layers.py 229.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Q
qijun 已提交
146
]
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153


class LayerType(object):
    """
    Layer type enumerations.
    """

154 155 156 157 158 159 160 161
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
162
    POOLING_AVG = 'average'
163
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
164
    COST = 'cost'
165 166
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
167
    HSIGMOID = 'hsigmoid'
168 169 170 171 172
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
173
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
174
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
175
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
176 177 178
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
179
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
180 181 182 183
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
184
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
185 186 187 188 189 190 191

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
192
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
193 194 195
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
196
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
197
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
198
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
199 200 201 202 203 204 205 206 207 208 209

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
210
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
211
    BLOCK_EXPAND = "blockexpand"
212
    MAXOUT = "maxout"
Q
qijun 已提交
213
    SPP_LAYER = "spp"
D
dangqingqing 已提交
214
    PAD_LAYER = "pad"
W
wwhu 已提交
215
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
216
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
217 218 219

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
220 221
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
222 223 224 225 226

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
227
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
228

229 230 231
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

232 233
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
234
    HUBER_REGRESSION = 'huber_regression'
235
    HUBER_CLASSIFICATION = 'huber_classification'
236 237
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
238
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
239 240 241 242 243 244
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
245
    SWITCH_ORDER_LAYER = 'switch_order'
246
    CROP_LAYER = 'crop'
C
caoying03 已提交
247
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
248
    CLIP_LAYER = 'clip'
249
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
250

251
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
252
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
253

254 255
    RESIZE = 'resize'

Z
zhangjinchao01 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
276
    """
L
Luo Tao 已提交
277
    PaddlePaddle supports three sequence types:
278 279 280

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
281 282
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
283

L
Luo Tao 已提交
284
    Accordingly, AggregateLevel supports two modes:
285

L
Luo Tao 已提交
286
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
287
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
288 289
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
290
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
291 292 293
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
294 295
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
296 297 298
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
321
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
322 323
    """

Q
qijun 已提交
324 325 326 327 328 329 330 331 332
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
333
                 reverse=None):
Z
zhangjinchao01 已提交
334 335
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
336
        assert size is not None
Z
zhangjinchao01 已提交
337 338
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
339
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
340
        self.layer_type = layer_type
341 342
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
343 344 345 346 347 348 349 350
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
351
        self.reverse = reverse
Z
zhangjinchao01 已提交
352

353 354 355 356 357 358 359 360
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

361 362 363 364
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

365 366 367 368 369 370 371 372
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
373 374 375

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
376
DEVICE = 'device'
Z
zhangjinchao01 已提交
377 378 379


def layer_support(*attrs):
380
    attrs_list = list(attrs)
381
    attrs_list.append(DEVICE)
Q
qijun 已提交
382

Z
zhangjinchao01 已提交
383 384 385
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
386
            for attr in attrs_list:
Z
zhangjinchao01 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
403 404 405 406 407
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
438
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
439 440 441 442 443 444 445 446
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
447 448
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
449 450 451 452
    proj.origin = input
    return proj


453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
474
    :param input: The input of this layer.
475 476 477 478 479 480 481 482
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
483 484
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
485 486 487 488
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
519
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
520 521 522 523 524 525 526 527
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
528 529
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
530 531 532 533
    proj.origin = input
    return proj


534
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
564
    :param input: The input of this layer.
565
    :type input: LayerOutput
Z
zhangjinchao01 已提交
566 567
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
568
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
569 570 571 572 573 574
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
575 576
        if size is None:
            size = input.size - offset
Q
qijun 已提交
577
        proj = IdentityOffsetProjection(
578
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
579 580 581 582
        proj.origin = input
    return proj


583 584
def slice_projection(input, slices):
    """
585 586
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
587 588

    .. math::
589
       output = [input.slices()]
590 591 592 593 594 595 596 597 598

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
599
    :param input: The input of this layer.
600 601 602 603
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
604
    :type slices: pair of int
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
637
    :param input: The input of this layer.
X
xuwei06 已提交
638 639 640 641 642 643
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
644
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
645 646 647 648
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
649
@wrap_param_attr_default()
650
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
651
    """
652
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
666
    :param input: The input of this layer.
667 668 669 670 671 672
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
673 674
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
675
    proj.origin = input
676
    return proj
Z
zhangjinchao01 已提交
677

678 679

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
680 681
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
682

Z
zhangjinchao01 已提交
683
    .. math::
L
Luo Tao 已提交
684
       out.row[i] += scale * (a.row[i] .* b.row[i])
685

Z
zhangjinchao01 已提交
686 687
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
688

Z
zhangjinchao01 已提交
689
    The example usage is:
690

Z
zhangjinchao01 已提交
691
    .. code-block:: python
692

L
Luo Tao 已提交
693
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
694

695 696 697 698
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
699 700
    :param scale: config scalar, default value is one.
    :type scale: float
701 702
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
703
    """
704 705 706
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
707
    a = kwargs.get('x', a)  # For Backward capacity.
708 709 710 711 712 713
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
714
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
715
    op.origin = [a, b]
716
    return op
Z
zhangjinchao01 已提交
717

718

Z
zhangjinchao01 已提交
719
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
720 721 722
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
737
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
738 739 740 741 742 743 744 745 746
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
747
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
748 749 750 751 752 753 754 755 756 757 758
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
759 760 761 762 763 764
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
778
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
779 780 781 782 783 784
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
785
        :param act: Activation type.
Z
zhangjinchao01 已提交
786
        :type act: BaseActivation
787 788 789 790
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
R
ranqiu 已提交
791
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
792 793 794
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
795 796 797 798 799 800 801
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
802 803 804 805 806
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

807
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
808 809 810 811 812 813 814 815
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
816
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
817
            self.inputs.append(other)
818 819 820 821
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
822 823 824 825 826 827 828 829
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

830
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
831 832
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
833
        assert len(self.inputs) != 0
834
        ml = MixedLayer(
Z
zhangjinchao01 已提交
835 836 837 838 839
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
840
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
841 842 843
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
844
        self.finalized = True
Z
zhangjinchao01 已提交
845 846 847 848 849 850


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
851 852 853 854 855
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
883
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
884
                  then this function will just return layer's name.
R
ranqiu 已提交
885
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
886
    :type act: BaseActivation
887 888 889 890
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
891
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
892 893 894 895 896 897 898 899 900
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
901 902 903 904 905 906
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
907
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
908 909 910 911 912 913 914 915
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
916 917
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
925
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
926

R
ranqiu 已提交
927
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
928 929 930
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
931
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
932
    :type height: int | None
L
Luo Tao 已提交
933
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
934
    :type width: int | None
Z
zhangjinchao01 已提交
935 936
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
937
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
938 939
    :rtype: LayerOutput
    """
Q
qijun 已提交
940 941 942 943
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
944
        depth=depth,
L
Luo Tao 已提交
945 946
        height=height,
        width=width,
Q
qijun 已提交
947
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
948

C
chengduoZH 已提交
949 950
    if depth is None:
        depth = 1
951 952
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
953 954
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
955
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
956 957

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
958 959 960 961


@wrap_name_default("embedding")
@wrap_param_attr_default()
962
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
963 964 965 966
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

967
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
968
    :type name: basestring
R
ranqiu 已提交
969
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
970 971 972 973 974
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
975
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
976
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
977
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
979 980
    :rtype: LayerOutput
    """
Q
qijun 已提交
981 982 983 984 985 986
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
987 988 989 990 991 992 993 994 995
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
996 997 998 999 1000 1001 1002
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1015
    which is equal to:
Z
zhangjinchao01 已提交
1016 1017 1018 1019 1020 1021

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1023
    :type name: basestring
R
ranqiu 已提交
1024 1025
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1026 1027
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1028
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1029 1030 1031
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1032 1033 1034 1035
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1036
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1037
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1038
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1040 1041 1042 1043
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1044
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1045 1046
        param_attr = [param_attr]
    else:
1047
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1048 1049
            assert len(input) == len(param_attr)
        else:
1050
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1051
                logger.fatal(
W
wangmeng28 已提交
1052 1053 1054 1055 1056
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1057 1058
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1059
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1060 1061

    Layer(
Q
qijun 已提交
1062 1063 1064
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1065 1066 1067 1068 1069
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1070 1071 1072
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1073

1074

1075
@wrap_name_default("print")
1076
def printer_layer(input, format=None, name=None):
1077 1078
    """
    Print the output value of input layers. This layer is useful for debugging.
1079

1080
    :param name: The name of this layer. It is optional.
1081
    :type name: basestring
R
ranqiu 已提交
1082 1083
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1084
    :return: LayerOutput
1085
    """
1086 1087 1088 1089 1090
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1091 1092 1093

    Layer(
        name=name,
1094
        format=format,
1095
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1096
        inputs=[l.name for l in input], )
1097
    # this layer don't return anything, can not be input of other layer.
1098

X
xuwei06 已提交
1099 1100 1101 1102 1103 1104 1105
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1106

