layers.py 165.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
    ReluActivation, IdentityActivation, SoftmaxActivation
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33 34 35 36 37 38 39 40
__all__ = [
    "full_matrix_projection",
    "AggregateLevel",
    "ExpandLevel",
    "identity_projection",
    "dotmul_projection",
    "dotmul_operator",
    "repeat_layer",
41
    "seq_reshape_layer",
Q
qijun 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    "table_projection",
    "mixed_layer",
    "data_layer",
    "embedding_layer",
    "fc_layer",
    "grumemory",
    "pooling_layer",
    "lstmemory",
    "last_seq",
    "first_seq",
    "cos_sim",
    "hsigmoid",
    "conv_projection",
L
Luo Tao 已提交
55
    "mse_cost",
Q
qijun 已提交
56 57 58 59 60 61 62 63 64
    "regression_cost",
    'classification_cost',
    "LayerOutput",
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
99
    'warp_ctc_layer',
Q
qijun 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'print_layer',
Y
yuan 已提交
114
    'priorbox_layer',
115
    'cross_channel_norm_layer',
Q
qijun 已提交
116
    'spp_layer',
D
dangqingqing 已提交
117
    'pad_layer',
L
Luo Tao 已提交
118
    'eos_layer',
119
    'layer_support',
Q
qijun 已提交
120
]
Z
zhangjinchao01 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133


class LayerType(object):
    """
    Layer type enumerations.
    """

    DATA = "data"
    MIXED_LAYER = "mixed"
    LSTMEMORY = "lstmemory"
    GRUMEMORY = "gated_recurrent"
    SEQUENCE_LAST_INSTANCE = "seqlastins"
    SEQUENCE_FIRST_INSTANCE = "seqfirstins"
134
    SEQUENCE_RESHAPE = "seqreshape"
Z
zhangjinchao01 已提交
135 136 137 138
    POOLING_MAX = "max"
    POOLING_AVG = 'average'
    FC_LAYER = "fc"
    COST = 'cost'
139 140
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
141 142
    HSIGMOID = 'hsigmoid'
    CONV_LAYER = "conv"
143
    CONVTRANS_LAYER = "convt"
144 145 146
    EXCONV_LAYER = "exconv"
    EXCONVTRANS_LAYER = "exconvt"
    CUDNNCONV_LAYER = "cudnn_conv"
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153 154
    POOL_LAYER = "pool"
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
155
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
156 157 158 159 160 161 162

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
163
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
164 165 166
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
167
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
168
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
169
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
170 171 172 173 174 175 176 177 178 179 180

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
181
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
182
    BLOCK_EXPAND = "blockexpand"
183
    MAXOUT = "maxout"
Q
qijun 已提交
184
    SPP_LAYER = "spp"
D
dangqingqing 已提交
185
    PAD_LAYER = "pad"
Z
zhangjinchao01 已提交
186

187
    PRINT_LAYER = "print"
Y
yuan 已提交
188
    PRIORBOX_LAYER = "priorbox"
189

Z
zhangjinchao01 已提交
190
    CTC_LAYER = "ctc"
191
    WARP_CTC_LAYER = "warp_ctc"
Z
zhangjinchao01 已提交
192 193
    CRF_LAYER = "crf"
    CRF_DECODING_LAYER = "crf_decoding"
194
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
195 196 197 198 199 200 201 202

    RANK_COST = "rank-cost"
    LAMBDA_COST = "lambda_cost"
    HUBER = "huber"
    CROSS_ENTROPY = "multi-class-cross-entropy"
    CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
    SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
    MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
X
xuwei06 已提交
203
    SUM_COST = "sum_cost"
Z
zhangjinchao01 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
    EACH_TIMESTEP = 'non-seq'
    EACH_SEQUENCE = 'seq'


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
249
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
250 251
    """

Q
qijun 已提交
252 253 254 255 256 257 258 259 260
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
261
                 reverse=None):
Z
zhangjinchao01 已提交
262 263
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
264
        assert size is not None
Z
zhangjinchao01 已提交
265 266 267
        assert LayerType.is_layer_type(layer_type)
        self.name = name
        self.layer_type = layer_type
268 269
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
278
        self.reverse = reverse
Z
zhangjinchao01 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

292 293 294 295 296 297 298 299
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
300 301 302

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
303
DEVICE = 'device'
Z
zhangjinchao01 已提交
304 305 306


def layer_support(*attrs):
307
    attrs_list = list(attrs)
308
    attrs_list.append(DEVICE)
Q
qijun 已提交
309

Z
zhangjinchao01 已提交
310 311 312
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
313
            for attr in attrs_list:
Z
zhangjinchao01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
330 331 332 333 334
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
374 375
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
376 377 378 379
    proj.origin = input
    return proj


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
410 411
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
412 413 414 415
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
455 456
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    proj.origin = input
    return proj


def identity_projection(input, offset=None):
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
492
    :type input: LayerOutput
Z
zhangjinchao01 已提交
493 494
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
495
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
496 497 498 499 500 501
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
Q
qijun 已提交
502 503
        proj = IdentityOffsetProjection(
            input_layer_name=input.name, offset=offset)
Z
zhangjinchao01 已提交
504 505 506 507
        proj.origin = input
    return proj


X
xuwei06 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
530
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
531 532 533 534
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
535
@wrap_param_attr_default()
536
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
537
    """
538
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

552 553 554 555 556 557 558
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
559 560
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
561
    proj.origin = input
562
    return proj
Z
zhangjinchao01 已提交
563

564 565

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
566 567
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
568

Z
zhangjinchao01 已提交
569
    .. math::
570 571
       out.row[i] += scale * (x.row[i] .* y.row[i])

Z
zhangjinchao01 已提交
572 573
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
574

