Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d4c2f2f2
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d4c2f2f2
编写于
11月 27, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc of layers.py
上级
e4c8de9e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
24 deletion
+24
-24
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+24
-24
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d4c2f2f2
...
...
@@ -2985,8 +2985,8 @@ def spp_layer(input,
A layer performs spatial pyramid pooling.
Reference:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`_
The example usage is:
...
...
@@ -3087,8 +3087,8 @@ def img_cmrnorm_layer(input,
Response normalization across feature maps.
Reference:
ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`
ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`_
The example usage is:
...
...
@@ -3154,9 +3154,9 @@ def batch_norm_layer(input,
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
Reference:
Batch Normalization: Accelerating Deep Network Training by Reducing
`
Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
`_
The example usage is:
...
...
@@ -5413,10 +5413,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
to be devided by groups.
Reference:
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
`_
`
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`_
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
...
...
@@ -5481,9 +5481,9 @@ def ctc_layer(input,
alignment between the inputs and the target labels is unknown.
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...
...
@@ -5555,9 +5555,9 @@ def warp_ctc_layer(input,
install it to :code:`third_party/install/warpctc` directory.
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
- Let num_classes represents the category number. Considering the 'blank'
...
...
@@ -5777,8 +5777,8 @@ def nce_layer(input,
Noise-contrastive estimation.
Reference:
A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`
A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`_
The example usage is:
...
...
@@ -5893,8 +5893,8 @@ def rank_cost(left,
A cost Layer for learning to rank using gradient descent.
Reference:
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`_
.. math::
...
...
@@ -6429,8 +6429,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
smooth_{L1}(x) =
\\
begin{cases} 0.5x^2&
\\
text{if}
\\
|x| < 1
\\\\
|x|-0.5&
\\
text{otherwise} \end{cases}
Reference:
Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`
Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`_
The example usage is:
...
...
@@ -6636,8 +6636,8 @@ def prelu_layer(input,
The Parametric Relu activation that actives outputs with a learnable weight.
Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
`
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
`_
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
...
...
@@ -6733,8 +6733,8 @@ def gated_unit_layer(input,
product between :match:`X'` and :math:`\sigma` is finally returned.
Reference:
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`_
.. math::
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录