Y
yuan 已提交
1107
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1108
def priorbox_layer(input,
G
gaoyuan 已提交
1109
                   image,
G
gaoyuan 已提交
1110 1111 1112 1113 1114
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1115 1116 1117
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1118
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1119
    :type name: basestring
R
ranqiu 已提交
1120
    :param input: The input of this layer.
Y
yuan 已提交
1121
    :type input: LayerOutput
G
gaoyuan 已提交
1122 1123
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1135
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1136 1137 1138
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1139
        inputs=[input.name, image.name],
Y
yuan 已提交
1140 1141 1142 1143 1144 1145
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1146 1147
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1148
        parents=[input, image],
G
gaoyuan 已提交
1149 1150 1151
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1167
    :param name: The name of this layer. It is optional.
1168
    :type name: basestring
Y
yangyaming 已提交
1169 1170
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1171
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1172
    :type input_conf: LayerOutput | List of LayerOutput
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1194
    input_loc_num = len(input_loc)
1195 1196 1197 1198 1199 1200

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1201
    input_conf_num = len(input_conf)
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1239 1240
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1241

1242
    :param name: The name of this layer. It is optional.
1243
    :type name: basestring
Y
yangyaming 已提交
1244 1245
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1246
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1247
    :type input_conf: LayerOutput | List of LayerOutput.
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1269
    input_loc_num = len(input_loc)
1270 1271 1272 1273 1274 1275

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1276 1277
    input_conf_num = len(input_conf)

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1306 1307
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1308 1309 1310 1311 1312
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1313

1314
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1315
    :type name: basestring
R
ranqiu 已提交
1316
    :param input: The input of this layer.
G
gaoyuan 已提交
1317 1318 1319 1320 1321
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1322
    assert input.num_filters is not None
G
gaoyuan 已提交
1323 1324
    Layer(
        name=name,
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1338 1339
    return LayerOutput(
        name,
1340
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1341 1342 1343 1344 1345
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1346 1347 1348 1349
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1350 1351 1352 1353
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1354
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1355
                  stride=-1,
Z
zhangjinchao01 已提交
1356 1357 1358 1359
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1360 1361
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1362 1363 1364
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1365
    operation. Note that for sequence with sub-sequence, the default value
1366 1367
    of stride is -1.

Z
zhangjinchao01 已提交
1368 1369 1370 1371 1372 1373
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1374
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1375

L
Luo Tao 已提交
1376 1377
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1378
    :type agg_level: AggregateLevel
1379
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1380
    :type name: basestring
R
ranqiu 已提交
1381
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1382 1383 1384
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1385
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1386
    :param stride: The step size between successive pooling regions.
1387
    :type stride: Int
1388 1389 1390 1391
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1392
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1393
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1394
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1395
    :return: LayerOutput object.
Y
Yu Yang 已提交
1396
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1397 1398
    """
    extra_dict = dict()
1399
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1400 1401
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1402 1403 1404 1405
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1406 1407
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1408 1409 1410
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1411 1412 1413 1414 1415 1416
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1417
        stride=stride,
Q
qijun 已提交
1418
        **extra_dict)
Z
zhangjinchao01 已提交
1419

Q
qijun 已提交
1420 1421
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1422

Q
qijun 已提交
1423

Z
zhangjinchao01 已提交
1424 1425
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1426
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1427 1428
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1429
@layer_support()
Q
qijun 已提交
1430 1431
def lstmemory(input,
              name=None,
1432
              size=None,
Q
qijun 已提交
1433 1434 1435 1436 1437 1438
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1439 1440 1441 1442 1443 1444 1445 1446
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1447
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1448

L
luotao02 已提交
1449
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1450

L
luotao02 已提交
1451
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1452

L
luotao02 已提交
1453
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1454

L
luotao02 已提交
1455
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1456 1457


C
caoying03 已提交
1458
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1459
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1460 1461 1462 1463
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1464

C
caoying03 已提交
1465
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1466 1467
    to config a simple plain lstm layer.

C
caoying03 已提交
1468 1469 1470 1471
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1472 1473 1474 1475 1476

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1477 1478
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1479
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1480 1481 1482
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1483
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1484 1485 1486 1487 1488
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1489 1490 1491 1492
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1493
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1494
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1495
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1496
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1497
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1498
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1499 1500 1501 1502 1503 1504
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1505
    assert input.size is not None and input.size % 4 == 0
1506

1507 1508 1509 1510 1511
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1512 1513 1514
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1515

Q
qijun 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1526

Q
qijun 已提交
1527 1528 1529 1530 1531
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1532

Z
zhangjinchao01 已提交
1533 1534 1535

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1536
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1537 1538
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1539
@layer_support()
Q
qijun 已提交
1540
def grumemory(input,
1541
              size=None,
Q
qijun 已提交
1542 1543 1544 1545 1546 1547
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1569 1570
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1571 1572 1573 1574 1575

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1576 1577 1578
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1579 1580 1581 1582 1583

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1584
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1585
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1586 1587 1588
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1589

C
caoying03 已提交
1590 1591 1592
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1593 1594 1595 1596 1597 1598 1599 1600

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1601 1602
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1603
    :type input: LayerOutput.
1604 1605
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1606
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1607
    :type reverse: bool
R
ranqiu 已提交
1608
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1609 1610 1611 1612 1613 1614
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1615 1616 1617 1618
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1619
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1620
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1621
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1622
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1623
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1624
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1625 1626 1627 1628
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1629 1630 1631 1632 1633 1634
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1635 1636 1637
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1638

Q
qijun 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1648

Q
qijun 已提交
1649 1650 1651 1652 1653
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1654

Z
zhangjinchao01 已提交
1655 1656 1657

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1658 1659
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1660
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1661
             stride=-1,
Z
zhangjinchao01 已提交
1662 1663 1664 1665
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1666 1667 1668
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1669
    of stride is -1.
1670

L
Luo Tao 已提交
1671 1672 1673 1674 1675 1676
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1677
    :param agg_level: Aggregated level
1678
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1679
    :type name: basestring
R
ranqiu 已提交
1680
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1681
    :type input: LayerOutput
L
Luo Tao 已提交
1682
    :param stride: The step size between successive pooling regions.
1683
    :type stride: Int
Z
zhangjinchao01 已提交
1684 1685
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1686
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1687 1688
    :rtype: LayerOutput
    """
1689 1690 1691 1692 1693 1694
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1695
    if agg_level == AggregateLevel.TO_SEQUENCE:
1696 1697
        assert stride == -1

Z
zhangjinchao01 已提交
1698 1699 1700 1701 1702
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1703
        stride=stride,
Q
qijun 已提交
1704 1705 1706 1707 1708 1709
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1710 1711 1712 1713


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1714 1715
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1716
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1717
              stride=-1,
Z
zhangjinchao01 已提交
1718 1719 1720 1721
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1722 1723 1724
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1725
    of stride is -1.
1726

L
Luo Tao 已提交
1727 1728 1729 1730 1731 1732
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1733
    :param agg_level: aggregation level
1734
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1735
    :type name: basestring
R
ranqiu 已提交
1736
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1737
    :type input: LayerOutput
L
Luo Tao 已提交
1738
    :param stride: The step size between successive pooling regions.
1739
    :type stride: Int
Z
zhangjinchao01 已提交
1740 1741
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1742
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1743 1744
    :rtype: LayerOutput
    """
1745 1746 1747 1748 1749 1750 1751

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1752
    if agg_level == AggregateLevel.TO_SEQUENCE:
1753 1754
        assert stride == -1

Z
zhangjinchao01 已提交
1755 1756 1757 1758 1759
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1760
        stride=stride,
Q
qijun 已提交
1761 1762 1763 1764 1765 1766
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1767 1768 1769


class ExpandLevel(object):
1770 1771 1772 1773 1774
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1775 1776
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1777 1778
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1779 1780
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1781 1782
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1783 1784
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1785 1786
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1787

1788

Z
zhangjinchao01 已提交
1789 1790
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1791 1792
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1793 1794
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1795
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1807
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1808

R
ranqiu 已提交
1809
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1810 1811 1812
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1813
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1814
    :type name: basestring
1815 1816 1817 1818
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1819
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1820 1821 1822 1823
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1824
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1834 1835 1836 1837 1838 1839
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1840 1841


X
xuwei06 已提交
1842
@wrap_name_default()
X
xuwei06 已提交
1843
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1844
@layer_support()
X
xuwei06 已提交
1845 1846 1847
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1848
                 act=None,
X
xuwei06 已提交
1849 1850
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1851
    """
X
xuwei06 已提交
1852
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1853

X
xuwei06 已提交
1854
    If as_row_vector:
X
xuwei06 已提交
1855
    .. math::
X
xuwei06 已提交
1856 1857 1858 1859 1860
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1861 1862 1863 1864 1865

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1866
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1867

R
ranqiu 已提交
1868
    :param input: The input of this layer.
X
xuwei06 已提交
1869 1870 1871
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1872
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1873 1874 1875 1876 1877 1878
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1879
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1880
    :type act: BaseActivation
X
xuwei06 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1891
        active_type=act.name,
X
xuwei06 已提交
1892
        num_filters=num_repeats,
X
xuwei06 已提交
1893
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1894
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1895 1896 1897 1898 1899
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1900
        activation=act,
Q
qijun 已提交
1901 1902
        parents=[input])