Z
zhangjinchao01 已提交
575
    The example usage is:
576

Z
zhangjinchao01 已提交
577
    .. code-block:: python
578 579 580

       op = dotmul_operator(x=layer1, y=layer2, scale=0.5)

581 582 583 584
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
585 586
    :param scale: config scalar, default value is one.
    :type scale: float
587 588
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
589
    """
590 591 592
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
593
    a = kwargs.get('x', a)  # For Backward capacity.
594 595 596 597 598 599
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
600
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
601
    op.origin = [a, b]
602
    return op
Z
zhangjinchao01 已提交
603

604

Z
zhangjinchao01 已提交
605
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
606 607 608
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
645 646 647 648 649 650
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
664
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
681 682 683 684 685 686 687
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
688 689 690 691 692
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

693
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
694 695 696 697 698 699 700 701
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
702
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
703
            self.inputs.append(other)
704 705 706 707
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
708 709 710 711 712 713 714 715 716 717 718
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

    def __exit__(self, *args, **kwargs):
        del args, kwargs  # unused parameter to suppress warning
        assert len(self.inputs) != 0
719
        ml = MixedLayer(
Z
zhangjinchao01 已提交
720 721 722 723 724
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
725
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
726 727 728
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
729
        self.finalized = True
Z
zhangjinchao01 已提交
730 731 732 733 734 735


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
736 737 738 739 740
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
785 786 787 788 789 790
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
791
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
792 793 794 795 796 797 798 799
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
800
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
801 802 803 804 805 806 807
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
808
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
809 810 811 812 813

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
814
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
815
    :type height: int|None
L
Luo Tao 已提交
816
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
817
    :type width: int|None
Z
zhangjinchao01 已提交
818 819
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
820
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
821 822
    :rtype: LayerOutput
    """
Q
qijun 已提交
823 824 825 826
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
827 828
        height=height,
        width=width,
Q
qijun 已提交
829
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
852
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
853 854
    :rtype: LayerOutput
    """
Q
qijun 已提交
855 856 857 858 859 860
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
861 862 863 864 865 866 867 868 869
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
870 871 872 873 874 875 876
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
877 878 879 880 881 882 883 884 885 886 887 888
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
889
    which is equal to:
Z
zhangjinchao01 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
912
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
913 914 915 916
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
917
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
918 919
        param_attr = [param_attr]
    else:
920
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
921 922 923 924
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

925
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
926 927

    Layer(
Q
qijun 已提交
928 929 930
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
931 932 933 934 935
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
936 937 938
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
939

940

941 942 943 944
@wrap_name_default("print")
def print_layer(input, name=None):
    """
    Print the output value of input layers. This layer is useful for debugging.
945 946 947 948 949

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
950
    :return: LayerOutput
951
    """
952 953 954 955 956
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
957 958 959 960

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
961
        inputs=[l.name for l in input], )
962
    # this layer don't return anything, can not be input of other layer.
963

Z
zhangjinchao01 已提交
964

Y
yuan 已提交
965
@wrap_name_default("priorbox")
G
gaoyuan 已提交
966
def priorbox_layer(input,
G
gaoyuan 已提交
967
                   image,
G
gaoyuan 已提交
968 969 970 971 972
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
973 974 975 976 977 978 979
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
980 981
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
982 983 984 985 986 987 988 989 990 991 992
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
993
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
994 995 996
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
997
        inputs=[input.name, image.name],
Y
yuan 已提交
998 999 1000 1001 1002 1003
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1004 1005
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1006
        parents=[input, image],
G
gaoyuan 已提交
1007 1008 1009
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1010

1011 1012
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1026
    assert input.num_filters is not None
G
gaoyuan 已提交
1027 1028
    Layer(
        name=name,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1042 1043
    return LayerOutput(
        name,
1044
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1045 1046 1047 1048 1049
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1050 1051 1052 1053
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1054 1055 1056 1057
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
Z
zhangjinchao01 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
                  agg_level=AggregateLevel.EACH_TIMESTEP,
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
                                agg_level=AggregateLevel.EACH_SEQUENCE)

C
caoying03 已提交
1071 1072
    :param agg_level: AggregateLevel.EACH_TIMESTEP or
                      AggregateLevel.EACH_SEQUENCE
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1085
    :return: LayerOutput object.
Y
Yu Yang 已提交
1086
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1087 1088
    """
    extra_dict = dict()
1089
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1090 1091
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1092 1093 1094 1095
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1096 1097 1098 1099 1100 1101 1102 1103
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
1104
        **extra_dict)
Z
zhangjinchao01 已提交
1105

Q
qijun 已提交
1106 1107
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1108

Q
qijun 已提交
1109

Z
zhangjinchao01 已提交
1110 1111
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1112
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1113 1114 1115
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1125 1126 1127 1128 1129 1130 1131 1132
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1133
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1134

L
luotao02 已提交
1135
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1136

L
luotao02 已提交
1137
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1138

L
luotao02 已提交
1139
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1140

L
luotao02 已提交
1141
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1142 1143


C
caoying03 已提交
1144
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1145
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1146 1147 1148 1149
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1150

C
caoying03 已提交
1151
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1152 1153
    to config a simple plain lstm layer.

