4793 4794
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4795
    :type stride_y: int
R
ranqiu 已提交
4796 4797 4798 4799 4800 4801 4802
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4803 4804 4805
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4806 4807
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4808
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4809
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4810
    :type trans: bool
R
ranqiu 已提交
4811 4812
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4841
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4842 4843 4844 4845 4846
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4847 4848 4849
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4862 4863 4864 4865

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4866

D
dangqingqing 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4877 4878
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4879

R
ranqiu 已提交
4880 4881 4882 4883
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4884

D
dangqingqing 已提交
4885
    For example,
4886

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4908 4909

    The simply usage is:
D
dangqingqing 已提交
4910 4911 4912 4913 4914 4915 4916 4917

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4918
    :param input: The input of this layer.
D
dangqingqing 已提交
4919
    :type input: LayerOutput
R
ranqiu 已提交
4920
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4921
    :type pad_c: list | None
R
ranqiu 已提交
4922
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4923
    :type pad_h: list | None
R
ranqiu 已提交
4924
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4925
    :type pad_w: list | None
R
ranqiu 已提交
4926 4927
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4928
    :type layer_attr: ExtraLayerAttribute
4929
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4972
@wrap_name_default()
L
luotao1 已提交
4973 4974
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4975
    """
R
ranqiu 已提交
4976
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4977 4978 4979 4980 4981 4982 4983 4984
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4985
    In this formula:
4986 4987 4988 4989
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4990 4991 4992 4993 4994

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4995
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4996

4997
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4998
    :type name: basestring
R
ranqiu 已提交
4999
    :param a: The first input of this layer.
5000
    :type a: LayerOutput
R
ranqiu 已提交
5001
    :param b: The second input of this layer.
5002
    :type b: LayerOutput
R
ranqiu 已提交
5003 5004
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5005
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5006
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5007 5008
    :rtype: LayerOutput
    """
5009 5010
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
5011 5012 5013
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
5014
        inputs=[a.name, b.name],
Q
qijun 已提交
5015
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5016

Q
qijun 已提交
5017 5018
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
5019 5020 5021 5022 5023


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5024
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5025
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5026 5027 5028 5029 5030 5031 5032 5033
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5034
    """
R
ranqiu 已提交
5035 5036
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5037 5038

    .. math::
5039
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5040 5041

    In this formular:
5042 5043
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5044 5045
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5046
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5047 5048 5049 5050 5051

    The simple usage is:

    .. code-block:: python

5052
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5053

5054
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5055
    :type name: basestring
R
ranqiu 已提交
5056
    :param a: The first input of this layer.
5057
    :type a: LayerOutput
R
ranqiu 已提交
5058
    :param b: The second input of this layer.
5059
    :type b: LayerOutput
R
ranqiu 已提交
5060 5061
    :param size: The dimension of this layer.
    :type size: int
5062
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5063
    :type act: BaseActivation
R
ranqiu 已提交
5064 5065
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5066
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5067 5068 5069 5070
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5071
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5072 5073
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5074
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5075
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5076 5077
    :rtype: LayerOutput
    """
5078
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5079 5080 5081 5082 5083 5084
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5085 5086 5087 5088
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5089 5090 5091 5092 5093 5094


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5095
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5096 5097
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5098
                       select=None,
Q
qijun 已提交
5099 5100
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5101 5102 5103
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5104 5105 5106
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5107 5108
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5109
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5110 5111 5112 5113 5114 5115 5116
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5117
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5118

5119
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5120
    :type name: basestring
R
ranqiu 已提交
5121 5122
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5123 5124 5125 5126
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5127
    :type select: LayerOutput
R
ranqiu 已提交
5128 5129
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5130
    :type size: int
5131
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5132
    :type act: BaseActivation
R
ranqiu 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5143
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5144 5145 5146 5147
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5148
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5149 5150
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5151
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5152
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5153 5154 5155 5156
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5157
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5158 5159
        param_attr = [param_attr]
    else:
5160
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5161 5162
            assert len(input) == len(param_attr)
        else:
5163
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5164
                logger.fatal(
W
wangmeng28 已提交
5165 5166 5167 5168 5169
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5170 5171
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5172 5173 5174 5175
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5176
    Layer(
Q
qijun 已提交
5177 5178 5179
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5180 5181 5182
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5183
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5184 5185 5186 5187
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5188 5189 5190 5191 5192 5193 5194
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5195 5196 5197


@wrap_name_default()
L
luotao1 已提交
5198 5199
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5200
    """
R
ranqiu 已提交
5201
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5202 5203 5204 5205 5206 5207 5208 5209
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5210
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5211
    :type input: LayerOutput
5212
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5213
    :type name: basestring
R
ranqiu 已提交
5214 5215 5216
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5217
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5218 5219
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5220
    l = Layer(
Z
zhangjinchao01 已提交
5221 5222 5223
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5224 5225 5226
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5227 5228 5229