X
xuwei06 已提交
1903

1904 1905 1906
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1907
@layer_support(ERROR_CLIPPING, DROPOUT)
1908 1909 1910 1911 1912 1913 1914 1915
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1916
    the dimension of each instance is M, and the input reshape_size is N, then the
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1927
    :param input: The input of this layer.
1928 1929 1930
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1931
    :param name: The name of this layer. It is optional.
1932
    :type name: basestring
R
ranqiu 已提交
1933
    :param act: Activation type. IdentityActivation is the default.
1934 1935 1936
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1937 1938 1939 1940
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1941
    :type bias_attr: ParameterAttribute | None | bool | Any
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1980 1981
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1982 1983
    :param weight: Weight layer.
    :type weight: LayerOutput
1984
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1985 1986 1987
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1988
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1989 1990
    :rtype: LayerOutput
    """
1991
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1992
    assert len(input) == 2
1993 1994 1995 1996 1997 1998 1999
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2000 2001 2002 2003
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2004 2005 2006 2007 2008 2009
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2010 2011


L
liaogang 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2028
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2029

L
liaogang 已提交
2030
    :param   input:        A input layer.
L
liaogang 已提交
2031
    :type    input:        LayerOutput.
L
liaogang 已提交
2032
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2033
    :type    out_size_x:   int | None
L
liaogang 已提交
2034
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2035
    :type    out_size_y:   int | None
L
liaogang 已提交
2036
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2037
    :type    name:         None | basestring
L
liaogang 已提交
2038
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2039 2040 2041 2042 2043 2044 2045
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2046
    assert input.num_filters is not None
L
liaogang 已提交
2047
    num_channels = input.num_filters
Q
qijun 已提交
2048 2049 2050 2051 2052 2053 2054
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2055
                channels=num_channels)),
Q
qijun 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2065

Z
zhangjinchao01 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2085
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2086 2087 2088
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2089
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2090 2091 2092
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2093
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2094 2095
    :rtype: LayerOutput
    """
2096 2097 2098
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2099 2100 2101
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2102
        inputs=[weight.name, input.name],
Q
qijun 已提交
2103 2104 2105
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2106 2107 2108 2109 2110 2111


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2112
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2113 2114

    .. math::
2115
       y  = w x
Z
zhangjinchao01 已提交
2116

2117 2118 2119 2120 2121
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2122 2123 2124 2125 2126 2127 2128

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2129
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2130 2131 2132
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2133
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2134 2135 2136
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2137
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2138 2139
    :rtype: LayerOutput
    """
2140 2141 2142
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2143 2144 2145 2146
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2147 2148 2149
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2150 2151 2152 2153 2154 2155


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2156
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2169
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2170
    :type input: LayerOutput
2171
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2172 2173 2174
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2175
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2176 2177 2178 2179 2180 2181
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2182 2183 2184
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2185 2186


2187 2188
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2189
def rotate_layer(input, height, width, name=None, layer_attr=None):
2190
    """
H
Haonan 已提交
2191 2192
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2193 2194

    .. math::
H
Haonan 已提交
2195
       y(j,i,:) = x(M-i-1,j,:)
2196

H
Haonan 已提交
2197
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2198 2199 2200 2201 2202 2203

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2204 2205
                          height=100,
                          width=100)
2206

R
ranqiu 已提交
2207
    :param input: The input of this layer.
2208 2209 2210
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2211
    :param name: The name of this layer. It is optional.
2212 2213 2214 2215 2216 2217 2218
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2219 2220 2221
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2222
        width=width,
H
Haonan 已提交
2223 2224 2225 2226 2227 2228 2229 2230
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2231 2232


Z
zhangjinchao01 已提交
2233 2234
@wrap_name_default()
@layer_support()
2235
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2236 2237 2238 2239
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2240
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2241 2242 2243 2244 2245
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2246

2247 2248
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2249

L
Luo Tao 已提交
2250 2251 2252 2253 2254 2255
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2256
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2268
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2269 2270
    :rtype: LayerOutput
    """
2271
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2272 2273 2274 2275 2276 2277
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2278
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2279
    else:
2280 2281
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2282 2283 2284 2285 2286 2287
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2288
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2289
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2290

2291

Z
zhangjinchao01 已提交
2292 2293
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2294
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2295
@layer_support()
Q
qijun 已提交
2296 2297
def hsigmoid(input,
             label,
2298
             num_classes=None,
Q
qijun 已提交
2299 2300 2301 2302
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2314
                        label=data_layer)
Z
zhangjinchao01 已提交
2315

R
ranqiu 已提交
2316 2317
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2318 2319 2320
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2321
    :type num_classes: int | None
2322
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2323
    :type name: basestring
2324 2325 2326 2327
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2328
    :type bias_attr: ParameterAttribute | None | bool | Any
2329
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2330
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2331 2332
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2333
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2334 2335 2336 2337
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2338 2339 2340 2341 2342 2343 2344 2345 2346
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2347 2348 2349
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2350 2351 2352 2353 2354
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2355 2356
    ipts_for_layer = []
    parents = []
2357
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2358
        assert isinstance(each_input, LayerOutput)
2359
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2360 2361 2362 2363
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2364
    l = Layer(
Z
zhangjinchao01 已提交
2365 2366 2367 2368 2369
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2370 2371 2372
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2373

2374

Z
zhangjinchao01 已提交
2375 2376 2377 2378 2379
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2389
                   dilation=1,
Q
qijun 已提交
2390 2391 2392 2393 2394 2395 2396
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2397
                   dilation_y=None,
2398 2399
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2400
    """
2401
    Convolution layer for image. Paddle can support both square and non-square
2402
    input currently.
Z
zhangjinchao01 已提交
2403 2404 2405 2406

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2407

2408
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2409
    and non-square input currently.
2410

X
xuwei06 已提交
2411
    The details of convolution transpose layer,
2412 2413 2414
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2415 2416 2417 2418
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2419 2420 2421
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2422
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2423 2424
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2425

L
Luo Tao 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2436
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2437
    :type name: basestring
R
ranqiu 已提交
2438
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2439
    :type input: LayerOutput
2440 2441
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2442
    :type filter_size: int | tuple | list
C
caoying03 已提交
2443 2444 2445
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2446
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2447
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2448
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2449 2450 2451
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2452 2453
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2454
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2455 2456
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2457 2458
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2459
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2460 2461
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2462 2463
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2464
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2465 2466
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2467 2468 2469 2470
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2471
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2481 2482
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2483
    :param layer_type: specify the layer_type, default is None. If trans=True,
2484 2485
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2486
                       "cudnn_conv"
2487
    :type layer_type: String
D
dangqingqing 已提交
2488
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2489 2490 2491 2492 2493
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2494

Z
zhangjinchao01 已提交
2495
    if filter_size_y is None:
2496 2497 2498 2499 2500 2501
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2502
    if stride_y is None:
2503 2504 2505 2506 2507 2508
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2509
    if padding_y is None:
2510 2511 2512 2513 2514 2515
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2516 2517 2518 2519 2520 2521 2522
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2523 2524
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2525
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2526 2527 2528 2529
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2530

2531
    if layer_type:
W
wanghaoshuang 已提交
2532 2533
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2534
        if trans:
2535
            assert layer_type in ["exconvt", "cudnn_convt"]
2536 2537 2538 2539 2540
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2541

X
xuwei06 已提交
2542
    l = Layer(
Z
zhangjinchao01 已提交
2543
        name=name,
Q
qijun 已提交
2544 2545 2546 2547 2548
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2549
                dilation=dilation,
Q
qijun 已提交
2550 2551 2552 2553 2554
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2555
                dilation_y=dilation_y,
Q
qijun 已提交
2556 2557
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2558 2559 2560 2561
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2562
        type=lt,
Q
qijun 已提交
2563 2564 2565 2566 2567 2568 2569 2570
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2571 2572 2573 2574


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2585 2586
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2587 2588 2589 2590 2591 2592 2593
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2622
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2623
    :type padding: int
2624
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2625
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2626 2627
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2628
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2629
    :type input: LayerOutput
2630
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2631
    :type pool_size: int
2632
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2633
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2634 2635
    :param num_channels: number of input channel.
    :type num_channels: int
2636
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2637 2638
                      MaxPooling.
    :type pool_type: BasePoolingType
2639
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2640
    :type stride: int
2641
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2642
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2643 2644
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2645 2646 2647 2648
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2649 2650
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2661 2662 2663 2664
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2665
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2666
        if (
Y
Yu Yang 已提交
2667
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2668
        else pool_type.name
2669 2670 2671 2672
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2673
    l = Layer(
Z
zhangjinchao01 已提交
2674 2675
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2688
                    padding_y=padding_y))
Q
qijun 已提交
2689
        ],
2690
        ceil_mode=ceil_mode,
Q
qijun 已提交
2691 2692 2693 2694 2695 2696 2697
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2698 2699