C
caoying03 已提交
1154 1155 1156 1157
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1181
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1182 1183 1184 1185 1186 1187
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
Z
zhangjinchao01 已提交
1198

Q
qijun 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1209

Q
qijun 已提交
1210 1211 1212 1213 1214
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1215

Z
zhangjinchao01 已提交
1216 1217 1218

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1219
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1220 1221 1222
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1223 1224 1225 1226 1227 1228 1229 1230
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1252 1253
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1254 1255 1256 1257 1258

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1259 1260 1261
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1262 1263 1264 1265 1266

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1267
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1268
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1269 1270 1271
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1272

C
caoying03 已提交
1273 1274 1275
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1287
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1303 1304 1305
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1306
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1307 1308 1309 1310
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1311 1312 1313 1314 1315 1316 1317 1318 1319
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
Z
zhangjinchao01 已提交
1320

Q
qijun 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1330

Q
qijun 已提交
1331 1332 1333 1334 1335
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1336

Z
zhangjinchao01 已提交
1337 1338 1339

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1340 1341 1342
def last_seq(input,
             name=None,
             agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1343 1344 1345 1346
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

L
Luo Tao 已提交
1347 1348 1349 1350 1351 1352
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1353 1354 1355 1356 1357 1358 1359
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1360
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1361 1362
    :rtype: LayerOutput
    """
1363 1364 1365 1366 1367 1368
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

Z
zhangjinchao01 已提交
1369 1370 1371 1372 1373
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1374 1375 1376 1377 1378 1379
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1380 1381 1382 1383


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1384 1385 1386
def first_seq(input,
              name=None,
              agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1387 1388 1389 1390
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

L
Luo Tao 已提交
1391 1392 1393 1394 1395 1396
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1397 1398 1399 1400 1401 1402 1403
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1404
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1405 1406
    :rtype: LayerOutput
    """
1407 1408 1409 1410 1411 1412 1413

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

Z
zhangjinchao01 已提交
1414 1415 1416 1417 1418
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1419 1420 1421 1422 1423 1424
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1425 1426 1427 1428 1429 1430


class ExpandLevel(object):
    FROM_TIMESTEP = AggregateLevel.EACH_TIMESTEP
    FROM_SEQUENCE = AggregateLevel.EACH_SEQUENCE

1431

Z
zhangjinchao01 已提交
1432 1433
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1434 1435
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
                 name=None,
                 bias_attr=False,
                 expand_level=ExpandLevel.FROM_TIMESTEP,
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
                             expand_level=ExpandLevel.FROM_TIMESTEP)

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1465
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1475 1476 1477 1478 1479 1480
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1481 1482


X
xuwei06 已提交
1483 1484
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1485
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
X
xuwei06 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1497
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1516 1517 1518 1519 1520 1521 1522
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

X
xuwei06 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
    the dimension of each instance is M, and the input reshape_size is N, then the 
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1607
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1608 1609
    :rtype: LayerOutput
    """
1610
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1611
    assert len(input) == 2
1612 1613 1614 1615 1616 1617 1618
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1619 1620 1621 1622
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1623 1624 1625 1626 1627 1628
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1629 1630


L
liaogang 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1647
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1648

L
liaogang 已提交
1649
    :param   input:        A input layer.
L
liaogang 已提交
1650
    :type    input:        LayerOutput.
L
liaogang 已提交
1651
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1652
    :type    out_size_x:   int|None
L
liaogang 已提交
1653
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1654
    :type    out_size_y:   int|None
L
liaogang 已提交
1655
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1656
    :type    name:         None|basestring
L
liaogang 已提交
1657
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1658 1659 1660 1661 1662 1663 1664
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1665
    assert input.num_filters is not None
L
liaogang 已提交
1666
    num_channels = input.num_filters
Q
qijun 已提交
1667 1668 1669 1670 1671 1672 1673
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1674
                channels=num_channels)),
Q
qijun 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1684

Z
zhangjinchao01 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1712
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1713 1714
    :rtype: LayerOutput
    """
1715 1716 1717
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1718 1719 1720
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1721
        inputs=[weight.name, input.name],
Q
qijun 已提交
1722 1723 1724
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1725 1726 1727 1728 1729 1730


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1731
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1732 1733

    .. math::
1734
       y  = w x
Z
zhangjinchao01 已提交
1735

1736 1737 1738 1739 1740
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1756
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1757 1758
    :rtype: LayerOutput
    """
1759 1760 1761
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1762 1763 1764 1765
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
1766 1767 1768
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
1769 1770 1771 1772 1773 1774


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1775
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1794
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1795 1796 1797 1798 1799 1800
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
1801 1802 1803
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1804 1805


1806 1807
@wrap_name_default()
@layer_support()
H
Haonan 已提交
1808
def rotate_layer(input, height, width, name=None, layer_attr=None):
1809
    """
H
Haonan 已提交
1810 1811
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1812 1813

    .. math::
H
Haonan 已提交
1814
       y(j,i,:) = x(M-i-1,j,:)
1815

H
Haonan 已提交
1816
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1817 1818 1819 1820 1821 1822

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
1823 1824
                          height=100,
                          width=100)
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1838 1839 1840
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
1841
        width=width,
H
Haonan 已提交
1842 1843 1844 1845 1846 1847 1848 1849
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1850 1851


Z
zhangjinchao01 已提交
1852 1853
@wrap_name_default()
@layer_support()
1854
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
1855 1856 1857 1858
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1859
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1860 1861 1862 1863 1864
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
1865

1866 1867
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1868

L
Luo Tao 已提交
1869 1870 1871 1872 1873 1874
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1887
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1888 1889
    :rtype: LayerOutput
    """
1890
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1891 1892 1893 1894 1895 1896
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1897
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1898
    else:
1899 1900
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1901 1902 1903 1904 1905 1906
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1907
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
1908
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
1909

1910

Z
zhangjinchao01 已提交
1911 1912
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
1913
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
1914
@layer_support()
Q
qijun 已提交
1915 1916 1917 1918 1919 1920 1921
def hsigmoid(input,
             label,
             num_classes,
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
                        label=data_layer,
                        num_classes=3)

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
    :type num_classes: int
L
luotao02 已提交
1943 1944
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
1945 1946 1947 1948 1949
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1950
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1951 1952 1953 1954
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1955 1956 1957 1958 1959 1960 1961 1962 1963
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1964 1965 1966 1967 1968
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

    ipts_for_layer = []
    parents = []
1969
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
1970
        assert isinstance(each_input, LayerOutput)
1971
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
1972 1973 1974 1975
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
1976
    l = Layer(
Z
zhangjinchao01 已提交
1977 1978 1979 1980 1981
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
1982 1983 1984
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
1985