@wrap_name_default()
L
luotao1 已提交
5230
@layer_support()
Q
qijun 已提交
5231 5232 5233 5234
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5235
                          layer_attr=None):
Z
zhangjinchao01 已提交
5236
    """
R
ranqiu 已提交
5237
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5248
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5249
    :type input: LayerOutput
5250
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5251
    :type name: basestring
R
ranqiu 已提交
5252 5253 5254 5255 5256 5257 5258
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5259
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5260 5261 5262 5263 5264 5265 5266 5267
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5268 5269 5270
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5271 5272 5273


@wrap_name_default()
L
luotao1 已提交
5274
@layer_support()
Q
qijun 已提交
5275
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5276
    """
5277 5278 5279 5280
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5281 5282 5283

    .. math::

5284
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5285

5286 5287 5288 5289 5290
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5291

5292
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5293 5294

    In this formular:
5295 5296 5297 5298 5299 5300
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5301 5302 5303 5304 5305

    The simple usage is:

    .. code-block:: python

5306
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5307 5308
                                       size=elem_dim)

5309 5310 5311 5312
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5313
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5314
    :type size: int
5315
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5316
    :type name: basestring
R
ranqiu 已提交
5317 5318 5319
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5321 5322
    :rtype: LayerOutput
    """
5323 5324 5325 5326
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5327
            size = vectors.size / weights.size
5328 5329
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5330 5331
    Layer(
        name=name,
5332
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5333
        size=size,
5334
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5335 5336 5337
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5338

5339

5340
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5341

5342

Z
zhangjinchao01 已提交
5343
@wrap_name_default()
L
luotao1 已提交
5344
@layer_support()
Z
zhangjinchao01 已提交
5345 5346 5347 5348 5349 5350 5351
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5352
                       num_channels=None,
L
luotao1 已提交
5353 5354
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5355 5356
    """
    Expand feature map to minibatch matrix.
5357
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5358
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5359 5360 5361 5362 5363 5364 5365

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5366
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5367
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5368
    The number of time steps is outputH * outputW and the dimension of each
5369
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5370
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5371

5372 5373 5374 5375
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5376
       block_expand = block_expand_layer(input=layer,
5377
                                         num_channels=128,
5378 5379 5380 5381 5382
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5383
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5384
    :type input: LayerOutput
R
ranqiu 已提交
5385 5386 5387 5388
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5401
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5402 5403 5404 5405
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5406
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5407 5408
    :rtype: LayerOutput
    """
5409 5410 5411
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5429 5430


5431 5432
@wrap_name_default()
@layer_support()
5433
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5434
    """
R
ranqiu 已提交
5435 5436 5437 5438
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5439

5440
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5441 5442 5443
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5444
        `Maxout Networks
R
ranqiu 已提交
5445
        <http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>`_
R
ranqiu 已提交
5446
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
R
ranqiu 已提交
5447
        <https://arxiv.org/pdf/1312.6082v4.pdf>`_
5448

C
chengduoZH 已提交
5449

X
xuwei06 已提交
5450
    .. math::
C
chengduoZH 已提交
5451 5452 5453 5454 5455 5456 5457
       out = \max_k (in[n, k, o_c , s])   \\\\
       out_{i * s + j} = \max_k in_{  k * o_{c} * s + i * s + j}  \\\\
       s = \frac{input.size}{ num\_channels}       \\\\
       o_{c} =\frac{num\_channels}{groups}         \\\\
       0 \le i < o_{c}                             \\\\
       0 \le j < s                                 \\\\
       0 \le k < groups                            \\\\
X
xuwei06 已提交
5458

5459 5460 5461 5462 5463 5464 5465 5466
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5467
    :param input: The input of this layer.
5468
    :type input: LayerOutput
R
ranqiu 已提交
5469 5470 5471 5472
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5473 5474
    :param groups: The group number of input layer.
    :type groups: int
5475
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5476 5477 5478
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5498 5499


Z
zhangjinchao01 已提交
5500
@wrap_name_default()
L
luotao1 已提交
5501
@layer_support()
Q
qijun 已提交
5502 5503 5504 5505 5506
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5507
              layer_attr=None):
Z
zhangjinchao01 已提交
5508 5509
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5510
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5511 5512
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5513
    Reference:
R
ranqiu 已提交
5514
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5515
        with Recurrent Neural Networks
R
ranqiu 已提交
5516
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5517 5518

    Note:
R
ranqiu 已提交
5519 5520 5521 5522 5523
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5524

C
caoying03 已提交
5525
    The example usage is:
Z
zhangjinchao01 已提交
5526 5527 5528 5529 5530 5531 5532 5533