C
chengduoZH 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2752
    :type padding: int | tuple | list
C
chengduoZH 已提交
2753 2754
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2755
    :param input: The input of this layer.
C
chengduoZH 已提交
2756 2757
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2758
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2759 2760 2761 2762 2763 2764
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2765
    :type stride: int | tuple | list
C
chengduoZH 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2840 2841
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2842 2843 2844 2845 2846 2847
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2848 2849 2850 2851 2852
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2853 2854 2855 2856
    The example usage is:

    ..  code-block:: python

2857 2858 2859
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2860 2861
                        pool_type=MaxPooling())

2862
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2863
    :type name: basestring
R
ranqiu 已提交
2864
    :param input: The input of this layer.
Q
qijun 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2890
    l = Layer(
Q
qijun 已提交
2891 2892
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2893 2894 2895 2896 2897
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2898
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2910 2911 2912 2913
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2914
    l = Layer(
Q
qijun 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2934 2935 2936 2937


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2938 2939 2940 2941 2942 2943
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2944
                      layer_attr=None):
Z
zhangjinchao01 已提交
2945
    """
2946
    Response normalization across feature maps.
D
dangqingqing 已提交
2947 2948
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2949

L
Luo Tao 已提交
2950 2951 2952
    The example usage is:

    ..  code-block:: python
2953

L
Luo Tao 已提交
2954 2955
        norm = img_cmrnorm_layer(input=net, size=5)

2956
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2957 2958
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2959
    :type input: LayerOutput
2960
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2961
    :type size: int
D
dangqingqing 已提交
2962
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2963
    :type scale: float
D
dangqingqing 已提交
2964
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2965 2966 2967 2968 2969
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2970
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2971 2972 2973
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2974
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2975 2976 2977


@wrap_bias_attr_default()
2978 2979
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2980 2981
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2982
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2983 2984 2985
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2986
                     img3D=False,
Q
qijun 已提交
2987 2988 2989 2990
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2991 2992
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2993 2994
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3013 3014 3015
    The example usage is:

    ..  code-block:: python
3016

L
Luo Tao 已提交
3017 3018
        norm = batch_norm_layer(input=net, act=ReluActivation())

3019
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3020 3021 3022 3023
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3034
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3035
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3036
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3046
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3058
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3059 3060 3061 3062 3063
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3064 3065
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3066
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3076
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3077
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3078
    l = Layer(
Z
zhangjinchao01 已提交
3079
        name=name,
C
chengduoZH 已提交
3080
        img3D=img3D,
Q
qijun 已提交
3081 3082
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3083 3084 3085 3086 3087 3088
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3089
        mean_var_names=mean_var_names,
Q
qijun 已提交
3090
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3091

Q
qijun 已提交
3092 3093 3094 3095 3096 3097 3098
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3120
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3121
    :type input: LayerOutput
3122
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3123 3124 3125
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3126
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3127 3128 3129 3130 3131 3132
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3133 3134 3135
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3136 3137


G
guosheng 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3156
    :param input: The input of this layer.
G
guosheng 已提交
3157
    :type input: LayerOutput
3158
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3174 3175 3176
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3177
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3178
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3201 3202 3203
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3204 3205

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3206 3207
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3208 3209
    Please refer to dropout_layer for details.

3210
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3211 3212 3213
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3214 3215
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3216
    :type act: BaseActivation
3217 3218 3219 3220
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3221
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3222 3223
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3224
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3225 3226 3227 3228 3229 3230
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3231
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3232 3233 3234 3235 3236 3237 3238
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3239
    l = Layer(
Q
qijun 已提交
3240 3241 3242
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3243 3244
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3245
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3246

Q
qijun 已提交
3247 3248 3249 3250 3251 3252 3253
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3254 3255 3256 3257


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3258
@layer_support(DROPOUT, ERROR_CLIPPING)
3259
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3260 3261 3262 3263
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3264 3265 3266 3267 3268 3269
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3270
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3271 3272
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3273 3274
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3275 3276 3277
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3278
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3279 3280 3281 3282 3283 3284 3285 3286
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3287
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3288 3289

    def __is_type__(o, tp):
3290
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3312 3313
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3314

Q
qijun 已提交
3315 3316
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3317

3318 3319
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3320

3321
    layer = Layer(
Q
qijun 已提交
3322 3323
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3324 3325
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3326
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3327
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3328

3329
    sz = layer.config.size
Z
zhangjinchao01 已提交
3330

Q
qijun 已提交
3331 3332 3333 3334 3335 3336 3337 3338
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3339 3340
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3341
@wrap_bias_attr_default(has_bias=False)
3342
@layer_support(DROPOUT, ERROR_CLIPPING)
3343 3344 3345 3346
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3347

3348
    Inputs:
X
xuwei06 已提交
3349
      - a = [a1, a2, ..., am]
3350
      - b = [b1, b2, ..., bn]
3351

X
xuwei06 已提交
3352 3353 3354 3355
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3356 3357 3358 3359 3360 3361 3362

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3363
    :param name: The name of this layer. It is optional.
3364 3365 3366 3367 3368
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3369
    :param act: Activation type. IdentityActivation is the default.
3370 3371 3372
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3373 3374 3375 3376
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3377
    :type bias_attr: ParameterAttribute | None | bool | Any
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3399
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3400 3401
def memory(name,
           size,
3402
           memory_name=None,
Q
qijun 已提交
3403 3404 3405 3406
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3427 3428 3429 3430 3431 3432 3433 3434 3435
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3436

3437 3438 3439 3440 3441 3442 3443
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3444 3445 3446
    :type name: basestring
    :param size: size of memory.
    :type size: int
3447 3448 3449
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3450
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3451 3452
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3453
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3454
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3455
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3456 3457 3458 3459
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3460
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3471 3472
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3482 3483

    lout = LayerOutput(
3484
        name=memory_name,
Q
qijun 已提交
3485 3486 3487
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3488 3489 3490 3491
    return lout


@wrap_bias_attr_default()
3492 3493
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3494 3495 3496
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3497 3498
def lstm_step_layer(input,
                    state,
3499
                    size=None,
Q
qijun 已提交
3500 3501 3502 3503 3504 3505
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3506
    """
3507 3508
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3509 3510 3511

    ..  math::

3512
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3513

3514
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3515

3516
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3517

3518
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3519

L
luotao02 已提交
3520
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3521 3522


L
luotao02 已提交
3523
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3524
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3525
    input vectors.
Z
zhangjinchao01 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3536 3537
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3538 3539
    :code:`get_output_layer` to extract this output.

3540
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3541
    :type name: basestring
3542 3543
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3544 3545 3546 3547 3548 3549
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3550
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3551
    :type act: BaseActivation
R
ranqiu 已提交
3552
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3553
    :type gate_act: BaseActivation
R
ranqiu 已提交
3554
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3555
    :type state_act: BaseActivation
3556 3557 3558 3559
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3560
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3561 3562
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3563
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3564 3565
    :rtype: LayerOutput
    """
3566 3567 3568

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3569 3570 3571 3572 3573 3574 3575
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3576
        size=state.size,
Q
qijun 已提交
3577 3578
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3579

Q
qijun 已提交
3580 3581 3582 3583 3584 3585 3586
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3587 3588 3589


@wrap_bias_attr_default()
W
wangyang59 已提交
3590
@wrap_param_attr_default()
Q
qijun 已提交
3591
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3592 3593 3594
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3595 3596 3597 3598 3599 3600 3601
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3602
                   param_attr=None,
Q
qijun 已提交
3603
                   layer_attr=None):
Z
zhangjinchao01 已提交
3604 3605 3606 3607 3608 3609 3610
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3611
    :type act: BaseActivation
3612
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3613 3614
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3615 3616 3617 3618
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3619
    :type bias_attr: ParameterAttribute | None | bool | Any
3620 3621
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3622
    :param layer_attr:
D
dangqingqing 已提交
3623
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3624 3625 3626 3627 3628 3629 3630 3631
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3632 3633 3634 3635
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3636
        # backward model compatibility.
3637
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3638 3639 3640 3641
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3642
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3643
    return LayerOutput(
Q
qijun 已提交
3644 3645
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3646
        parents=[input, output_mem],
Q
qijun 已提交
3647 3648
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3649 3650


Y
Yu Yang 已提交
3651 3652 3653 3654
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3655
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3673
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3674
    :param act:
R
ranqiu 已提交
3675 3676 3677
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3678 3679 3680 3681
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3682
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3683 3684 3685
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3686
    :rtype: LayerOutput
Y
Yu Yang 已提交
3687 3688 3689 3690 3691 3692
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3693
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3694 3695 3696 3697
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3698

Y
Yu Yang 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3736 3737 3738 3739
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3740 3741 3742 3743
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3744

3745
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3746 3747 3748 3749 3750 3751 3752
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3753
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3754 3755 3756 3757 3758 3759 3760
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3761 3762 3763 3764 3765 3766 3767
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3768

Q
qijun 已提交
3769 3770 3771 3772 3773
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3774 3775 3776 3777 3778 3779 3780