1986

Z
zhangjinchao01 已提交
1987 1988 1989 1990 1991
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2008 2009
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2010
    """
2011
    Convolution layer for image. Paddle can support both square and non-square
2012
    input currently.
Z
zhangjinchao01 已提交
2013 2014 2015 2016

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2017

2018
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2019
    and non-square input currently.
2020

X
xuwei06 已提交
2021
    The details of convolution transpose layer,
2022 2023 2024
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2025 2026 2027 2028
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2029 2030 2031
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2032
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2033 2034
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2035

L
Luo Tao 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2046 2047 2048 2049
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2050 2051 2052
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2053 2054 2055
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2056
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2057 2058 2059 2060 2061
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2062 2063 2064
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2065 2066
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2067 2068 2069
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2084 2085
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2086
    :param layer_type: specify the layer_type, default is None. If trans=True,
2087
                       layer_type has to be "exconvt", otherwise layer_type
2088 2089
                       has to be either "exconv" or "cudnn_conv"
    :type layer_type: String
D
dangqingqing 已提交
2090
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2091 2092 2093 2094 2095
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2096

Z
zhangjinchao01 已提交
2097
    if filter_size_y is None:
2098 2099 2100 2101 2102 2103
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2104
    if stride_y is None:
2105 2106 2107 2108 2109 2110
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2111
    if padding_y is None:
2112 2113 2114 2115 2116 2117 2118 2119
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2120
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2121 2122 2123 2124
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2125

2126 2127 2128 2129 2130 2131 2132 2133
    if layer_type:
        if trans:
            assert layer_type in ["exconvt"]
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2134

X
xuwei06 已提交
2135
    l = Layer(
Z
zhangjinchao01 已提交
2136
        name=name,
Q
qijun 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2149 2150 2151 2152
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2153
        type=lt,
Q
qijun 已提交
2154 2155 2156 2157 2158 2159 2160 2161
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2162 2163 2164 2165


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2176 2177
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2178 2179 2180 2181 2182 2183 2184
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2213
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2214
    :type padding: int
2215 2216
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2217 2218 2219 2220
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2221
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2222
    :type pool_size: int
2223 2224
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2225 2226
    :param num_channels: number of input channel.
    :type num_channels: int
2227
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2228 2229
                      MaxPooling.
    :type pool_type: BasePoolingType
2230
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2231
    :type stride: int
2232 2233
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2234 2235
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2236 2237 2238 2239
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2240 2241
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2252 2253 2254 2255 2256 2257 2258 2259
    type_name = pool_type.name + '-projection' \
      if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
      else pool_type.name

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2260
    l = Layer(
Z
zhangjinchao01 已提交
2261 2262
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2275
                    padding_y=padding_y))
Q
qijun 已提交
2276
        ],
2277
        ceil_mode=ceil_mode,
Q
qijun 已提交
2278 2279 2280 2281 2282 2283 2284
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2285 2286


Q
qijun 已提交
2287 2288
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2289 2290 2291 2292 2293 2294
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2295 2296 2297 2298 2299
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308
    The example usage is:

    ..  code-block:: python

        spp = spp_layer(input=data, 
                        pyramid_height=2, 
                        num_channels=16, 
                        pool_type=MaxPooling())

Q
qijun 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2337
    l = Layer(
Q
qijun 已提交
2338 2339
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2340 2341 2342 2343 2344
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2345
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2357 2358 2359 2360
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2361
    l = Layer(
Q
qijun 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2381 2382 2383 2384


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2385 2386 2387 2388 2389 2390
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2391
                      layer_attr=None):
Z
zhangjinchao01 已提交
2392
    """
2393
    Response normalization across feature maps.
D
dangqingqing 已提交
2394 2395
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2396

L
Luo Tao 已提交
2397 2398 2399 2400 2401 2402
    The example usage is:

    ..  code-block:: python
    
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2403
    :param name: layer name.
D
dangqingqing 已提交
2404
    :type name: None|basestring
Z
zhangjinchao01 已提交
2405 2406
    :param input: layer's input.
    :type input: LayerOutput
2407
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2408
    :type size: int
D
dangqingqing 已提交
2409
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2410
    :type scale: float
D
dangqingqing 已提交
2411
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2412 2413 2414 2415 2416
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2418 2419 2420
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2421
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2422 2423 2424 2425 2426 2427 2428 2429


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2430 2431 2432 2433 2434 2435 2436
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2458 2459 2460 2461 2462 2463
    The example usage is:

    ..  code-block:: python
    
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2478
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2506
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2526
    l = Layer(
Z
zhangjinchao01 已提交
2527
        name=name,
Q
qijun 已提交
2528 2529
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2530 2531 2532 2533 2534 2535
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2536
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2537

Q
qijun 已提交
2538 2539 2540 2541 2542 2543 2544
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2572
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2573 2574 2575 2576 2577 2578
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2579 2580 2581
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2582 2583 2584 2585 2586 2587


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2588
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2611 2612 2613
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2614 2615

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2616 2617
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2632
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2633 2634 2635 2636 2637 2638
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2639
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2640 2641 2642 2643 2644 2645 2646
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2647
    l = Layer(
Q
qijun 已提交
2648 2649 2650
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2651 2652
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2653
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2654

Q
qijun 已提交
2655 2656 2657 2658 2659 2660 2661
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2662 2663 2664 2665 2666


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2667
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2668 2669 2670 2671
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2672 2673 2674 2675 2676 2677
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2678 2679 2680
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2681
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2682 2683 2684 2685
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2686
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2687 2688 2689 2690 2691 2692 2693 2694
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2695
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2696 2697

    def __is_type__(o, tp):
2698
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2720 2721
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2722

Q
qijun 已提交
2723 2724
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2725

2726 2727
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2728

Z
zhangjinchao01 已提交
2729
    Layer(
Q
qijun 已提交
2730 2731
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2732 2733
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2734
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2735
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744

    sz = 0
    for each_input in input:
        if each_input.size is not None:
            sz += each_input.size
        else:
            sz = None
            break

Q
qijun 已提交
2745 2746 2747 2748 2749 2750 2751 2752
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2753 2754
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2755
@wrap_bias_attr_default(has_bias=False)
2756 2757 2758 2759 2760
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2761 2762 2763 2764 2765 2766

    Inputs: 
      - a = [a1, a2, ..., an]
      - b = [b1, b2, ..., bn]
      - Note that the length of a and b should be the same.
        