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5534
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5535
    :type input: LayerOutput
R
ranqiu 已提交
5536
    :param label: The input label.
Z
zhangjinchao01 已提交
5537
    :type label: LayerOutput
R
ranqiu 已提交
5538
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5539
    :type size: int
5540
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5541 5542
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5543
    :type norm_by_times: bool
R
ranqiu 已提交
5544 5545 5546
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5547
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5548 5549 5550 5551
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5552 5553 5554 5555 5556
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5557
    Layer(
5558 5559 5560 5561
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5562
        inputs=[input.name, label.name],
Q
qijun 已提交
5563
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5564 5565
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5566

5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5578
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5579
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5580 5581 5582 5583 5584 5585 5586
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5587
    Reference:
R
ranqiu 已提交
5588
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5589
        with Recurrent Neural Networks
R
ranqiu 已提交
5590
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5591 5592

    Note:
R
ranqiu 已提交
5593 5594 5595
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5596
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5597
          should be consistent with those used in your labels.
5598
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5599
          'linear' activation is expected to be used instead in the 'input' layer.
5600

C
caoying03 已提交
5601
    The example usage is:
5602 5603 5604 5605 5606 5607 5608 5609 5610

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5611
    :param input: The input of this layer.
5612
    :type input: LayerOutput
R
ranqiu 已提交
5613
    :param label: The input label.
5614
    :type label: LayerOutput
R
ranqiu 已提交
5615
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5616
    :type size: int
5617
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5618 5619
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5620
    :type blank: int
R
ranqiu 已提交
5621
    :param norm_by_times: Whether to do normalization by times. False is the default.
5622
    :type norm_by_times: bool
R
ranqiu 已提交
5623 5624 5625
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5648
@wrap_name_default()
5649
@wrap_param_attr_default()
L
luotao1 已提交
5650
@layer_support()
Q
qijun 已提交
5651 5652 5653 5654 5655 5656
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5657
              coeff=1.0,
L
luotao1 已提交
5658
              layer_attr=None):
Z
zhangjinchao01 已提交
5659 5660 5661 5662
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5663
    The example usage is:
Z
zhangjinchao01 已提交
5664 5665 5666 5667 5668 5669 5670

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5671
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5672
    :type input: LayerOutput
R
ranqiu 已提交
5673
    :param label: The input label.
5674
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5675 5676
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5677 5678
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5679
    :type weight: LayerOutput
R
ranqiu 已提交
5680 5681
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5682
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5683
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5684 5685
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5686
                  1.0 is the default value.
5687
    :type coeff: float
R
ranqiu 已提交
5688 5689 5690
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5691
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5692 5693 5694 5695 5696
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5697 5698 5699 5700 5701 5702
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5703

Q
qijun 已提交
5704
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5705 5706 5707 5708
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5709 5710 5711 5712
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5713
        coeff=coeff,
Q
qijun 已提交
5714
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5715 5716 5717
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5718 5719 5720 5721
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5722

5723

Z
zhangjinchao01 已提交
5724
@wrap_name_default()
5725
@wrap_param_attr_default()
L
luotao1 已提交
5726
@layer_support()
Q
qijun 已提交
5727 5728 5729 5730 5731
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5732
                       layer_attr=None):
Z
zhangjinchao01 已提交
5733 5734 5735
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5736 5737 5738
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5739

C
caoying03 已提交
5740
    The example usage is:
L
Luo Tao 已提交
5741 5742 5743 5744 5745 5746

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5747 5748
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5749
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5750
    :type size: int
R
ranqiu 已提交
5751 5752 5753 5754
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5755
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5756
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5757 5758 5759 5760
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5761
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5762 5763 5764 5765 5766 5767
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5768
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5769 5770 5771 5772
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5773 5774 5775 5776
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5777
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5778 5779 5780
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5781 5782 5783 5784
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5785

Q
qijun 已提交
5786

C
caoying03 已提交
5787 5788 5789 5790 5791
"""
Following are cost Layers.
"""


5792
@wrap_bias_attr_default(has_bias=True)
5793
@wrap_param_attr_default()
5794 5795
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5796 5797
def nce_layer(input,
              label,
C
caoying03 已提交
5798
              num_classes=None,
5799
              param_attr=None,
Q
qijun 已提交
5800 5801 5802 5803 5804 5805
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5806 5807
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5808 5809

    Reference:
R
ranqiu 已提交
5810
        `A fast and simple algorithm for training neural probabilistic language
R
ranqiu 已提交
5811
        models. <https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>`_
5812 5813 5814 5815 5816