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3781 3782 3783 3784 3785 3786 3787
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3788
    """
3789 3790
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3807
    :param input: The input of this layer.
3808
    :type input: LayerOutput
R
ranqiu 已提交
3809
    :param act: Activation type. TanhActivation is the default.
3810
    :type act: BaseActivation
3811 3812 3813 3814
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3815
    :type bias_attr: ParameterAttribute | None | bool | Any
3816 3817
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3818
    :param name: The name of this layer. It is optional.
3819 3820 3821
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3822
    :return: LayerOutput object.
3823
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3824
    """
Q
qijun 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3840 3841 3842 3843 3844 3845


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3846 3847
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3848
    """
3849

Z
zhangjinchao01 已提交
3850 3851 3852
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3853
        assert input.size is not None
Z
zhangjinchao01 已提交
3854
        if size is not None:
3855
            assert input.size == size
Z
zhangjinchao01 已提交
3856 3857


3858
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3859
    """
3860
    DEPRECATED.
Z
zhangjinchao01 已提交
3861 3862 3863 3864 3865 3866 3867 3868
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3869
    return input
Z
zhangjinchao01 已提交
3870 3871 3872


@wrap_name_default("recurrent_group")
3873
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3874
    """
C
caoying03 已提交
3875 3876 3877 3878 3879
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3922
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3923

3924 3925
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3926
    :type reverse: bool
3927

3928 3929
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3930 3931 3932 3933 3934 3935 3936

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3937
    :type targetInlink: LayerOutput | SubsequenceInput
3938

D
dangqingqing 已提交
3939
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3940 3941 3942 3943
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3944
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3945
        input = [input]
3946
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3947 3948

    def is_in_links(x):
3949
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3950 3951 3952 3953

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3954
        name=name,
3955 3956
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3957 3958
    in_args = []
    for each_input in input:
3959
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3960
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3961
            mem = memory(
3962
                name=None,
Q
qijun 已提交
3963 3964
                size=each_input.input.size,
                boot_layer=each_input.input)
3965
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3966
            in_args.append(mem)
3967 3968
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3969

Z
zhangjinchao01 已提交
3970 3971 3972 3973 3974
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3975 3976 3977 3978 3979 3980
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3981 3982 3983

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3984
    for layer_out in layer_outs:
3985 3986
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3987 3988
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3989 3990 3991 3992 3993
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3994

Z
zhangjinchao01 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4023 4024

    def before_real_step(self):
Q
qijun 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4034 4035 4036
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4037
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4055
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4056
    :type input: LayerOutput
4057
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4058 4059 4060
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4061
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4062 4063 4064 4065
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4076

4077

H
Haonan 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4090
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4114

Z
zhangjinchao01 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4131
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4132
    :type name: basestring
R
ranqiu 已提交
4133
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4134 4135 4136 4137 4138
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4139
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4140 4141
    :rtype: LayerOutput
    """
Q
qijun 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4153 4154 4155


@wrap_name_default()
Q
qijun 已提交
4156 4157 4158 4159 4160 4161 4162
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4163
                num_results_per_sample=None):
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4175
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4176 4177 4178 4179
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4180 4181 4182 4183 4184
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4185 4186
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4187 4188
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4189 4190
                               bos_id=0,
                               eos_id=1,
4191
                               beam_size=5)
4192 4193 4194 4195 4196 4197 4198 4199 4200

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4201
                 step, and it is applied to sequences with arbitrary length by
4202 4203 4204 4205 4206
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4207 4208
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4209
                  In beam_search, none of the input's type should be LayerOutput.
4210
    :type input: list
4211 4212 4213
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4214
                   symbol is essential, since it is used to initialize the RNN
4215 4216 4217 4218 4219 4220 4221 4222
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4223 4224
    :param max_length: Max generated sequence length.
    :type max_length: int
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4235 4236
    :return: The generated word index.
    :rtype: LayerOutput
4237 4238
    """

Z
zhangjinchao01 已提交
4239 4240 4241 4242 4243
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4244
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4245 4246 4247 4248 4249 4250
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4251 4252 4253
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4254
        if isinstance(each_input, BaseGeneratedInput):
4255 4256
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4257
            generated_input_index = i
4258

Z
zhangjinchao01 已提交
4259 4260 4261
        else:
            real_input.append(each_input)

4262
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4263 4264 4265 4266 4267 4268 4269 4270

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4271 4272 4273 4274 4275 4276
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4277 4278 4279 4280 4281 4282

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4283
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4284 4285
        return predict

4286 4287
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4288

Q
qijun 已提交
4289

4290 4291
def __cost_input__(input, label, weight=None):
    """
4292
    inputs and parents for cost layers.
4293
    """
C
caoying03 已提交
4294 4295 4296 4297 4298 4299
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4300
    if weight is not None:
4301
        assert weight.size == 1
4302 4303 4304
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4305

Z
zhangjinchao01 已提交
4306 4307

@wrap_name_default()
L
luotao1 已提交
4308
@layer_support()
4309 4310 4311 4312 4313 4314
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4315
    """
4316
    sum of square error cost:
L
Luo Tao 已提交
4317 4318 4319

    ..  math::

4320
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4321

4322
    :param name: The name of this layer. It is optional.
4323
    :type name: basestring
Z
zhangjinchao01 已提交
4324
    :param input: Network prediction.
4325
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4326
    :param label: Data label.
4327 4328 4329 4330
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4331 4332
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4333 4334
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4335
    :return: LayerOutput object.
4336
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4337
    """
4338 4339
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4340 4341 4342 4343
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4344
        coeff=coeff,
Q
qijun 已提交
4345
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4346
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4347 4348


4349
regression_cost = square_error_cost
L
Luo Tao 已提交
4350 4351


Z
zhangjinchao01 已提交
4352
@wrap_name_default("cost")
4353
@layer_support()
Q
qijun 已提交
4354 4355 4356 4357
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4358
                        evaluator=classification_error_evaluator,
4359 4360
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4361 4362 4363
    """
    classification cost Layer.

4364
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4365 4366 4367 4368 4369
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4370 4371 4372
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4373
    :param evaluator: Evaluator method.
4374 4375
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4376 4377
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4378
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4379 4380 4381 4382 4383
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4384 4385 4386

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4387 4388 4389 4390
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4391
        coeff=coeff,
Q
qijun 已提交
4392
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4403
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4404

4405
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4406 4407 4408 4409 4410
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4411
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4412

4413

Q
qijun 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4423 4424
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4435 4436
       op = conv_operator(img=input1,
                          filter=input2,
4437
                          filter_size=3,
Z
zhangjinchao01 已提交
4438 4439 4440
                          num_filters=64,
                          num_channels=64)

4441 4442 4443 4444
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4445 4446
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4447 4448 4449
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4450
    :type filter_size_y: int
4451 4452
    :param num_filters: channel of output data.
    :type num_filters: int
4453 4454
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4455
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4456
    :type stride: int
Z
zhangjinchao01 已提交
4457
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4458
    :type stride_y: int
Z
zhangjinchao01 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4472

4473 4474
    if num_channels is None:
        num_channels = img.num_filters
4475 4476

    assert isinstance(filter, LayerOutput)
4477
    assert filter.size is not None
4478

4479 4480 4481
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4493

4494
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4495 4496
    return op

Q
qijun 已提交
4497

4498
@wrap_param_attr_default()
Q
qijun 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4509 4510
                    param_attr=None,
                    trans=False):
4511 4512 4513 4514 4515 4516 4517 4518 4519
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4520
       proj = conv_projection(input=input1,
4521 4522 4523 4524
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4525
    :param input: The input of this layer.
4526 4527 4528 4529 4530 4531 4532 4533 4534
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4535 4536
    :param num_channels: channel of input data.
    :type num_channels: int
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4549
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4550
    :type trans: bool
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4581
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4582 4583 4584 4585 4586
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4587 4588 4589
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4602 4603 4604 4605

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4606

D
dangqingqing 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4624

D
dangqingqing 已提交
4625
    For example,
4626

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4648 4649

    The simply usage is:
D
dangqingqing 已提交
4650 4651 4652 4653 4654 4655 4656 4657

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4658
    :param input: The input of this layer.
D
dangqingqing 已提交
4659 4660
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4661
    :type pad_c: list | None
D
dangqingqing 已提交
4662
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4663
    :type pad_h: list | None
D
dangqingqing 已提交
4664
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4665
    :type pad_w: list | None
D
dangqingqing 已提交
4666 4667
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4668
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4711
@wrap_name_default()
L
luotao1 已提交
4712 4713
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4725 4726 4727 4728
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4729 4730 4731 4732 4733

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4734
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4735

4736
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4737
    :type name: basestring
4738 4739
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4740
    :param b: input layer b.
4741
    :type b: LayerOutput
L
luotao1 已提交
4742 4743
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4744
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4745 4746
    :rtype: LayerOutput
    """
4747 4748
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4749 4750 4751
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4752
        inputs=[a.name, b.name],
Q
qijun 已提交
4753
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4754

Q
qijun 已提交
4755 4756
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4757 4758 4759 4760 4761