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
    Output: [a1, b1, a2, b2, ..., an, bn]

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2785 2786 2787 2788
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2810
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
2811 2812
def memory(name,
           size,
2813
           memory_name=None,
Q
qijun 已提交
2814 2815 2816 2817
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)


    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
2855 2856 2857
    :type name: basestring
    :param size: size of memory.
    :type size: int
2858 2859 2860
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
Z
zhangjinchao01 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2871
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
2882 2883
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
2894 2895

    lout = LayerOutput(
2896
        name=memory_name,
Q
qijun 已提交
2897 2898 2899
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
2900 2901 2902 2903
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
2904 2905
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2906 2907 2908
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917
def lstm_step_layer(input,
                    state,
                    size,
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
2918 2919 2920 2921 2922 2923
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

L
luotao02 已提交
2924
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
2925

L
luotao02 已提交
2926
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
2927

L
luotao02 已提交
2928
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
2929

L
luotao02 已提交
2930
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
2931

L
luotao02 已提交
2932
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
2933 2934


L
luotao02 已提交
2935
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2974
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2984 2985 2986
        size=size,
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2987

Q
qijun 已提交
2988 2989 2990 2991 2992 2993 2994
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
2995 2996 2997


@wrap_bias_attr_default()
W
wangyang59 已提交
2998
@wrap_param_attr_default()
Q
qijun 已提交
2999
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3000 3001 3002
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3003 3004 3005 3006 3007 3008 3009
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3010
                   param_attr=None,
Q
qijun 已提交
3011
                   layer_attr=None):
Z
zhangjinchao01 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
L
Liang Zhao 已提交
3022 3023
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3024
    :param layer_attr:
D
dangqingqing 已提交
3025
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3026 3027 3028 3029 3030 3031 3032 3033
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
L
Liang Zhao 已提交
3034 3035 3036 3037
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3038
        # backward model compatibility.
3039
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3040 3041 3042 3043
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3044
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3045
    return LayerOutput(
Q
qijun 已提交
3046 3047
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3048
        parents=[input, output_mem],
Q
qijun 已提交
3049 3050
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3051 3052 3053 3054 3055 3056


@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3057 3058 3059 3060
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3070
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3071 3072 3073 3074 3075 3076 3077
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3078 3079 3080 3081 3082 3083 3084
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3085

Q
qijun 已提交
3086 3087 3088 3089 3090
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3091 3092 3093 3094 3095 3096 3097


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3098 3099 3100 3101 3102 3103 3104
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3105
    """
3106 3107
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3108

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3136
    :return: LayerOutput object.
3137
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3138
    """
Q
qijun 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3154 3155 3156 3157 3158 3159 3160


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3161

Z
zhangjinchao01 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3181

Z
zhangjinchao01 已提交
3182 3183 3184 3185 3186 3187 3188
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3189 3190 3191 3192 3193
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3194
                    is_generating=False):
Z
zhangjinchao01 已提交
3195
    """
C
caoying03 已提交
3196 3197 3198 3199 3200
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3245 3246
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3247
    :type reverse: bool
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3259
    :param is_generating: If is generating, none of input type should be LayerOutput;
3260
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3261
                          be LayerOutput.
L
Luo Tao 已提交
3262

L
Luo Tao 已提交
3263
    : type is_generating: bool
3264

D
dangqingqing 已提交
3265
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3276
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3277 3278 3279 3280 3281 3282

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3283 3284 3285 3286 3287 3288 3289 3290 3291
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

Q
qijun 已提交
3292
    assert (targetInlink == None or targetInlink_in_inlinks())
3293 3294 3295 3296
    targetInlinkName = None if targetInlink == None \
                            else targetInlink.name if isinstance(targetInlink, LayerOutput) \
                                                   else targetInlink.input.name

Z
zhangjinchao01 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3307 3308
        name=name,
        in_links=map(map_in_links, in_links),
3309 3310
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
Z
zhangjinchao01 已提交
3311
    in_args = []
3312
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3313 3314 3315 3316
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3317
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3318 3319
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3320
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3321 3322
        else:
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
Z
zhangjinchao01 已提交
3332 3333 3334
                mix += identity_projection(mem)
            in_args.append(mem)

L
Luo Tao 已提交
3335
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3336

Z
zhangjinchao01 已提交
3337 3338 3339 3340 3341 3342 3343
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3344
        ot.reverse = reverse
Z
zhangjinchao01 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3357

Z
zhangjinchao01 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3384 3385 3386
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3387
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3411
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3412 3413 3414 3415
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3426

3427

H
Haonan 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3464

Z
zhangjinchao01 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3481 3482
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3483 3484 3485 3486 3487 3488
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3489
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3490 3491
    :rtype: LayerOutput
    """
Q
qijun 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3503 3504 3505


