layers.py 203.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'full_matrix_projection', 'AggregateLevel', 'ExpandLevel',
    'identity_projection', 'dotmul_projection', 'dotmul_operator',
    'repeat_layer', 'seq_reshape_layer', 'table_projection', 'mixed_layer',
    'data_layer', 'embedding_layer', 'fc_layer', 'grumemory', 'pooling_layer',
    'lstmemory', 'last_seq', 'first_seq', 'cos_sim', 'hsigmoid',
    'conv_projection', 'mse_cost', 'regression_cost', 'classification_cost',
    'LayerOutput', 'img_conv_layer', 'img_pool_layer', 'batch_norm_layer',
    'img_cmrnorm_layer', 'addto_layer', 'concat_layer', 'seq_concat_layer',
    'lstm_step_layer', 'recurrent_group', 'memory', 'StaticInput',
    'expand_layer', 'scaling_layer', 'scaling_projection', 'power_layer',
    'interpolation_layer', 'bilinear_interp_layer', 'trans_layer',
    'rotate_layer', 'sum_to_one_norm_layer', 'row_l2_norm_layer',
    'get_output_layer', 'LayerType', 'context_projection', 'beam_search',
    'maxid_layer', 'GeneratedInput', 'SubsequenceInput', 'gru_step_layer',
    'gru_step_naive_layer', 'recurrent_layer', 'BaseGeneratedInput',
    'conv_operator', 'conv_shift_layer', 'tensor_layer', 'selective_fc_layer',
    'sampling_id_layer', 'slope_intercept_layer',
    'trans_full_matrix_projection', 'linear_comb_layer', 'convex_comb_layer',
    'ctc_layer', 'warp_ctc_layer', 'crf_layer', 'crf_decoding_layer',
    'nce_layer', 'cross_entropy_with_selfnorm', 'cross_entropy',
    'multi_binary_label_cross_entropy', 'sum_cost', 'rank_cost', 'lambda_cost',
    'huber_cost', 'block_expand_layer', 'maxout_layer', 'out_prod_layer',
    'printer_layer', 'print_layer', 'priorbox_layer',
    'cross_channel_norm_layer', 'multibox_loss_layer', 'detection_output_layer',
    'spp_layer', 'pad_layer', 'eos_layer', 'smooth_l1_cost', 'layer_support',
    'multiplex_layer', 'row_conv_layer', 'dropout_layer', 'prelu_layer',
    'gated_unit_layer', 'crop_layer', 'sub_nested_seq_layer', 'clip_layer',
    'slice_projection', 'kmax_sequence_score_layer', 'img_conv3d_layer'
Q
qijun 已提交
62
]
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69


class LayerType(object):
    """
    Layer type enumerations.
    """

70 71 72 73 74 75 76 77
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
78
    POOLING_AVG = 'average'
79
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
80
    COST = 'cost'
81 82
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
83
    HSIGMOID = 'hsigmoid'
84 85 86 87 88 89
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
90 91 92
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
93
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
94 95 96 97
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
98
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
106
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
107 108 109
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
110
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
111
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
112
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
113 114 115 116 117 118 119 120 121 122 123

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
124
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
125
    BLOCK_EXPAND = "blockexpand"
126
    MAXOUT = "maxout"
Q
qijun 已提交
127
    SPP_LAYER = "spp"
D
dangqingqing 已提交
128
    PAD_LAYER = "pad"
W
wwhu 已提交
129
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
130
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
131 132 133

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
134 135
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
136 137 138 139 140

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
141
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
142

143 144 145
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

146 147 148 149 150 151 152 153 154 155 156
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
157
    CROP_LAYER = 'crop'
C
caoying03 已提交
158
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
159
    CLIP_LAYER = 'clip'
Z
zhangjinchao01 已提交
160

161 162
    KMAX_SEQ_SCORE = 'kmax_seq_score'

Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
183
    """
L
Luo Tao 已提交
184
    PaddlePaddle supports three sequence types:
185 186 187

