Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
c2dea5a8
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2dea5a8
编写于
9月 18, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the annotation of layers.py
上级
8be9930f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
40 addition
and
27 deletion
+40
-27
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+40
-27
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
c2dea5a8
...
...
@@ -5457,9 +5457,9 @@ def nce_layer(input,
param_attr=[attr1, attr2], weight=layer3,
num_classes=3, neg_distribution=[0.1,0.3,0.6])
:param name:
layer name
:param name:
The name of this layer.
:type name: basestring
:param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
:param input:
The
input layers. It could be a LayerOutput of list/tuple of LayerOutput.
:type input: LayerOutput|list|tuple|collections.Sequence
:param label: label layer
:type label: LayerOutput
...
...
@@ -5477,7 +5477,9 @@ def nce_layer(input,
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.
:type neg_distribution: list|tuple|collections.Sequence|None
:param bias_attr: Bias parameter attribute. True if no bias.
:param bias_attr: The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.
:type bias_attr: ParameterAttribute|None|False
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -5593,7 +5595,7 @@ def rank_cost(left,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
...
...
@@ -5647,7 +5649,7 @@ def lambda_cost(input,
:param score: The 2nd input. Score of each sample.
:type input: LayerOutput
:param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
e.g., 5 for NDCG@5. It must be less than
f
or equal to the
e.g., 5 for NDCG@5. It must be less than or equal to the
minimum size of lists.
:type NDCG_num: int
:param max_sort_size: The size of partial sorting in calculating gradient.
...
...
@@ -5658,7 +5660,7 @@ def lambda_cost(input,
than the size of a list, the algorithm will sort the
entire list of get gradient.
:type max_sort_size: int
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -5702,7 +5704,7 @@ def cross_entropy(input,
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring.
:param coeff: The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
...
...
@@ -5750,7 +5752,7 @@ def cross_entropy_with_selfnorm(input,
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
...
...
@@ -5790,7 +5792,7 @@ def sum_cost(input, name=None, layer_attr=None):
:param input: The first input layer.
:type input: LayerOutput.
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring.
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -5835,7 +5837,7 @@ def huber_regression_cost(input,
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring.
:param delta: The difference between the observed and predicted values.
:type delta: float.
...
...
@@ -5885,7 +5887,7 @@ def huber_classification_cost(input,
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
...
...
@@ -5928,7 +5930,7 @@ def multi_binary_label_cross_entropy(input,
:type input: LayerOutput
:param label: The input label.
:type input: LayerOutput
:param name: The name of this layer
s
. It is not necessary.
:param name: The name of this layer. It is not necessary.
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
...
...
@@ -6033,9 +6035,9 @@ def cross_entropy_over_beam(input, name=None):
])
:param input:
i
nput beams for this layer.
:param input:
I
nput beams for this layer.
:type input: BeamInput
:param name:
input beams for
this layer.
:param name:
The name of
this layer.
:type name: basestring
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -6175,12 +6177,21 @@ def multiplex_layer(input, name=None, layer_attr=None):
@
wrap_name_default
(
"dropout"
)
def
dropout_layer
(
input
,
dropout_rate
,
name
=
None
):
"""
@TODO(yuyang18): Add comments.
:param name:
:param input:
:param dropout_rate:
:return:
The example usage is:
.. code-block:: python
dropout = dropout_layer(input=input_layer, dropout_rate=0.5)
:param name: The name of this layer.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput
:param dropout_rate: The probability of dropout.
:type dropout_rate: float
:return: LayerOutput object.
:rtype: LayerOutput
"""
return
addto_layer
(
name
=
name
,
...
...
@@ -6203,7 +6214,7 @@ def row_conv_layer(input,
"""
The row convolution is called lookahead convolution. It is firstly
introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
introduced in paper of `Deep Speech 2: End-to
-
End Speech Recognition
in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .
The bidirectional RNN that learns representation for a sequence by
...
...
@@ -6211,9 +6222,9 @@ def row_conv_layer(input,
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional
recurrent neural network
s.
efficient manner to improve unidirectional
RNN
s.
The connection of row convolution is different f
or
m the 1D sequence
The connection of row convolution is different f
ro
m the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
...
...
@@ -6242,7 +6253,7 @@ def row_conv_layer(input,
:param act: Activation Type. Default is linear activation.
:type act: BaseActivation
:param param_attr: The Parameter Attribute. If None, the parameter will be
initialized smartly. It's better set it by yourself.
initialized smartly. It's better
to
set it by yourself.
:type param_attr: ParameterAttribute
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
...
...
@@ -6342,7 +6353,7 @@ def gated_unit_layer(input,
The gated unit layer implements a simple gating mechanism over the input.
The input :math:`X` is first projected into a new space :math:`X'`, and
it is also used to produce a gate weight :math:`\sigma`. Element-wise
prod
i
ct between :match:`X'` and :math:`\sigma` is finally returned.
prod
u
ct between :match:`X'` and :math:`\sigma` is finally returned.
Reference:
Language Modeling with Gated Convolutional Networks
...
...
@@ -6440,8 +6451,8 @@ def switch_order_layer(input,
:type input: LayerOutput
:param name: Name of this layer.
:type name: basestring
:param reshape
: reshape matrix by axises
.
:type reshape
: Dic
t
:param reshape
_axis: Specify the axises of 'height'. Its value should be positive and less than 4
.
:type reshape
_axis: in
t
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -6869,7 +6880,9 @@ def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
:type input: LayerOutput.
:param param_attr: The parameter attribute of scaling.
:type param_attr: ParameterAttribute
:param bias_attr: The parameter attribute of shifting.
:param bias_attr: The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.
:type bias_attr: ParameterAttribute
:return: LayerOutput object.
:rtype: LayerOutput
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录