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5817 5818
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5819 5820
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5821
    :param name: The name of this layer. It is optional.
5822
    :type name: basestring
R
ranqiu 已提交
5823
    :param input: The first input of this layer.
R
ranqiu 已提交
5824
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5825
    :param label: The input label.
5826
    :type label: LayerOutput
C
caoying03 已提交
5827
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5828
                   mini-batch. It is optional.
5829
    :type weight: LayerOutput
R
ranqiu 已提交
5830
    :param num_classes: The number of classes.
5831
    :type num_classes: int
5832
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5833
    :type act: BaseActivation
R
ranqiu 已提交
5834 5835
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5836
    :type param_attr: ParameterAttribute
5837 5838
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5839
    :type num_neg_samples: int
C
caoying03 已提交
5840 5841 5842
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5843
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5844 5845 5846
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5847
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5848 5849 5850 5851
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5852
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5853 5854
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5855
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5856
    :return: LayerOutput object.
5857 5858 5859 5860
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5861 5862 5863 5864 5865 5866 5867 5868
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5869
    assert isinstance(input, collections.Sequence)
5870

5871 5872
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5873 5874
    if num_classes is None:
        num_classes = label.size
5875 5876 5877
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5878
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5879

5880 5881
    ipts_for_layer = []
    parents = []
5882
    for each_input, attr in zip(input, param_attr):
5883
        assert isinstance(each_input, LayerOutput)
5884
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5895
    l = Layer(
5896 5897 5898 5899
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5900
        active_type=SigmoidActivation().name,
5901 5902 5903
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5904 5905
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5906 5907 5908 5909
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5910
        activation=SigmoidActivation())
5911 5912


Z
zhangjinchao01 已提交
5913
@wrap_name_default()
L
luotao1 已提交
5914
@layer_support()
Q
qijun 已提交
5915 5916 5917 5918 5919 5920 5921
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5922
    """
R
ranqiu 已提交
5923 5924 5925
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5926
        `Learning to Rank using Gradient Descent
R
ranqiu 已提交
5927
        <http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>`_
Z
zhangjinchao01 已提交
5928 5929 5930

    .. math::

L
luotao02 已提交
5931
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5932

L
luotao02 已提交
5933
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5934

L
luotao02 已提交
5935
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5936 5937 5938 5939 5940 5941 5942 5943

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5944
    The example usage is:
Z
zhangjinchao01 已提交
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5958 5959
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5960
    :type weight: LayerOutput
R
ranqiu 已提交
5961
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5962 5963
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5964
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5965
    :type coeff: float
R
ranqiu 已提交
5966 5967
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5968
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5969
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5982 5983 5984 5985 5986 5987
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5988

X
xuwei06 已提交
5989
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5990

5991

Z
zhangjinchao01 已提交
5992
@wrap_name_default()
L
luotao1 已提交
5993
@layer_support()
Q
qijun 已提交
5994 5995 5996 5997 5998 5999
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
6000 6001 6002
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
6003
    The example usage is:
Z
zhangjinchao01 已提交
6004 6005 6006 6007 6008 6009 6010 6011

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
6012 6013
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
6014
    :type input: LayerOutput
R
ranqiu 已提交
6015
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
6016 6017
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
6018
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
6019
                     minimum size of the list.
Z
zhangjinchao01 已提交
6020
    :type NDCG_num: int
R
ranqiu 已提交
6021 6022 6023 6024 6025
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6026
    :type max_sort_size: int
R
ranqiu 已提交
6027
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6028 6029 6030
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6031
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6032
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6033 6034
    :rtype: LayerOutput
    """
6035 6036 6037
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6038 6039 6040 6041 6042 6043 6044
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6045

Q
qijun 已提交
6046 6047
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6048

6049

Z
zhangjinchao01 已提交
6050
@wrap_name_default()
L
luotao1 已提交
6051
@layer_support()
6052 6053 6054 6055 6056 6057
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6058 6059 6060
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6061 6062
    The example usage is:

Z
zhangjinchao01 已提交
6063 6064
    .. code-block:: python

X
xuwei06 已提交
6065
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6066
                            label=label_layer)
Z
zhangjinchao01 已提交
6067 6068 6069 6070

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6071
    :type input: LayerOutput
R
ranqiu 已提交
6072
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6073 6074
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6075
                  1.0 is the default value.
R
ranqiu 已提交
6076
    :type coeff: float
R
ranqiu 已提交
6077 6078
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6079
    :type weight: LayerOutout
R
ranqiu 已提交
6080 6081
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6082
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6083
    :return: LayerOutput object.
R
ranqiu 已提交
6084
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6085 6086
    """

6087
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6088 6089 6090
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6091
        inputs=ipts,
Q
qijun 已提交
6092 6093
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6094
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6095

6096

Z
zhangjinchao01 已提交
6097
@wrap_name_default()
L
luotao1 已提交
6098
@layer_support()
Q
qijun 已提交
6099 6100 6101 6102
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6103 6104
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6105 6106
    """
    A loss layer for multi class entropy with selfnorm.
6107
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6108