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
188 189
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
190

L
Luo Tao 已提交
191
    Accordingly, AggregateLevel supports two modes:
192

L
Luo Tao 已提交
193
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
194
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
195 196
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
197
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
198 199 200
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
201 202
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
203 204 205
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
228
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
229 230
    """

Q
qijun 已提交
231 232 233 234 235 236 237 238 239
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
240
                 reverse=None):
Z
zhangjinchao01 已提交
241 242
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
243
        assert size is not None
Z
zhangjinchao01 已提交
244 245
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
246
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
247
        self.layer_type = layer_type
248 249
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
250 251 252 253 254 255 256 257
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
258
        self.reverse = reverse
Z
zhangjinchao01 已提交
259

260 261 262 263 264 265 266 267
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
268 269 270

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
271
DEVICE = 'device'
Z
zhangjinchao01 已提交
272 273 274


def layer_support(*attrs):
275
    attrs_list = list(attrs)
276
    attrs_list.append(DEVICE)
Q
qijun 已提交
277

Z
zhangjinchao01 已提交
278 279 280
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
281
            for attr in attrs_list:
Z
zhangjinchao01 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
298 299 300 301 302
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
342 343
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
344 345 346 347
    proj.origin = input
    return proj


348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
378 379
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
380 381 382 383
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
423 424
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
425 426 427 428
    proj.origin = input
    return proj


429
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
460
    :type input: LayerOutput
Z
zhangjinchao01 已提交
461 462
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
463
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
464 465 466 467 468 469
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
470 471
        if size is None:
            size = input.size - offset
Q
qijun 已提交
472
        proj = IdentityOffsetProjection(
473
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
474 475 476 477
        proj.origin = input
    return proj


478 479
def slice_projection(input, slices):
    """
480 481
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
482 483

    .. math::
484
       output = [input.slices()]
485 486 487 488 489 490 491 492 493 494 495 496 497 498

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
499
    :type slices: pair of int
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
539
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
540 541 542 543
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
544
@wrap_param_attr_default()
545
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
546
    """
547
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

561 562 563 564 565 566 567
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
568 569
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
570
    proj.origin = input
571
    return proj
Z
zhangjinchao01 已提交
572

573 574

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
575 576
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
577

Z
zhangjinchao01 已提交
578
    .. math::
L
Luo Tao 已提交
579
       out.row[i] += scale * (a.row[i] .* b.row[i])
580

Z
zhangjinchao01 已提交
581 582
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
583

Z
zhangjinchao01 已提交
584
    The example usage is:
585

Z
zhangjinchao01 已提交
586
    .. code-block:: python
587

L
Luo Tao 已提交
588
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
589

590 591 592 593
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
594 595
    :param scale: config scalar, default value is one.
    :type scale: float
596 597
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
598
    """
599 600 601
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
602
    a = kwargs.get('x', a)  # For Backward capacity.
603 604 605 606 607 608
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
609
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
610
    op.origin = [a, b]
611
    return op
Z
zhangjinchao01 已提交
612

613

Z
zhangjinchao01 已提交
614
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
615 616 617
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
654 655 656 657 658 659
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
673
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
690 691 692 693 694 695 696
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
697 698 699 700 701
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

702
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
703 704 705 706 707 708 709 710
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
711
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
712
            self.inputs.append(other)
713 714 715 716
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
717 718 719 720 721 722 723 724
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

725
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
726 727
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
728
        assert len(self.inputs) != 0
729
        ml = MixedLayer(
Z
zhangjinchao01 已提交
730 731 732 733 734
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
735
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
736 737 738
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
739
        self.finalized = True
Z
zhangjinchao01 已提交
740 741 742 743 744 745


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
746 747 748 749 750
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
795 796 797 798 799 800
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
801
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
802 803 804 805 806 807 808 809
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
810 811
def data_layer(name, size, height=None, width=None, depth=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
812 813 814 815 816 817 818
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
819
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
820 821 822 823 824