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4762
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4763
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4764 4765 4766 4767 4768 4769 4770 4771
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4772 4773 4774 4775 4776
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4777
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4778 4779

    In this formular:
4780 4781
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4782 4783
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4784
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4785 4786 4787 4788 4789

    The simple usage is:

    .. code-block:: python

4790
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4791

4792
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4793
    :type name: basestring
4794 4795 4796 4797
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4798
    :param size: the layer dimension.
L
luotao02 已提交
4799
    :type size: int.
R
ranqiu 已提交
4800
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4801 4802
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4803
    :type param_attr: ParameterAttribute
4804 4805 4806 4807
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4808
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4809
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4810
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4811
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4812 4813
    :rtype: LayerOutput
    """
4814
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4815 4816 4817 4818 4819 4820
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4821 4822 4823 4824
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4825 4826 4827 4828 4829 4830


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4831
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4832 4833
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4834
                       select=None,
Q
qijun 已提交
4835 4836
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4837 4838 4839
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4840 4841 4842
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4853
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4854

4855
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4856
    :type name: basestring
R
ranqiu 已提交
4857 4858
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4859 4860
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4861
                   If is None, acts exactly like fc_layer.
4862
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4863 4864
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4865
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4866 4867 4868
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4869 4870 4871 4872
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4873
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4874
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4875
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4876
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4877 4878 4879 4880
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4881
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4882 4883
        param_attr = [param_attr]
    else:
4884
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4885 4886
            assert len(input) == len(param_attr)
        else:
4887
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4888
                logger.fatal(
W
wangmeng28 已提交
4889 4890 4891 4892 4893
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4894 4895
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4896 4897 4898 4899
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4900
    Layer(
Q
qijun 已提交
4901 4902 4903
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4904 4905 4906
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4907
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4908 4909 4910 4911
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4912 4913 4914 4915 4916 4917 4918
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4919 4920 4921


@wrap_name_default()
L
luotao1 已提交
4922 4923
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4934
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4935
    :type input: LayerOutput
4936
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4937
    :type name: basestring
L
luotao1 已提交
4938
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4939
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4940
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4941 4942
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4943
    l = Layer(
Z
zhangjinchao01 已提交
4944 4945 4946
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4947 4948 4949
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4950 4951 4952


@wrap_name_default()
L
luotao1 已提交
4953
@layer_support()
Q
qijun 已提交
4954 4955 4956 4957
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4958
                          layer_attr=None):
Z
zhangjinchao01 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4972
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4973
    :type input: LayerOutput
4974
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4975 4976 4977 4978 4979
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4980
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4981
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4982
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4983 4984 4985 4986 4987 4988 4989 4990
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4991 4992 4993
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4994 4995 4996


@wrap_name_default()
L
luotao1 已提交
4997
@layer_support()
Q
qijun 已提交
4998
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4999
    """
5000 5001 5002 5003
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5004 5005 5006

    .. math::

5007
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5008

5009 5010 5011 5012 5013
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5014

5015
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5016 5017

    In this formular:
5018 5019 5020 5021 5022 5023
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5024 5025 5026 5027 5028

    The simple usage is:

    .. code-block:: python

5029
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5030 5031
                                       size=elem_dim)

5032 5033 5034 5035
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5036 5037
    :param size: the dimension of this layer.
    :type size: int
5038
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5039
    :type name: basestring
L
luotao1 已提交
5040
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5041
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5042
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5043 5044
    :rtype: LayerOutput
    """
5045 5046 5047 5048
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5049
            size = vectors.size / weights.size
5050 5051
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5052 5053
    Layer(
        name=name,
5054
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5055
        size=size,
5056
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5057 5058 5059
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5060

5061

5062
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5063

5064

Z
zhangjinchao01 已提交
5065
@wrap_name_default()
L
luotao1 已提交
5066
@layer_support()
Z
zhangjinchao01 已提交
5067 5068 5069 5070 5071 5072 5073
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5074
                       num_channels=None,
L
luotao1 已提交
5075 5076
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5077 5078
    """
    Expand feature map to minibatch matrix.
5079
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5080
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5091
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5092 5093
    convolution neural network, and before recurrent neural network.

5094 5095 5096 5097
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5098
       block_expand = block_expand_layer(input=layer,
5099
                                         num_channels=128,
5100 5101 5102 5103 5104
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5105
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5106
    :type input: LayerOutput
5107
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5108
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5121
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5122
    :type name: None | basestring.
L
luotao1 已提交
5123
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5124
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5125
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5126 5127
    :rtype: LayerOutput
    """
5128 5129 5130
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5148 5149


5150 5151
@wrap_name_default()
@layer_support()
5152
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5153 5154 5155 5156 5157
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5158
    So groups should be larger than 1, and the num of channels should be able
5159 5160
    to devided by groups.

X
xuwei06 已提交
5161 5162 5163 5164 5165 5166 5167 5168
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5169
    Please refer to Paper:
5170 5171 5172 5173
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5174

5175 5176 5177 5178 5179 5180 5181 5182
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5183
    :param input: The input of this layer.
5184 5185 5186
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5187
    :type num_channels: int | None
5188 5189
    :param groups: The group number of input layer.
    :type groups: int
5190
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5191
    :type name: None | basestring.
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5212 5213


Z
zhangjinchao01 已提交
5214
@wrap_name_default()
L
luotao1 已提交
5215
@layer_support()
Q
qijun 已提交
5216 5217 5218 5219 5220
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5221
              layer_attr=None):
Z
zhangjinchao01 已提交
5222 5223 5224 5225 5226
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5227 5228
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5229 5230
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5231 5232 5233 5234 5235 5236 5237 5238

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5239
    The example usage is:
Z
zhangjinchao01 已提交
5240 5241 5242 5243 5244 5245 5246 5247

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5248
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5249 5250 5251
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5252
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5253
    :type size: int
5254
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5255
    :type name: basestring | None
Z
zhangjinchao01 已提交
5256 5257
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5258
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5259
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5260
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5261 5262 5263 5264
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5265 5266 5267 5268 5269
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5270
    Layer(
5271 5272 5273 5274
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5275
        inputs=[input.name, label.name],
Q
qijun 已提交
5276
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5277 5278
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5279

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5291
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5292
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5293 5294 5295 5296 5297 5298 5299
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5300 5301 5302
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5303
    icml2006_GravesFGS06.pdf>`_.
5304 5305 5306

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5307 5308 5309
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5310 5311
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5312
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5313
          'linear' activation is expected instead in the 'input' layer.
5314

C
caoying03 已提交
5315
    The example usage is:
5316 5317 5318 5319 5320 5321 5322 5323 5324

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5325
    :param input: The input of this layer.
5326 5327 5328 5329 5330
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5331
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5332
    :type name: basestring | None
5333 5334 5335 5336 5337
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5338
    :type layer_attr: ExtraLayerAttribute | None
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5361
@wrap_name_default()
5362
@wrap_param_attr_default()
L
luotao1 已提交
5363
@layer_support()
Q
qijun 已提交
5364 5365 5366 5367 5368 5369
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5370
              coeff=1.0,
L
luotao1 已提交
5371
              layer_attr=None):
Z
zhangjinchao01 已提交
5372 5373 5374 5375
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5376
    The example usage is:
Z
zhangjinchao01 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5387
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5388 5389 5390 5391 5392 5393 5394
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5395
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5396
    :type name: None | basestring
5397 5398
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5399
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5400
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5401
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5402 5403 5404 5405 5406
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5407 5408 5409 5410 5411 5412
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5413

Q
qijun 已提交
5414
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5415 5416 5417 5418
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5419 5420 5421 5422
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5423
        coeff=coeff,
Q
qijun 已提交
5424
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5425 5426 5427
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5428 5429 5430 5431
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5432

5433

Z
zhangjinchao01 已提交
5434
@wrap_name_default()
5435
@wrap_param_attr_default()
L
luotao1 已提交
5436
@layer_support()
Q
qijun 已提交
5437 5438 5439 5440 5441
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5442
                       layer_attr=None):
Z
zhangjinchao01 已提交
5443 5444 5445 5446 5447 5448 5449
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5450
    The example usage is:
L
Luo Tao 已提交
5451 5452 5453 5454 5455 5456

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5457 5458 5459 5460 5461 5462 5463 5464
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5465
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5466
    :type name: None | basestring
L
luotao1 已提交
5467
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5468
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5469
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5470 5471 5472 5473 5474 5475
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5476
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5477 5478 5479 5480
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5481 5482 5483 5484
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5485
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5486 5487 5488
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5489 5490 5491 5492
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5493