@wrap_name_default()
Q
qijun 已提交
3506 3507 3508 3509 3510 3511 3512
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3513
                num_results_per_sample=None):
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3525
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3526 3527 3528 3529 3530 3531
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3532
                               input=[StaticInput(encoder_last)],
3533 3534
                               bos_id=0,
                               eos_id=1,
3535
                               beam_size=5)
3536 3537 3538 3539 3540 3541 3542 3543 3544

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3545
                 step, and it is applied to sequences with arbitrary length by
3546 3547 3548 3549 3550 3551
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
    :param input: Input data for the recurrent unit
3552
    :type input: list
3553 3554 3555
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3556
                   symbol is essential, since it is used to initialize the RNN
3557 3558 3559 3560 3561 3562 3563 3564
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3565 3566
    :param max_length: Max generated sequence length.
    :type max_length: int
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3577 3578
    :return: The generated word index.
    :rtype: LayerOutput
3579 3580
    """

Z
zhangjinchao01 已提交
3581 3582 3583 3584 3585
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3586
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3587 3588 3589 3590 3591 3592
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3593 3594
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInput)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3611 3612 3613 3614 3615 3616
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)

        return predict

Q
qijun 已提交
3627
    tmp = recurrent_group(
L
Luo Tao 已提交
3628 3629 3630 3631
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3632
        is_generating=True)
3633

Z
zhangjinchao01 已提交
3634 3635
    return tmp

Q
qijun 已提交
3636

3637 3638
def __cost_input__(input, label, weight=None):
    """
3639
    inputs and parents for cost layers.
3640 3641 3642 3643
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3644
        assert weight.size == 1
3645 3646 3647
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3648

Z
zhangjinchao01 已提交
3649 3650

@wrap_name_default()
L
luotao1 已提交
3651
@layer_support()
L
Luo Tao 已提交
3652
def mse_cost(input, label, weight=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3653
    """
L
Luo Tao 已提交
3654 3655 3656 3657 3658
    mean squared error cost:

    ..  math::

       $\frac{1}{N}\sum_{i=1}^N(t _i- y_i)^2$
Z
zhangjinchao01 已提交
3659 3660 3661


    :param name: layer name.
3662
    :type name: basestring
Z
zhangjinchao01 已提交
3663
    :param input: Network prediction.
3664
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3665
    :param label: Data label.
3666 3667 3668 3669
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
luotao1 已提交
3670 3671
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3672
    :return: LayerOutput object.
3673
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3674
    """
3675 3676
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3677 3678 3679 3680 3681
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
3682
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3683 3684


L
Luo Tao 已提交
3685 3686 3687
regression_cost = mse_cost


Z
zhangjinchao01 已提交
3688
@wrap_name_default("cost")
3689
@layer_support()
Q
qijun 已提交
3690 3691 3692 3693
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
L
Liang Zhao 已提交
3694
                        top_k=None,
3695 3696
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
Z
zhangjinchao01 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3706 3707 3708
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
Liang Zhao 已提交
3709 3710
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
3711
    :param evaluator: Evaluator method.
3712 3713
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3714
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3715 3716 3717 3718 3719
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3720 3721 3722

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3723 3724 3725 3726 3727
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

L
Liang Zhao 已提交
3738
        e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
Z
zhangjinchao01 已提交
3739

3740
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
3741 3742 3743 3744 3745
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
3746
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3747

3748

Q
qijun 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
                  padding_y=None):
Z
zhangjinchao01 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3769 3770
       op = conv_operator(img=input1,
                          filter=input2,
3771
                          filter_size=3,
Z
zhangjinchao01 已提交
3772 3773 3774
                          num_filters=64,
                          num_channels=64)

3775 3776 3777 3778
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
3779 3780
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
3781 3782 3783
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
3784
    :type filter_size_y: int
3785 3786
    :param num_filters: channel of output data.
    :type num_filters: int
3787 3788
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
3789
    :param stride: The x dimension of the stride.
L
luotao02 已提交
3790
    :type stride: int
Z
zhangjinchao01 已提交
3791
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
3792
    :type stride_y: int
Z
zhangjinchao01 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
3806

3807 3808
    if num_channels is None:
        num_channels = img.num_filters
3809 3810 3811

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
3812
        filter.size = filter_size * filter_size_y * num_filters * num_channels
3813

Q
qijun 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    op = ConvOperator(
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
3826
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
3827 3828
    return op

Q
qijun 已提交
3829

3830
@wrap_param_attr_default()
Q
qijun 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
                    param_attr=None):
3842 3843 3844 3845 3846 3847 3848 3849 3850
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
3851
       proj = conv_projection(input=input1,
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
3866 3867
    :param num_channels: channel of input data.
    :type num_channels: int
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
3910
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
3911 3912 3913 3914 3915
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

Q
qijun 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
    proj = ConvProjection(
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
3929 3930 3931 3932

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
3933

D
dangqingqing 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
3951

D
dangqingqing 已提交
3952
    For example,
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
3975 3976

    The simply usage is:
D
dangqingqing 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4038
@wrap_name_default()
L
luotao1 已提交
4039 4040
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4052 4053 4054 4055
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4056 4057 4058 4059 4060

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4061
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4062 4063 4064

    :param name: layer name
    :type name: basestring
4065 4066
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4067
    :param b: input layer b.
4068
    :type b: LayerOutput
L
luotao1 已提交
4069 4070
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4071
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4072 4073
    :rtype: LayerOutput
    """
4074 4075
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4076 4077 4078
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4079
        inputs=[a.name, b.name],
Q
qijun 已提交
4080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4081

Q
qijun 已提交
4082 4083
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4084 4085 4086 4087 4088


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4089
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4090
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4091 4092 4093 4094 4095 4096 4097 4098
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4099 4100 4101 4102 4103
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4104
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4105 4106

    In this formular:
4107 4108
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4109 4110
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4111
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4112 4113 4114 4115 4116

    The simple usage is:

    .. code-block:: python

4117
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4118 4119 4120

    :param name: layer name
    :type name: basestring
4121 4122 4123 4124
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4125
    :param size: the layer dimension.
L
luotao02 已提交
4126
    :type size: int.
Z
zhangjinchao01 已提交
4127 4128 4129
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4130
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4131 4132 4133 4134 4135 4136
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4137
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4138 4139
    :rtype: LayerOutput
    """
4140
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4141 4142 4143 4144 4145 4146
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4147 4148 4149 4150
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4151 4152 4153 4154 4155 4156


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4157
@layer_support()
Q
qijun 已提交
4158 4159
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4160
                       select=None,
Q
qijun 已提交
4161 4162
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4163 4164 4165
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4166 4167 4168
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4179
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4180 4181 4182 4183 4184

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4185 4186
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4187
                   If is None, acts exactly like fc_layer.
4188
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4201
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4202 4203 4204 4205
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4206
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4207 4208
        param_attr = [param_attr]
    else:
4209
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4210 4211 4212 4213
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4214 4215 4216 4217
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4218
    Layer(
Q
qijun 已提交
4219 4220 4221
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4222 4223 4224
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4225
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4226 4227 4228 4229
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4230 4231 4232 4233 4234 4235 4236
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4237 4238 4239


@wrap_name_default()
L
luotao1 已提交
4240 4241
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4256 4257
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4258
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4259 4260
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4261
    l = Layer(
Z
zhangjinchao01 已提交
4262 4263 4264
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4265 4266 4267
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4268 4269 4270


@wrap_name_default()
L
luotao1 已提交
4271
@layer_support()
Q
qijun 已提交
4272 4273 4274 4275
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4276
                          layer_attr=None):
Z
zhangjinchao01 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4298 4299
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4300
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4301 4302 4303 4304 4305 4306 4307 4308
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4309 4310 4311
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4312 4313 4314


@wrap_name_default()
L
luotao1 已提交
4315
@layer_support()
Q
qijun 已提交
4316
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4317
    """
4318 4319 4320 4321
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4322 4323 4324

    .. math::

4325
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4326

4327 4328 4329 4330 4331
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4332

4333
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4334 4335

    In this formular:
4336 4337 4338 4339 4340 4341
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4342 4343 4344 4345 4346

    The simple usage is:

    .. code-block:: python

4347
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4348 4349
                                       size=elem_dim)

4350 4351 4352 4353
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4354 4355 4356 4357
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4358 4359
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4360
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4361 4362
    :rtype: LayerOutput
    """
4363 4364 4365 4366
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4367
            size = vectors.size / weights.size
4368 4369
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4370 4371
    Layer(
        name=name,
4372
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4373
        size=size,
4374
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4375 4376 4377
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4378

4379

4380
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4381

4382

Z
zhangjinchao01 已提交
4383
@wrap_name_default()
L
luotao1 已提交
4384
@layer_support()
Z
zhangjinchao01 已提交
4385 4386 4387 4388 4389 4390 4391
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4392
                       num_channels=None,
L
luotao1 已提交
4393 4394
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4395 4396
    """
    Expand feature map to minibatch matrix.
4397
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4398
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4409
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4410 4411
    convolution neural network, and before recurrent neural network.

4412 4413 4414 4415
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4416
       block_expand = block_expand_layer(input=layer,
4417
                                         num_channels=128,
4418 4419 4420 4421 4422
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4423 4424
    :param input: The input layer.
    :type input: LayerOutput
4425 4426
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4441 4442
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4443
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4444 4445
    :rtype: LayerOutput
    """
4446 4447 4448
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4466 4467


4468 4469
@wrap_name_default()
@layer_support()
4470
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4471 4472 4473 4474 4475
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4476
    So groups should be larger than 1, and the num of channels should be able
4477 4478
    to devided by groups.

4479
    Please refer to Paper:
4480 4481 4482 4483
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4523 4524


Z
zhangjinchao01 已提交
4525
@wrap_name_default()
L
luotao1 已提交
4526
@layer_support()
Q
qijun 已提交
4527 4528 4529 4530 4531
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4532
              layer_attr=None):
Z
zhangjinchao01 已提交
4533 4534 4535 4536 4537
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4538 4539
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4540 4541
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4542 4543 4544 4545 4546 4547 4548 4549

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

Z
zhangjinchao01 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558
    The simple usage:

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4559
    :param input: The input layer.
Z
zhangjinchao01 已提交
4560 4561 4562
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4563
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4564
    :type size: int
4565 4566
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4567 4568
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4569 4570
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4571
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4572 4573 4574 4575
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4576 4577 4578 4579 4580
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4581
    Layer(
4582 4583 4584 4585
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4586
        inputs=[input.name, label.name],
Q
qijun 已提交
4587
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4588 4589
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4590

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
    <https://github.com/baidu-research/warp-ctc>` library, which is used in
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
    <https://arxiv.org/pdf/1512.02595v1.pdf>`, to compute Connectionist Temporal
    Classification (CTC) loss.

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
4614 4615 4616 4617 4618
          label needed by CTC, you need to use (num_classes + 1) as the input
          size. Thus, the size of both warp_ctc_layer and 'input' layer should
          be set to num_classes + 1.
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4619
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4620
          'linear' activation is expected instead in the 'input' layer.
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667

    The simple usage:

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
4668
@wrap_name_default()
4669
@wrap_param_attr_default()
L
luotao1 已提交
4670
@layer_support()
Q
qijun 已提交
4671 4672 4673 4674 4675 4676
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
L
luotao1 已提交
4677
              layer_attr=None):
Z
zhangjinchao01 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
    """
    A layer for calculating the cost of sequential conditional random
    field model.