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
825
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
826
    :type height: int|None
L
Luo Tao 已提交
827
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
828
    :type width: int|None
Z
zhangjinchao01 已提交
829 830
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
831
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
832 833
    :rtype: LayerOutput
    """
Q
qijun 已提交
834 835 836 837
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
838 839
        height=height,
        width=width,
840
        depth=depth,
Q
qijun 已提交
841
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
842 843 844 845 846 847

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
848
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
864
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
865 866
    :rtype: LayerOutput
    """
Q
qijun 已提交
867 868 869 870 871 872
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
873 874 875 876 877 878 879 880 881
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
882 883 884 885 886 887 888
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
889 890 891 892 893 894 895 896 897 898 899 900
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
901
    which is equal to:
Z
zhangjinchao01 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
924
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
925 926 927 928
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
929
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
930 931
        param_attr = [param_attr]
    else:
932
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
933 934 935 936
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

937
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
938 939

    Layer(
Q
qijun 已提交
940 941 942
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
943 944 945 946 947
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
948 949 950
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
951

952

953
@wrap_name_default("print")
954
def printer_layer(input, format=None, name=None):
955 956
    """
    Print the output value of input layers. This layer is useful for debugging.
957 958 959 960 961

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
962
    :return: LayerOutput
963
    """
964 965 966 967 968
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
969 970 971

    Layer(
        name=name,
972
        format=format,
973
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
974
        inputs=[l.name for l in input], )
975
    # this layer don't return anything, can not be input of other layer.
976

X
xuwei06 已提交
977 978 979 980 981 982 983
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
984

Y
yuan 已提交
985
@wrap_name_default("priorbox")
G
gaoyuan 已提交
986
def priorbox_layer(input,
G
gaoyuan 已提交
987
                   image,
G
gaoyuan 已提交
988 989 990 991 992
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
993 994 995 996 997 998 999
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1000 1001
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1013
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1014 1015 1016
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1017
        inputs=[input.name, image.name],
Y
yuan 已提交
1018 1019 1020 1021 1022 1023
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1024 1025
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1026
        parents=[input, image],
G
gaoyuan 已提交
1027 1028 1029
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1047 1048
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1049
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1050
    :type input_conf: LayerOutput | List of LayerOutput
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1072
    input_loc_num = len(input_loc)
1073 1074 1075 1076 1077 1078

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1079
    input_conf_num = len(input_conf)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1121 1122
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1123
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1124
    :type input_conf: LayerOutput | List of LayerOutput.
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1146
    input_loc_num = len(input_loc)
1147 1148 1149 1150 1151 1152

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1153 1154
    input_conf_num = len(input_conf)

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1183 1184
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1185 1186 1187 1188 1189
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1190

G
gaoyuan 已提交
1191 1192 1193 1194 1195 1196 1197 1198
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1199
    assert input.num_filters is not None
G
gaoyuan 已提交
1200 1201
    Layer(
        name=name,
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1215 1216
    return LayerOutput(
        name,
1217
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1218 1219 1220 1221 1222
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1223 1224 1225 1226
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1227 1228 1229 1230
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1231
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1232
                  stride=-1,
Z
zhangjinchao01 已提交
1233 1234 1235 1236
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1237 1238
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1239 1240 1241
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1242
    operation. Note that for sequence with sub-sequence, the default value
1243 1244
    of stride is -1.