C
caoying03 已提交
6109 6110
    The example usage is:

Z
zhangjinchao01 已提交
6111 6112
    .. code-block:: python

X
xuwei06 已提交
6113
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6114
                                          label=label_layer)
Z
zhangjinchao01 已提交
6115 6116

    :param input: The first input layer.
R
ranqiu 已提交
6117
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6118
    :param label: The input label.
R
ranqiu 已提交
6119
    :type input: LayerOutput
R
ranqiu 已提交
6120
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6121 6122
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6123
                  1.0 is the default value.
R
ranqiu 已提交
6124
    :type coeff: float
Z
zhangjinchao01 已提交
6125
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6126 6127 6128
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6129
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6130
    :return: LayerOutput object.
R
ranqiu 已提交
6131
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6132
    """
Q
qijun 已提交
6133 6134 6135 6136 6137 6138 6139
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6140

Q
qijun 已提交
6141 6142 6143 6144 6145
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6146

6147

X
xuwei06 已提交
6148 6149 6150 6151
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6152
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6153

C
caoying03 已提交
6154 6155
    The example usage is:

X
xuwei06 已提交
6156 6157
    .. code-block:: python

L
Luo Tao 已提交
6158
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6159

R
ranqiu 已提交
6160
    :param input: The input of this layer.
R
ranqiu 已提交
6161
    :type input: LayerOutput
R
ranqiu 已提交
6162
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6163 6164 6165
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6166 6167 6168 6169
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6170
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6171 6172 6173 6174 6175
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6176

Q
qijun 已提交
6177
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6178 6179


Z
zhangjinchao01 已提交
6180
@wrap_name_default()
L
luotao1 已提交
6181
@layer_support()
L
Luo Tao 已提交
6182 6183 6184 6185 6186 6187
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6188
    """
6189 6190 6191
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6192 6193
    is defined as:

R
ranqiu 已提交
6194 6195 6196 6197 6198
    .. math::

       loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta

       loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise
Z
zhangjinchao01 已提交
6199

C
caoying03 已提交
6200 6201
    The example usage is:

Z
zhangjinchao01 已提交
6202 6203
    .. code-block:: python

L
Luo Tao 已提交
6204
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6205 6206

    :param input: The first input layer.
R
ranqiu 已提交
6207
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6208
    :param label: The input label.
R
ranqiu 已提交
6209
    :type input: LayerOutput
R
ranqiu 已提交
6210
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6211
    :type name: basestring
L
Luo Tao 已提交
6212
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6213 6214
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6215
                  1.0 is the default value.
R
ranqiu 已提交
6216 6217 6218
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6219
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6220
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6221 6222
    :rtype: LayerOutput.
    """
6223
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6235
@wrap_name_default()
L
luotao1 已提交
6236
@layer_support()
6237 6238 6239 6240 6241
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6242
    """
6243 6244
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
R
ranqiu 已提交
6245
    a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber
6246 6247 6248
    loss is defined as:

    .. math:
R
ranqiu 已提交
6249 6250 6251 6252

       loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1

       loss = -4yf(x), otherwise
Z
zhangjinchao01 已提交
6253

C
caoying03 已提交
6254 6255
    The example usage is:

Z
zhangjinchao01 已提交
6256 6257
    .. code-block:: python

6258
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6259 6260

    :param input: The first input layer.
R
ranqiu 已提交
6261
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6262
    :param label: The input label.
R
ranqiu 已提交
6263
    :type input: LayerOutput
R
ranqiu 已提交
6264
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6265 6266
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6267
                  1.0 is the default value.
R
ranqiu 已提交
6268 6269 6270
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6271
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6272
    :return: LayerOutput object.
R
ranqiu 已提交
6273
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6274
    """
6275 6276 6277
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6278 6279
    Layer(
        name=name,
6280
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6281 6282 6283
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6284 6285
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6286

6287

Z
zhangjinchao01 已提交
6288
@wrap_name_default()
L
luotao1 已提交
6289
@layer_support()
Q
qijun 已提交
6290 6291 6292 6293
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6294
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6295 6296 6297
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6298 6299
    The example usage is:

Z
zhangjinchao01 已提交
6300 6301
    .. code-block:: python

X
xuwei06 已提交
6302
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6303
                                               label=label_layer)
Z
zhangjinchao01 已提交
6304 6305 6306 6307 6308

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6309
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6310 6311
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6312
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6313
    :type coeff: float
R
ranqiu 已提交
6314 6315
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6316
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6317
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6318 6319 6320
    :rtype: LayerOutput
    """

6321 6322
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6323 6324 6325 6326
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6339 6340