Q
qijun 已提交
5494

Y
Yu Yang 已提交
5495
@wrap_act_default(act=SigmoidActivation())
5496
@wrap_bias_attr_default(has_bias=True)
5497
@wrap_param_attr_default()
5498 5499
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5500 5501
def nce_layer(input,
              label,
C
caoying03 已提交
5502
              num_classes=None,
Y
Yu Yang 已提交
5503
              act=None,
5504
              param_attr=None,
Q
qijun 已提交
5505 5506 5507 5508 5509 5510
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5511 5512 5513 5514 5515 5516 5517 5518 5519
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5520 5521
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5522 5523
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5524
    :param name: The name of this layer. It is optional.
5525
    :type name: basestring
R
ranqiu 已提交
5526
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5527
    :type input: LayerOutput | list | tuple | collections.Sequence
5528 5529 5530 5531 5532
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5533
    :type num_classes: int
R
ranqiu 已提交
5534
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5535
    :type act: BaseActivation
5536 5537
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5538
    :param num_neg_samples: number of negative samples. Default is 10.
5539
    :type num_neg_samples: int
5540 5541 5542
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5543
    :type neg_distribution: list | tuple | collections.Sequence | None
5544 5545 5546 5547
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
5548
    :type bias_attr: ParameterAttribute | None | bool | Any
5549 5550 5551 5552 5553 5554 5555
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5556 5557 5558 5559 5560 5561 5562 5563
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5564
    assert isinstance(input, collections.Sequence)
5565

5566 5567
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5568 5569
    if num_classes is None:
        num_classes = label.size
5570 5571 5572
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5573
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5574 5575
    if not isinstance(act, BaseActivation):
        raise TypeError()
5576

5577 5578
    ipts_for_layer = []
    parents = []
5579
    for each_input, attr in zip(input, param_attr):
5580
        assert isinstance(each_input, LayerOutput)
5581
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5592
    l = Layer(
5593 5594 5595 5596
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5597
        active_type=act.name,
5598 5599 5600
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5601 5602
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5603 5604 5605 5606 5607
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5608

5609

Z
zhangjinchao01 已提交
5610 5611 5612
"""
following are cost Layers.
"""
5613 5614


Z
zhangjinchao01 已提交
5615
@wrap_name_default()
L
luotao1 已提交
5616
@layer_support()
Q
qijun 已提交
5617 5618 5619 5620 5621 5622 5623
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5624
    """
5625
    A cost Layer for learning to rank using gradient descent. Details can refer
5626 5627
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5628 5629 5630 5631 5632
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5633
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5634

L
luotao02 已提交
5635
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5636

L
luotao02 已提交
5637
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5638 5639 5640 5641 5642 5643 5644 5645

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5646
    The example usage is:
Z
zhangjinchao01 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5663
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5664
    :type name: None | basestring
Z
zhangjinchao01 已提交
5665 5666
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5667 5668
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5669
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5682 5683 5684 5685 5686 5687
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5688

X
xuwei06 已提交
5689
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5690

5691

Z
zhangjinchao01 已提交
5692
@wrap_name_default()
L
luotao1 已提交
5693
@layer_support()
Q
qijun 已提交
5694 5695 5696 5697 5698 5699
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5700 5701 5702
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5703
    The example usage is:
Z
zhangjinchao01 已提交
5704 5705 5706 5707 5708 5709 5710 5711

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5712
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5713 5714 5715 5716
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5717
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5718 5719 5720 5721 5722 5723
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5724 5725 5726
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5727
    :type max_sort_size: int
R
ranqiu 已提交
5728
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5729
    :type name: None | basestring
L
luotao1 已提交
5730 5731
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5732
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5733 5734
    :rtype: LayerOutput
    """
5735 5736 5737
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5738 5739 5740 5741 5742 5743 5744
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5745

Q
qijun 已提交
5746 5747
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5748

5749

Z
zhangjinchao01 已提交
5750
@wrap_name_default()
L
luotao1 已提交
5751
@layer_support()
5752 5753 5754 5755 5756 5757
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5758 5759 5760
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5761 5762
    The example usage is:

Z
zhangjinchao01 已提交
5763 5764
    .. code-block:: python

X
xuwei06 已提交
5765
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5766
                            label=label_layer)
Z
zhangjinchao01 已提交
5767 5768 5769 5770 5771

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5772
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5773
    :type name: None | basestring.
5774 5775
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5776
    :type coeff: float.
5777 5778 5779 5780
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5781 5782
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5783
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5784 5785 5786
    :rtype: LayerOutput.
    """

5787
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5788 5789 5790
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5791
        inputs=ipts,
Q
qijun 已提交
5792 5793
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5794
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5795

5796

Z
zhangjinchao01 已提交
5797
@wrap_name_default()
L
luotao1 已提交
5798
@layer_support()
Q
qijun 已提交
5799 5800 5801 5802
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5803 5804
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5805 5806
    """
    A loss layer for multi class entropy with selfnorm.
5807
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5808

C
caoying03 已提交
5809 5810
    The example usage is:

Z
zhangjinchao01 已提交
5811 5812
    .. code-block:: python

X
xuwei06 已提交
5813
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5814
                                          label=label_layer)
Z
zhangjinchao01 已提交
5815 5816 5817 5818 5819

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5820
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5821
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5822 5823 5824 5825
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5826 5827
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5828
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5829 5830
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5831 5832 5833 5834 5835 5836 5837
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5838

Q
qijun 已提交
5839 5840 5841 5842 5843
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5844

5845

X
xuwei06 已提交
5846 5847 5848 5849 5850 5851
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5852 5853
    The example usage is:

X
xuwei06 已提交
5854 5855
    .. code-block:: python

L
Luo Tao 已提交
5856
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5857

R
ranqiu 已提交
5858
    :param input: The input of this layer.
X
xuwei06 已提交
5859
    :type input: LayerOutput.
R
ranqiu 已提交
5860
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5861
    :type name: None | basestring.
X
xuwei06 已提交
5862 5863 5864 5865 5866
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5867
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5868 5869 5870 5871 5872
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5873

Q
qijun 已提交
5874
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5875 5876


Z
zhangjinchao01 已提交
5877
@wrap_name_default()
L
luotao1 已提交
5878
@layer_support()
L
Luo Tao 已提交
5879 5880 5881 5882 5883 5884
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5885
    """
5886 5887 5888
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5889 5890 5891 5892 5893
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5894

C
caoying03 已提交
5895 5896
    The example usage is:

Z
zhangjinchao01 已提交
5897 5898
    .. code-block:: python

L
Luo Tao 已提交
5899 5900 5901 5902 5903 5904
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5905
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5906
    :type name: None | basestring.
L
Luo Tao 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5928
@wrap_name_default()
L
luotao1 已提交
5929
@layer_support()
5930 5931 5932 5933 5934
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5935
    """
5936 5937 5938
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5939 5940 5941
    loss is defined as:

    .. math:
5942
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5943
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5944

C
caoying03 已提交
5945 5946
    The example usage is:

Z
zhangjinchao01 已提交
5947 5948
    .. code-block:: python

5949
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5950 5951 5952 5953 5954

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5955
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5956
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5957 5958
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5959 5960
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5961
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5962 5963
    :rtype: LayerOutput.
    """
5964 5965 5966
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5967 5968
    Layer(
        name=name,
5969
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5970 5971 5972
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5973 5974
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5975

5976

Z
zhangjinchao01 已提交
5977
@wrap_name_default()
L
luotao1 已提交
5978
@layer_support()
Q
qijun 已提交
5979 5980 5981 5982
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5983
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5984 5985 5986
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5987 5988
    The example usage is:

Z
zhangjinchao01 已提交
5989 5990
    .. code-block:: python

X
xuwei06 已提交
5991
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5992
                                               label=label_layer)
Z
zhangjinchao01 已提交
5993 5994 5995 5996 5997

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5998
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5999
    :type name: None | basestring
Z
zhangjinchao01 已提交
6000 6001
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
6002 6003
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6004
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6005 6006 6007
    :rtype: LayerOutput
    """

6008 6009
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6010 6011 6012 6013
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6026 6027


C
caoying03 已提交
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6050 6051
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6052
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6053
    """
C
caoying03 已提交
6054 6055 6056
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6057

C
caoying03 已提交
6058 6059 6060 6061 6062
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6063

C
caoying03 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6082
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6103
    :param input: Input beams for this layer.
C
caoying03 已提交
6104
    :type input: BeamInput
R
ranqiu 已提交
6105
    :param name: The name of this layer.
C
caoying03 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6132 6133 6134
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6135 6136
@wrap_name_default()
@layer_support()
6137
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6138 6139
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6140
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6150
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6151

D
dangqingqing 已提交
6152 6153 6154
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6155 6156
    The example usage is:

D
dangqingqing 已提交
6157 6158
    .. code-block:: python

6159 6160
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6161 6162 6163 6164 6165

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6166
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6167
    :type name: None | basestring
6168 6169
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6183
        coeff=coeff,
D
dangqingqing 已提交
6184 6185 6186
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6206 6207
    The example usage is:

W
wwhu 已提交
6208 6209 6210 6211 6212 6213
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6214
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6240 6241


6242 6243 6244 6245
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6246 6247 6248 6249 6250 6251
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6252
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6253
    :type name: basestring
R
ranqiu 已提交
6254
    :param input: The input of this layer.
R
ranqiu 已提交
6255 6256 6257 6258 6259
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6260 6261 6262 6263 6264 6265 6266
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6267 6268


