Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
de2bc5da
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
de2bc5da
编写于
11月 14, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update annotations of layers.py according to comments
上级
1baeebc8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
54 addition
and
50 deletion
+54
-50
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+54
-50
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
de2bc5da
...
...
@@ -888,7 +888,7 @@ def mixed_layer(size=0,
:type size: int
:param input: The input of this layer. It is an optional parameter. If set,
then this function will just return layer's name.
:param act: Activation Type. LinearActivation is the default.
:param act: Activation Type. LinearActivation is the default
activation
.
:type act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -1030,7 +1030,7 @@ def fc_layer(input,
:type input: LayerOutput | list | tuple
:param size: The layer dimension.
:type size: int
:param act: Activation Type. TanhActivation is the default.
:param act: Activation Type. TanhActivation is the default
activation
.
:type act: BaseActivation
:param param_attr: The Parameter Attribute|list.
:type param_attr: ParameterAttribute
...
...
@@ -1527,7 +1527,7 @@ def lstmemory(input,
:type input: LayerOutput
:param reverse: is sequence process reversed or not.
:type reverse: bool
:param act: Activation type. TanhActivation is the default
. :math:`h_t`
:param act: Activation type. TanhActivation is the default
activation.
:type act: BaseActivation
:param gate_act: gate activation type, SigmoidActivation by default.
:type gate_act: BaseActivation
...
...
@@ -1920,7 +1920,7 @@ def repeat_layer(input,
False for treating input as column vector and repeating
in the row direction.
:type as_row_vector: bool
:param act: Activation type. IdentityActivation is the default.
:param act: Activation type. IdentityActivation is the default
activation
.
:type act: BaseActivation
:type name: basestring
:param layer_attr: extra layer attributes.
...
...
@@ -1974,7 +1974,7 @@ def seq_reshape_layer(input,
:type reshape_size: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param act: Activation type. IdentityActivation is the default.
:param act: Activation type. IdentityActivation is the default
activation
.
:type act: BaseActivation
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
...
...
@@ -2487,7 +2487,7 @@ def img_conv_layer(input,
shape will be (filter_size, filter_size_y).
:type filter_size_y: int | None
:param num_filters: Each filter group's number of filter
:param act: Activation type. ReluActivation is the default.
:param act: Activation type. ReluActivation is the default
activation
.
:type act: BaseActivation
:param groups: Group size of filters.
:type groups: int
...
...
@@ -3253,7 +3253,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
:param input: Input layers. It could be a LayerOutput or list/tuple of
LayerOutput.
:type input: LayerOutput | list | tuple
:param act: Activation Type. LinearActivation is the default.
:param act: Activation Type. LinearActivation is the default
activation
.
:type act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -3311,7 +3311,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
:type name: basestring
:param input: input layers or projections
:type input: list | tuple | collections.Sequence
:param act: Activation type. IdentityActivation is the default.
:param act: Activation type. IdentityActivation is the default
activation
.
:type act: BaseActivation
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -3406,7 +3406,7 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
:type a: LayerOutput
:param b: input sequence layer
:type b: LayerOutput
:param act: Activation type. IdentityActivation is the default.
:param act: Activation type. IdentityActivation is the default
activation
.
:type act: BaseActivation
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -3572,7 +3572,7 @@ def lstm_step_layer(input,
...
This layer has two outputs.
D
efault output is :math:`h_t`. The other
This layer has two outputs.
The d
efault output is :math:`h_t`. The other
output is :math:`o_t`, whose name is 'state' and users can use
:code:`get_output_layer` to extract this output.
...
...
@@ -3583,13 +3583,15 @@ def lstm_step_layer(input,
:type size: int
:param input: The input of this layer.
:type input: LayerOutput
:param state: The state of
a lstm
.
:param state: The state of
the LSTM unit
.
:type state: LayerOutput
:param act: Activation type. TanhActivation is the default.