Z
zhangjinchao01 已提交
1245 1246 1247 1248 1249 1250
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1251
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1252

L
Luo Tao 已提交
1253 1254
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1255 1256 1257 1258 1259 1260 1261 1262
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1263
    :param stride: The step size between successive pooling regions.
1264
    :type stride: Int
Z
zhangjinchao01 已提交
1265 1266 1267 1268
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1269
    :return: LayerOutput object.
Y
Yu Yang 已提交
1270
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1271 1272
    """
    extra_dict = dict()
1273
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1274 1275
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1276 1277 1278 1279
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1280 1281
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1282 1283 1284
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1285 1286 1287 1288 1289 1290
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1291
        stride=stride,
Q
qijun 已提交
1292
        **extra_dict)
Z
zhangjinchao01 已提交
1293

Q
qijun 已提交
1294 1295
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1296

Q
qijun 已提交
1297

Z
zhangjinchao01 已提交
1298 1299
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1300
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1301 1302
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1303
@layer_support()
Q
qijun 已提交
1304 1305
def lstmemory(input,
              name=None,
1306
              size=None,
Q
qijun 已提交
1307 1308 1309 1310 1311 1312
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1313 1314 1315 1316 1317 1318 1319 1320
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1321
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1322

L
luotao02 已提交
1323
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1324

L
luotao02 已提交
1325
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1326

L
luotao02 已提交
1327
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1328

L
luotao02 已提交
1329
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1330 1331


C
caoying03 已提交
1332
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1333
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1334 1335 1336 1337
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1338

C
caoying03 已提交
1339
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1340 1341
    to config a simple plain lstm layer.

C
caoying03 已提交
1342 1343 1344 1345
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1346 1347 1348 1349 1350

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1351 1352
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1371
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1372 1373 1374 1375 1376 1377
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1378
    assert input.size is not None and input.size % 4 == 0
1379

1380 1381 1382 1383 1384
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1385 1386 1387
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1388

Q
qijun 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1399

Q
qijun 已提交
1400 1401 1402 1403 1404
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1405

Z
zhangjinchao01 已提交
1406 1407 1408

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1409
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1410 1411
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1412
@layer_support()
Q
qijun 已提交
1413
def grumemory(input,
1414
              size=None,
Q
qijun 已提交
1415 1416 1417 1418 1419 1420
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1442 1443
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1444 1445 1446 1447 1448

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1449 1450 1451
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1452 1453 1454 1455 1456

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1457
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1458
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1459 1460 1461
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1462

C
caoying03 已提交
1463 1464 1465
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1477 1478
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1479
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1495
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1496 1497 1498 1499
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1500 1501 1502 1503 1504 1505
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1506 1507 1508
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1509

Q
qijun 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1519

Q
qijun 已提交
1520 1521 1522 1523 1524
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1525

Z
zhangjinchao01 已提交
1526 1527 1528

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1529 1530
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1531
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1532
             stride=-1,
Z
zhangjinchao01 已提交
1533 1534 1535 1536
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1537 1538 1539
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1540
    of stride is -1.
1541

L
Luo Tao 已提交
1542 1543 1544 1545 1546 1547
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1553
    :param stride: The step size between successive pooling regions.
1554
    :type stride: Int
Z
zhangjinchao01 已提交
1555 1556
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1557
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1558 1559
    :rtype: LayerOutput
    """
1560 1561 1562 1563 1564 1565
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1566
    if agg_level == AggregateLevel.TO_SEQUENCE:
1567 1568
        assert stride == -1

Z
zhangjinchao01 已提交
1569 1570 1571 1572 1573
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1574
        stride=stride,
Q
qijun 已提交
1575 1576 1577 1578 1579 1580
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1581 1582 1583 1584


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1585 1586
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1587
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1588
              stride=-1,
Z
zhangjinchao01 已提交
1589 1590 1591 1592
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1593 1594 1595
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1596
    of stride is -1.
1597

L
Luo Tao 已提交
1598 1599 1600 1601 1602 1603
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1604 1605 1606 1607 1608
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1609
    :param stride: The step size between successive pooling regions.
1610
    :type stride: Int
Z
zhangjinchao01 已提交
1611 1612
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1613
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1614 1615
    :rtype: LayerOutput
    """
1616 1617 1618 1619 1620 1621 1622

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1623
    if agg_level == AggregateLevel.TO_SEQUENCE:
1624 1625
        assert stride == -1