C
caoying03 已提交
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6363 6364
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6365
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6366
    """
C
caoying03 已提交
6367 6368 6369
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6370

C
caoying03 已提交
6371 6372 6373 6374 6375
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6376

C
caoying03 已提交
6377 6378 6379 6380 6381
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6382

C
caoying03 已提交
6383 6384 6385
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6386

C
caoying03 已提交
6387 6388 6389 6390
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6391

C
caoying03 已提交
6392 6393 6394
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6395
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6396 6397
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6398

D
dangqingqing 已提交
6399

C
caoying03 已提交
6400 6401
    The example usage is:

D
dangqingqing 已提交
6402 6403
    .. code-block:: python

C
caoying03 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6416
    :param input: Input beams for this layer.
C
caoying03 已提交
6417
    :type input: BeamInput
R
ranqiu 已提交
6418
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6445 6446 6447
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6448 6449
@wrap_name_default()
@layer_support()
6450
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6451 6452
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6453
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6463
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6464

R
ranqiu 已提交
6465
    Reference:
R
ranqiu 已提交
6466
        `Fast R-CNN
R
ranqiu 已提交
6467
        <https://arxiv.org/pdf/1504.08083v2.pdf>`_
D
dangqingqing 已提交
6468

C
caoying03 已提交
6469 6470
    The example usage is:

D
dangqingqing 已提交
6471 6472
    .. code-block:: python

6473 6474
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6475 6476 6477 6478 6479

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6480
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6481
    :type name: basestring
R
ranqiu 已提交
6482
    :param coeff: The weight of the gradient in the back propagation.
6483
                  1.0 is the default value.
6484
    :type coeff: float
R
ranqiu 已提交
6485 6486
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6499
        coeff=coeff,
D
dangqingqing 已提交
6500 6501 6502
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6503 6504 6505 6506 6507


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6508 6509 6510
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6511
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6512 6513
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6514 6515 6516 6517 6518 6519 6520 6521

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6522 6523
    The example usage is:

W
wwhu 已提交
6524 6525 6526 6527 6528 6529
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6530
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6531
    :type name: basestring
R
ranqiu 已提交
6532 6533
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6557 6558


6559 6560 6561 6562
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6563 6564 6565 6566 6567 6568
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6569
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6570
    :type name: basestring
R
ranqiu 已提交
6571
    :param input: The input of this layer.
R
ranqiu 已提交
6572 6573 6574 6575 6576
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6577 6578 6579 6580 6581 6582 6583
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6584 6585


D
dangqingqing 已提交
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6599
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6600 6601 6602 6603 6604 6605 6606
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6607
    efficient manner to improve unidirectional RNNs.
6608

R
ranqiu 已提交
6609
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6610 6611 6612 6613
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6614

D
dangqingqing 已提交
6615 6616 6617
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
R
fix doc  
ranqiu 已提交
6618
                  \quad \\text{for} \quad  (1 \leq i \leq d)
D
dangqingqing 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6630
    :param input: The input of this layer.
D
dangqingqing 已提交
6631 6632 6633 6634
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6635
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6636
    :type act: BaseActivation
R
ranqiu 已提交
6637 6638
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6639
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6640 6641
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6642
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6658 6659


6660 6661 6662 6663 6664
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6665 6666
                channel_shared=None,
                num_channels=None,
6667 6668 6669
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6670
    The Parametric Relu activation that actives outputs with a learnable weight.
6671 6672

    Reference:
R
ranqiu 已提交
6673
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
R
ranqiu 已提交
6674
        ImageNet Classification <http://arxiv.org/pdf/1502.01852v1.pdf>`_
6675 6676 6677 6678 6679

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6680 6681 6682 6683 6684 6685
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6686
    :param name: The name of this layer. It is optional.
6687
    :type name: basestring
R
ranqiu 已提交
6688
    :param input: The input of this layer.
6689
    :type input: LayerOutput
R
ranqiu 已提交
6690
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6691 6692

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6693 6694
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6695 6696

    :type partial_sum: int
6697
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6698

6699 6700
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6701

6702
    :type channel_shared: bool
6703 6704
    :param num_channels: number of input channel.
    :type num_channels: int
6705
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6706 6707 6708
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6709
    :type layer_attr: ExtraLayerAttribute | None
6710 6711 6712 6713
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6714
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6715

6716
    if not param_attr:
X
xzl 已提交
6717
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6718 6719 6720 6721
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6722 6723
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6724 6725 6726 6727
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6728 6729
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6730 6731 6732 6733
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6734 6735 6736

    l = Layer(
        name=name,
C
caoying03 已提交
6737
        type=LayerType.PRELU,
C
caoying03 已提交
6738
        inputs=Input(input.name, **param_attr.attr),
6739 6740 6741 6742 6743 6744
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6745
        num_filters=num_channels,
6746
        size=l.config.size)
6747 6748