:param act: Activation type. TanhActivation is the default
activation
.
:type act: BaseActivation
:param gate_act: Activation type of the gate. SigmoidActivation is the default.
:param gate_act: Activation type of the gate. SigmoidActivation is the
default activation.
:type gate_act: BaseActivation
:param state_act: Activation type of the state. TanhActivation is the default.
:param state_act: Activation type of the state. TanhActivation is the
default activation.
:type state_act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -3648,12 +3650,13 @@ def gru_step_layer(input,
:param size: The dimension of this layer's output. If it is not set or set to None,
it will be set to one-third of the dimension of the input automatically.
:type size: int
:param act: Activation type of this layer's output.
Sigmoid
Activation
is the default.
:param act: Activation type of this layer's output.
Tanh
Activation
is the default
activation
.
:type act: BaseActivation
:param name: The name of this layer. It is optional.
:type name: basestring
:param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
:param gate_act: Activation type of this layer's two gates. SigmoidActivation is
the default activation.
:type gate_act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -3707,10 +3710,10 @@ def gru_step_naive_layer(input,
param_attr
=
None
,
layer_attr
=
None
):
"""
GRU Step Layer,
but using MixedLayer to generate
. It supports ERROR_CLIPPING
GRU Step Layer,
which is realized using PaddlePaddle API
. It supports ERROR_CLIPPING
and DROPOUT.
:param input: The input of this layer, whose dimension can be divided by 3.
:param input: The input of this layer, whose dimension
ality
can be divided by 3.
:param output_mem: A memory which memorizes the output of this layer at previous
time step.
:type output_mem: LayerOutput
...
...
@@ -3719,11 +3722,11 @@ def gru_step_naive_layer(input,
:type size: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param act: Activation type of this layer's output.
Sigmoid
Activation
is the default.
:param act: Activation type of this layer's output.
Tanh
Activation
is the default
activation
.
:type act: BaseActivation
:param gate_act: Activation type of this layer's two gates.
Tanh
Activation
is the default.
:param gate_act: Activation type of this layer's two gates.
Sigmoid
Activation
is the default
activation
.
:type gate_act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -3798,7 +3801,7 @@ def get_output_layer(input, arg_name, name=None, layer_attr=None):
:param input: The input layer. And this layer should contain
multiple outputs.
:type input: LayerOutput
:param arg_name: The name of the output
of
the input layer.
:param arg_name: The name of the output
to be extracted from
the input layer.
:type arg_name: basestring
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -3858,7 +3861,7 @@ def recurrent_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param act: Activation type. TanhActivation is the default.
:param act: Activation type. TanhActivation is the default
activation
.
:type act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
@@ -3928,8 +3931,8 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
time step, PaddlePaddle will iterate such a recurrent calculation over
sequence input. This is
extremely useful for attention-based models, or
Neural
Turning Machine like models.
sequence input. This is
useful for attention-based models, or Neural
Turning Machine like models.
The basic usage (time steps) is:
...
...
@@ -3951,9 +3954,8 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
demo/seqToseq/seqToseq_net.py
- sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf
:param step: A step function which will be executed every step. The input
of this function is the input of the group. The return of
this function will be recurrent group's return value.
:param step: A step function which takes the input of recurrent_group as its own
input and returns values as recurrent_group's output every time step.
The recurrent group scatters a sequence into time steps. And
for each time step, it will invoke step function, and return
...
...
@@ -4251,8 +4253,8 @@ def beam_search(step,
- machine translation : demo/seqToseq/translation/gen.conf
\
demo/seqToseq/seqToseq_net.py
:param name: The name of the recurrent unit that
generates sequences.
It is optional.
:param name: The name of the recurrent unit that
is responsible for
generating sequences.
It is optional.
:type name: basestring
:param step: A callable function that defines the calculation in a time
step, and it is applied to sequences with arbitrary length by
...
...