D
dangqingqing 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6282
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6283 6284 6285 6286 6287 6288 6289
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6290
    efficient manner to improve unidirectional RNNs.
6291

R
ranqiu 已提交
6292
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6293 6294 6295 6296
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6297

D
dangqingqing 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6313
    :param input: The input of this layer.
D
dangqingqing 已提交
6314 6315 6316 6317
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6318
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6319 6320
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6321
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6322 6323
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
6324
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6341 6342


6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6362 6363 6364 6365 6366 6367
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6368
    :param name: The name of this layer. It is optional.
6369
    :type name: basestring
R
ranqiu 已提交
6370
    :param input: The input of this layer.
6371 6372
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6373 6374 6375 6376 6377 6378

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6379
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6380
    :type param_attr: ParameterAttribute | None
6381
    :param layer_attr: Extra layer configurations. Default is None.
R
ranqiu 已提交
6382
    :type layer_attr: ExtraLayerAttribute | None
6383 6384 6385 6386
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6387
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6388
    assert isinstance(param_attr, ParameterAttribute)
6389 6390 6391

    l = Layer(
        name=name,
C
caoying03 已提交
6392
        type=LayerType.PRELU,
C
caoying03 已提交
6393
        inputs=Input(input.name, **param_attr.attr),
6394 6395 6396 6397 6398 6399 6400
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6401 6402


6403
@wrap_name_default()
C
caoying03 已提交
6404
@layer_support(ERROR_CLIPPING, DROPOUT)
6405 6406 6407 6408 6409 6410 6411
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6412 6413
                     gate_bias_attr=True,
                     inproj_attr=None,
6414 6415 6416 6417 6418 6419 6420
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6421
    product between :match:`X'` and :math:`\sigma` is finally returned.
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6435
    :param input: The input of this layer.
6436 6437 6438
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
R
ranqiu 已提交
6439
    :param act: Activation type of the projected input. LinearActivation is the default.
6440
    :type act: BaseActivation
6441
    :param name: The name of this layer. It is optional.
6442 6443 6444 6445
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
R
ranqiu 已提交
6446
    :type gate_attr: ExtraLayerAttribute | None
6447 6448
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
R
ranqiu 已提交
6449
    :type gate_param_attr: ParameterAttribute | None
C
caoying03 已提交
6450
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
R
ranqiu 已提交
6451
    :type gate_bias_attr: ParameterAttribute | None
C
caoying03 已提交
6452 6453 6454
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6455
    :type inproj_attr: ExtraLayerAttribute | None
6456 6457
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
R
ranqiu 已提交
6458
    :type inproj_param_attr: ParameterAttribute | None
6459 6460
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
R
ranqiu 已提交
6461
    :type inproj_bias_attr: ParameterAttribute | None
6462 6463 6464
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6465
    :type layer_attr: ExtraLayerAttribute | None
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6478
        layer_attr=inproj_attr,
6479 6480 6481 6482 6483 6484 6485 6486 6487
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6488
        param_attr=gate_param_attr,
6489 6490 6491 6492 6493
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6494 6495


6496
@layer_support()
6497
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6498 6499
def switch_order_layer(input,
                       name=None,
6500
                       reshape_axis=None,
W
wanghaoshuang 已提交
6501 6502
                       act=None,
                       layer_attr=None):
6503
    """
6504
    This layer switch dimension order of image input.
6505 6506
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6507 6508 6509 6510

    The example usage is:

    .. code-block:: python
6511 6512
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6513
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6514

R
ranqiu 已提交
6515
    :param input: The input of this layer.
6516
    :type input: LayerOutput
6517
    :param name: The name of this layer. It is optional.
6518
    :type name: basestring
R
ranqiu 已提交
6519 6520
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6521 6522 6523
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6524
    assert isinstance(input, LayerOutput)
6525 6526 6527 6528 6529
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6530 6531
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6532
        inputs=input.name,
6533 6534
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6535
        active_type=act.name,
6536 6537 6538
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6539
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6540
        activation=act,
6541 6542
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6543 6544


6545 6546
@wrap_name_default()
@layer_support()
6547
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6548
    """
R
ranqiu 已提交
6549
    This layer crops images by offset and shape. User can set crop shape by
6550
    args 'shape' explicitly or by reference input layer.
6551

6552 6553 6554
    The example usage is:

    .. code-block:: python
W
whs 已提交
6555
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6556

R
ranqiu 已提交
6557 6558 6559 6560
    :param input: The input of this layer. If two inputs are given, the second input
                  will be regarded as reference input.
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6561
    :type offset: Sequence
6562 6563 6564 6565 6566 6567 6568
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6569
    :type shape: Sequence | None
6570
    :param name: The name of this layer. It is optional.
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6592 6593


C
caoying03 已提交
6594 6595
@wrap_name_default()
@layer_support()
6596
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6597
    """
6598
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6599
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6600

C
caoying03 已提交
6601 6602 6603
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6604 6605 6606 6607

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6608

R
ranqiu 已提交
6609
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6610

C
caoying03 已提交
6611

R
ranqiu 已提交
6612
    :param input: The input of this layer. It is a nested sequence.
6613
    :type input: LayerOutput
R
ranqiu 已提交
6614
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6615
    :type input: LayerOutput
6616
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6617 6618 6619 6620
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6621

6622 6623 6624 6625 6626 6627 6628
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6629
    l = Layer(
6630 6631
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6632 6633 6634 6635 6636 6637 6638
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6639 6640


G
guosheng 已提交
6641
@wrap_name_default("clip")
6642
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6652
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6653

6654
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6655
    :type name: basestring
R
ranqiu 已提交
6656
    :param input: The input of this layer.
G
guosheng 已提交
6657
    :type input: LayerOutput.
6658 6659 6660 6661
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6662 6663
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6664 6665 6666 6667 6668
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6669 6670
        min=min,
        max=max)
G
guosheng 已提交
6671 6672
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6673 6674


6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6699
    :param name: The name of this layer. It is optional.
6700
    :type name: basestring
R
ranqiu 已提交
6701
    :param input: The input of this layer, which should be a sequence.
6702 6703
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
R
ranqiu 已提交
6704
    :type starts: LayerOutput | None
6705
    :param ends: end indices to slice the input sequence.
R
ranqiu 已提交
6706
    :type ends: LayerOutput | None
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6739 6740


6741 6742
@wrap_name_default()
@layer_support()
6743
def kmax_seq_score_layer(input, name=None, beam_size=1):
6744
    """
C
caoying03 已提交
6745
    This layer accepts one input which are scores over a sequence or a nested
6746 6747 6748 6749
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6750
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6751 6752


6753
    :param name: The name of this layer. It is optional.
6754
    :type name: basestring
R
ranqiu 已提交
6755
    :param input: The input of this layer. It stores scores over a sequence or a nested
6756
        sequence and its size must be 1.
R
ranqiu 已提交
6757
    :type input: LayerOutput
R
ranqiu 已提交
6758
    :param beam_size: sequence indices with top beam_size scores are returned.
6759 6760 6761 6762
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6763
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6764
                                            "accepts only one input.")
6765
    assert input.size == 1, (
6766
        "input of kmax_seq_score_layer is a score "
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6777 6778


6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6805
        conv = img_conv3d_layer(input=data, filter_size=1,
6806 6807 6808 6809 6810
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6811
    :param name: The name of this layer. It is optional.
6812
    :type name: basestring
R
ranqiu 已提交
6813
    :param input: The input of this layer.
6814
    :type input: LayerOutput
C
chengduoZH 已提交
6815
    :param filter_size: The x dimension of a filter kernel. Or input a list.
R
ranqiu 已提交
6816
    :type filter_size: int | tuple | list
6817
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
6818
    :param act: Activation type. ReluActivation is the default.
6819 6820 6821 6822 6823
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
6824
    :type stride: int | tuple | list
6825 6826
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
6827
    :type padding: int | tuple | list
6828 6829
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
R
ranqiu 已提交
6830
    :type bias_attr: ParameterAttribute | None | bool | Any
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6854 6855 6856 6857 6858 6859
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6860

C
chengduoZH 已提交
6861 6862 6863 6864 6865 6866
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6867

C
chengduoZH 已提交
6868 6869 6870 6871 6872 6873
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6920 6921


G
guosheng 已提交
6922 6923 6924 6925 6926
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6927 6928
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6929 6930
    adds a bias to it.

X
xuwei06 已提交
6931
    This layer is very like the SlopeInterceptLayer, except the scale and
6932 6933
    bias are trainable.

G
guosheng 已提交
6934 6935 6936 6937 6938 6939 6940 6941
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6942
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6943
    :type name: basestring
R
ranqiu 已提交
6944 6945
    :param input: The input of this layer.
    :type input: LayerOutput
G
guosheng 已提交
6946 6947
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6948 6949 6950 6951
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6952
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6963 6964 6965 6966 6967 6968 6969 6970 6971


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6972
    :param input: The input of this layer.
6973 6974 6975
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6976
    :param size: The resized output dimension of this layer.
6977 6978 6979 6980 6981 6982
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)