6749
@wrap_name_default()
C
caoying03 已提交
6750
@layer_support(ERROR_CLIPPING, DROPOUT)
6751 6752 6753 6754 6755 6756 6757
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6758 6759
                     gate_bias_attr=True,
                     inproj_attr=None,
6760 6761 6762 6763 6764 6765 6766
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
fix doc  
ranqiu 已提交
6767
    product between :math:`X'` and :math:`\sigma` is finally returned.
6768 6769

    Reference:
R
ranqiu 已提交
6770
        `Language Modeling with Gated Convolutional Networks
R
ranqiu 已提交
6771
        <https://arxiv.org/abs/1612.08083>`_
6772 6773 6774 6775 6776 6777 6778 6779 6780

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6781
    :param input: The input of this layer.
6782
    :type input: LayerOutput
R
ranqiu 已提交
6783
    :param size: The dimension of this layer's output.
6784
    :type size: int
6785 6786
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6787
    :type act: BaseActivation
6788
    :param name: The name of this layer. It is optional.
6789
    :type name: basestring
R
ranqiu 已提交
6790 6791
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6792
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6793 6794 6795
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6796
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6797
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6798
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6799 6800 6801
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6802
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6803 6804 6805
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6806
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6807
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6808
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6809 6810 6811
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6812
    :type layer_attr: ExtraLayerAttribute | None
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6825
        layer_attr=inproj_attr,
6826 6827 6828 6829 6830 6831 6832 6833 6834
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6835
        param_attr=gate_param_attr,
6836 6837 6838 6839 6840
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6841 6842


6843
@layer_support()
6844
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6845 6846
def switch_order_layer(input,
                       name=None,
6847
                       reshape_axis=None,
W
wanghaoshuang 已提交
6848 6849
                       act=None,
                       layer_attr=None):
6850
    """
6851
    This layer switch dimension order of image input.
6852 6853
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6854 6855 6856 6857

    The example usage is:

    .. code-block:: python
6858 6859
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6860
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6861

R
ranqiu 已提交
6862
    :param input: The input of this layer.
6863
    :type input: LayerOutput
6864
    :param name: The name of this layer. It is optional.
6865
    :type name: basestring
R
ranqiu 已提交
6866 6867
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6868 6869 6870
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6871
    assert isinstance(input, LayerOutput)
6872 6873 6874 6875 6876
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6877 6878
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6879
        inputs=input.name,
6880 6881
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6882
        active_type=act.name,
6883 6884 6885
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6886
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6887
        activation=act,
6888 6889
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6890 6891


6892 6893
@wrap_name_default()
@layer_support()
6894
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6895
    """
R
ranqiu 已提交
6896 6897 6898
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6899

6900 6901 6902
    The example usage is:

    .. code-block:: python
W
whs 已提交
6903
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6904

R
ranqiu 已提交
6905 6906
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
6907
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
6908 6909
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6910
    :type offset: Sequence
R
ranqiu 已提交
6911
    :param axis: The start axis to be cropped. For image input layer:
6912 6913 6914 6915
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6916 6917
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6918
    :type shape: Sequence | None
6919
    :param name: The name of this layer. It is optional.
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6941 6942


C
caoying03 已提交
6943 6944
@wrap_name_default()
@layer_support()
6945
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6946
    """
6947
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6948
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6949

C
caoying03 已提交
6950 6951 6952
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6953 6954 6955 6956

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6957

R
ranqiu 已提交
6958
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6959

C
caoying03 已提交
6960

R
ranqiu 已提交
6961
    :param input: The input of this layer. It is a nested sequence.
6962
    :type input: LayerOutput
R
ranqiu 已提交
6963
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6964
    :type input: LayerOutput
6965
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6966 6967 6968 6969
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6970

6971 6972 6973 6974 6975 6976 6977
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6978
    l = Layer(
6979 6980
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6981 6982 6983 6984 6985 6986 6987
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6988 6989


G
guosheng 已提交
6990
@wrap_name_default("clip")
6991
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6992 6993 6994 6995 6996
    """
    A layer for clipping the input value by the threshold.