@@ -4386,7 +4388,7 @@ def square_error_cost(input,
mini-batch. It is optional.
:type weight: LayerOutput
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -4435,7 +4437,7 @@ def classification_cost(input,
details.
:type layer_attr: ExtraLayerAttribute
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -4878,7 +4880,7 @@ def tensor_layer(a,
:type b: LayerOutput
:param size: The dimension of this layer.
:type size: int
:param act: Activation type. LinearActivation is the default.
:param act: Activation type. LinearActivation is the default
activation
.
:type act: BaseActivation
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
...
...
@@ -4946,7 +4948,7 @@ def selective_fc_layer(input,
:param size: The dimension of this layer, which should be equal to that of
the layer 'select'.
:type size: int
:param act: Activation type. TanhActivation is the default.
:param act: Activation type. TanhActivation is the default
activation
.
:type act: BaseActivation
:param pass_generation: The flag which indicates whether it is during generation.
:type pass_generation: bool
...
...
@@ -5498,7 +5500,7 @@ def crf_layer(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -5644,12 +5646,13 @@ def nce_layer(input,
:type weight: LayerOutput
:param num_classes: The number of classes.
:type num_classes: int
:param act: Activation type. SigmoidActivation is the default.
:param act: Activation type. SigmoidActivation is the default
activation
.
:type act: BaseActivation
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param num_neg_samples: The number of sampled negative labels. 10 is the default.
:param num_neg_samples: The number of sampled negative labels. 10 is the
default value.
:type num_neg_samples: int
:param neg_distribution: The discrete noisy distribution over the output
space from which num_neg_samples negative labels
...
...
@@ -5775,7 +5778,7 @@ def rank_cost(left,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -5886,7 +5889,7 @@ def cross_entropy(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param weight: The weight layer defines a weight for each sample in the
mini-batch. It is optional.
...
...
@@ -5934,7 +5937,7 @@ def cross_entropy_with_selfnorm(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param softmax_selfnorm_alpha: The scale factor affects the cost.
:type softmax_selfnorm_alpha: float
...
...
@@ -6024,7 +6027,7 @@ def huber_regression_cost(input,
:param delta: The difference between the observed and predicted values.
:type delta: float
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -6074,7 +6077,7 @@ def huber_classification_cost(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -6119,7 +6122,7 @@ def multi_binary_label_cross_entropy(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -6290,7 +6293,7 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
:param name: The name of this layer. It is optional.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
1.0 is the default
value
.
:type coeff: float
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
...
...
@@ -6442,7 +6445,7 @@ def row_conv_layer(input,
:param context_len: The context length equals the lookahead step number
plus one.
:type context_len: int
:param act: Activation Type. LinearActivation is the default.
:param act: Activation Type. LinearActivation is the default
activation
.
:type act: BaseActivation
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
...
...
@@ -6564,7 +6567,8 @@ def gated_unit_layer(input,
:type input: LayerOutput
:param size: The dimension of this layer's output.
:type size: int
:param act: Activation type of the projection. LinearActivation is the default.
:param act: Activation type of the projection. LinearActivation is the default
activation.
:type act: BaseActivation
:param name: The name of this layer. It is optional.
:type name: basestring
...
...
@@ -6945,7 +6949,7 @@ def img_conv3d_layer(input,
:type filter_size: int | tuple | list
:param num_filters: The number of filters in each group.
:type num_filters: int
:param act: Activation type. ReluActivation is the default.
:param act: Activation type. ReluActivation is the default
activation
.
:type act: BaseActivation
:param groups: The number of the filter groups.
:type groups: int
...
...
@@ -7137,7 +7141,7 @@ def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
:type offsets: LayerOutput
:param sizes: The sizes of the sub-sequences, which should be sequence type.
:type sizes: LayerOutput
:param act: Activation type, LinearActivation is the default.
:param act: Activation type, LinearActivation is the default
activation
.
:type act: BaseActivation.
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录