    The simple usage:

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4693
    :type label: LayerOutput
Z
zhangjinchao01 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4703 4704
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4705
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4706 4707 4708 4709 4710
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4711 4712 4713 4714 4715 4716
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
4717

Q
qijun 已提交
4718
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
4719 4720 4721 4722
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4723 4724 4725 4726
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4727
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4728 4729 4730
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
4731 4732 4733 4734
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4735

4736

Z
zhangjinchao01 已提交
4737
@wrap_name_default()
4738
@wrap_param_attr_default()
L
luotao1 已提交
4739
@layer_support()
Q
qijun 已提交
4740 4741 4742 4743 4744
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4745
                       layer_attr=None):
Z
zhangjinchao01 已提交
4746 4747 4748 4749 4750 4751 4752
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

L
Luo Tao 已提交
4753 4754 4755 4756 4757 4758 4759
    The simple usage:

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4770 4771
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4772
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4773 4774 4775 4776 4777 4778
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

4779
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
4780 4781 4782 4783
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
4784 4785 4786 4787
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4788
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4789 4790 4791
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
4792 4793 4794 4795
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4796

Q
qijun 已提交
4797

4798 4799 4800
@wrap_bias_attr_default(has_bias=True)
@wrap_name_default()
@layer_support()
Q
qijun 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809
def nce_layer(input,
              label,
              num_classes,
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

       cost = nce_layer(input=layer1, label=layer2, weight=layer3,
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
4831
    :type num_classes: int
4832
    :param num_neg_samples: number of negative samples. Default is 10.
4833
    :type num_neg_samples: int
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
        assert sum(neg_distribution) == 1
4854

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
    ipts_for_layer = []
    parents = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(each_input.name)
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
4870
    l = Layer(
4871 4872 4873 4874 4875 4876 4877
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4878 4879 4880 4881
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.NCE_LAYER, parents=parents, size=l.config.size)

4882

Z
zhangjinchao01 已提交
4883 4884 4885
"""
following are cost Layers.
"""
4886 4887


Z
zhangjinchao01 已提交
4888
@wrap_name_default()
L
luotao1 已提交
4889
@layer_support()
Q
qijun 已提交
4890 4891 4892 4893 4894 4895 4896
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
4897
    """
4898
    A cost Layer for learning to rank using gradient descent. Details can refer
4899 4900
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
4901 4902 4903 4904 4905
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
4906
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
4907

L
luotao02 已提交
4908
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
4909

L
luotao02 已提交
4910
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

    The simple usage:

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4940 4941
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
4955 4956 4957 4958 4959 4960
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4961

X
xuwei06 已提交
4962
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4963

4964

Z
zhangjinchao01 已提交
4965
@wrap_name_default()
L
luotao1 已提交
4966
@layer_support()
Q
qijun 已提交
4967 4968 4969 4970 4971 4972
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
    """
    lambdaCost for lambdaRank LTR approach.

    The simple usage:

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

4985
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
4997 4998 4999
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5000 5001 5002
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5003 5004
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5005
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5006 5007
    :rtype: LayerOutput
    """
5008 5009 5010
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5011 5012 5013 5014 5015 5016 5017
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5018

Q
qijun 已提交
5019 5020
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5021

5022

Z
zhangjinchao01 已提交
5023
@wrap_name_default()
L
luotao1 已提交
5024
@layer_support()
5025 5026 5027 5028 5029 5030
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5031 5032 5033 5034 5035
    """
    A loss layer for multi class entropy.

    .. code-block:: python

X
xuwei06 已提交
5036
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5037
                            label=label_layer)
Z
zhangjinchao01 已提交
5038 5039 5040 5041 5042 5043 5044

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5045 5046
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5047
    :type coeff: float.
5048 5049 5050 5051
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5052 5053
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5054
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5055 5056 5057
    :rtype: LayerOutput.
    """

5058
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5059 5060 5061
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5062
        inputs=ipts,
Q
qijun 已提交
5063 5064
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5065
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5066

5067

Z
zhangjinchao01 已提交
5068
@wrap_name_default()
L
luotao1 已提交
5069
@layer_support()
Q
qijun 已提交
5070 5071 5072 5073
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5074 5075
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5076 5077
    """
    A loss layer for multi class entropy with selfnorm.
5078
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5079 5080 5081

    .. code-block:: python

X
xuwei06 已提交
5082
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5083
                                          label=label_layer)
Z
zhangjinchao01 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5095 5096
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5097
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5098 5099
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5100 5101 5102 5103 5104 5105 5106
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5107

Q
qijun 已提交
5108 5109 5110 5111 5112
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5113

5114

X
xuwei06 已提交
5115 5116 5117 5118 5119 5120 5121 5122
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

    .. code-block:: python

L
Luo Tao 已提交
5123
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5134
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5135 5136 5137 5138 5139
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5140

Q
qijun 已提交
5141
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5142 5143


Z
zhangjinchao01 已提交
5144
@wrap_name_default()
L
luotao1 已提交
5145 5146
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5147 5148 5149 5150 5151
    """
    A loss layer for huber loss.

    .. code-block:: python

X
xuwei06 已提交
5152
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5153
                         label=label_layer)
Z
zhangjinchao01 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5163 5164
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5165
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5166 5167
    :rtype: LayerOutput.
    """
5168 5169 5170
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5171 5172 5173 5174 5175 5176
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5177
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5178

5179

Z
zhangjinchao01 已提交
5180
@wrap_name_default()
L
luotao1 已提交
5181
@layer_support()
Q
qijun 已提交
5182 5183 5184 5185
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5186
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5187 5188 5189 5190 5191
    """
    A loss layer for multi binary label cross entropy.

    .. code-block:: python

X
xuwei06 已提交
5192
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5193
                                               label=label_layer)
Z
zhangjinchao01 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param type: The type of cost.
    :type type: basestring
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5205 5206
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5207
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5208 5209 5210
    :rtype: LayerOutput
    """

5211 5212
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)