    .. math::

R
ranqiu 已提交
6997
        out[i] = \min (\max (in[i],p_{1} ),p_{2} )
G
guosheng 已提交
6998 6999 7000

    .. code-block:: python

7001
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
7002

7003
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7004
    :type name: basestring
R
ranqiu 已提交
7005
    :param input: The input of this layer.
G
guosheng 已提交
7006
    :type input: LayerOutput.
7007
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
7008
    :type min: float
7009
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
7010
    :type max: float
7011 7012
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
7013 7014 7015 7016 7017
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
7018 7019
        min=min,
        max=max)
G
guosheng 已提交
7020 7021
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
7022 7023


7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7048
    :param name: The name of this layer. It is optional.
7049
    :type name: basestring
R
ranqiu 已提交
7050
    :param input: The input of this layer, which should be a sequence.
7051
    :type input: LayerOutput
R
ranqiu 已提交
7052
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7053
    :type starts: LayerOutput | None
R
ranqiu 已提交
7054
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7055
    :type ends: LayerOutput | None
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7087 7088


7089 7090
@wrap_name_default()
@layer_support()
7091
def kmax_seq_score_layer(input, name=None, beam_size=1):
7092
    """
R
ranqiu 已提交
7093
    This layer accepts one input which is scores over a sequence or a nested
7094 7095 7096 7097
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7098
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7099 7100


7101
    :param name: The name of this layer. It is optional.
7102
    :type name: basestring
R
ranqiu 已提交
7103 7104
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7105
    :type input: LayerOutput
R
ranqiu 已提交
7106 7107
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7108 7109 7110
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7111
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7112
                                            "accepts only one input.")
7113
    assert input.size == 1, (
7114
        "input of kmax_seq_score_layer is a score "
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7125 7126


7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7153
        conv = img_conv3d_layer(input=data, filter_size=1,
7154 7155 7156 7157 7158
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7159
    :param name: The name of this layer. It is optional.
7160
    :type name: basestring
R
ranqiu 已提交
7161
    :param input: The input of this layer.
7162
    :type input: LayerOutput
R
ranqiu 已提交
7163 7164
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7165
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7166 7167
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7168
    :param act: Activation type. ReluActivation is the default activation.
7169
    :type act: BaseActivation
R
ranqiu 已提交
7170
    :param groups: The number of the filter groups.
7171
    :type groups: int
R
ranqiu 已提交
7172 7173
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7174
    :type stride: int | tuple | list
R
ranqiu 已提交
7175 7176
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7177
    :type padding: int | tuple | list
R
ranqiu 已提交
7178 7179 7180
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7181
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7182
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7183 7184
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7185
    :type num_channels: int
R
ranqiu 已提交
7186 7187
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7188
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7189
    :param shared_biases: Whether biases will be shared between filters or not.
7190
    :type shared_biases: bool
R
ranqiu 已提交
7191 7192
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7193
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7194
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7195
    :type trans: bool
R
ranqiu 已提交
7196
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7197 7198 7199
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7200 7201 7202 7203 7204 7205 7206
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7207 7208 7209 7210 7211 7212
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7213

C
chengduoZH 已提交
7214 7215 7216 7217 7218 7219
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7220

C
chengduoZH 已提交
7221 7222 7223 7224 7225 7226
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7273 7274


G
guosheng 已提交
7275 7276 7277 7278 7279
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7280
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7281
    the input matrix. For each element, the layer first re-scales it and then
7282 7283
    adds a bias to it.

X
xuwei06 已提交
7284
    This layer is very like the SlopeInterceptLayer, except the scale and
7285 7286
    bias are trainable.

G
guosheng 已提交
7287 7288 7289 7290 7291 7292 7293 7294
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7295
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7296
    :type name: basestring
R
ranqiu 已提交
7297 7298
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7299 7300
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7301
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7302 7303 7304
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7305
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7316 7317 7318 7319 7320 7321 7322 7323 7324


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7325
    :param input: The input of this layer.
7326 7327 7328
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7329
    :param size: The resized output dimension of this layer.
7330 7331 7332 7333 7334 7335
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7355 7356
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7357
    :type offsets: LayerOutput
R
ranqiu 已提交
7358
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7359
    :type sizes: LayerOutput
7360
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7361
    :type act: BaseActivation.
R
ranqiu 已提交
7362 7363 7364
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7390 7391


Y
yangyaming 已提交
7392 7393
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7394
    """
Y
yangyaming 已提交
7395 7396 7397 7398 7399 7400
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7401 7402 7403

    .. code-block:: python

Y
yangyaming 已提交
7404 7405 7406
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7422 7423
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7424 7425 7426 7427 7428 7429 7430
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7431
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7432 7433 7434 7435 7436
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7437
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7438
        parents=[input, indices],
Y
yangyaming 已提交
7439
        num_filters=input.num_filters,
Y
yangyaming 已提交
7440
        size=input.size)
7441 7442


7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7457 7458 7459 7460 7461
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7462
    .. math::
R
fix doc  
ranqiu 已提交
7463
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \\rangle x_i x_j
7464

7465 7466 7467 7468
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7469 7470

    For details of Factorization Machine, please refer to the paper:
7471
    Factorization machines.
7472

7473
    .. code-block:: python
W
wangmeng28 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7485 7486
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7487
                        the latent vector size.
7488 7489 7490
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7491 7492
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)