Z
zhangjinchao01 已提交
1626 1627 1628 1629 1630
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1631
        stride=stride,
Q
qijun 已提交
1632 1633 1634 1635 1636 1637
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1638 1639 1640


class ExpandLevel(object):
1641 1642 1643 1644 1645
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1646 1647
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1648 1649
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1650 1651
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1652 1653
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1654 1655
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1656 1657
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1658

1659

Z
zhangjinchao01 已提交
1660 1661
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1662 1663
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1664 1665
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1666
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1678
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1693
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1703 1704 1705 1706 1707 1708
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1709 1710


X
xuwei06 已提交
1711
@wrap_name_default()
X
xuwei06 已提交
1712
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1713
@layer_support()
X
xuwei06 已提交
1714 1715 1716
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1717
                 act=None,
X
xuwei06 已提交
1718 1719
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1720
    """
X
xuwei06 已提交
1721
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1722

X
xuwei06 已提交
1723
    If as_row_vector:
X
xuwei06 已提交
1724
    .. math::
X
xuwei06 已提交
1725 1726 1727 1728 1729
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1730 1731 1732 1733 1734

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1735
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1736 1737 1738 1739 1740 1741

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1742 1743 1744 1745 1746 1747
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1748 1749
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1760
        active_type=act.name,
X
xuwei06 已提交
1761
        num_filters=num_repeats,
X
xuwei06 已提交
1762
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1763
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1764 1765 1766 1767 1768
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1769
        activation=act,
Q
qijun 已提交
1770 1771
        parents=[input])

X
xuwei06 已提交
1772

1773 1774 1775
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1776
@layer_support(ERROR_CLIPPING, DROPOUT)
1777 1778 1779 1780 1781 1782 1783 1784
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1785
    the dimension of each instance is M, and the input reshape_size is N, then the
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1856
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1857 1858
    :rtype: LayerOutput
    """
1859
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1860
    assert len(input) == 2
1861 1862 1863 1864 1865 1866 1867
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1868 1869 1870 1871
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1872 1873 1874 1875 1876 1877
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1878 1879


L
liaogang 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1896
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1897

L
liaogang 已提交
1898
    :param   input:        A input layer.
L
liaogang 已提交
1899
    :type    input:        LayerOutput.
L
liaogang 已提交
1900
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1901
    :type    out_size_x:   int|None
L
liaogang 已提交
1902
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1903
    :type    out_size_y:   int|None
L
liaogang 已提交
1904
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1905
    :type    name:         None|basestring
L
liaogang 已提交
1906
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1907 1908 1909 1910 1911 1912 1913
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1914
    assert input.num_filters is not None
L
liaogang 已提交
1915
    num_channels = input.num_filters
Q
qijun 已提交
1916 1917 1918 1919 1920 1921 1922
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1923
                channels=num_channels)),
Q
qijun 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1933

Z
zhangjinchao01 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1961
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1962 1963
    :rtype: LayerOutput
    """
1964 1965 1966
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1967 1968 1969
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1970
        inputs=[weight.name, input.name],
Q
qijun 已提交
1971 1972 1973
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1974 1975 1976 1977 1978 1979


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1980
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1981 1982

    .. math::
1983
       y  = w x
Z
zhangjinchao01 已提交
1984

1985 1986 1987 1988 1989
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2005
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2006 2007
    :rtype: LayerOutput
    """
2008 2009 2010
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2011 2012 2013 2014
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2015 2016 2017
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2018 2019 2020 2021 2022 2023


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2024
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2044 2045 2046 2047 2048 2049
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2050 2051 2052
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2053 2054


2055 2056
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2057
def rotate_layer(input, height, width, name=None, layer_attr=None):
2058
    """
H
Haonan 已提交
2059 2060
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2061 2062

    .. math::
H
Haonan 已提交
2063
       y(j,i,:) = x(M-i-1,j,:)
2064

H
Haonan 已提交
2065
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2066 2067 2068 2069 2070 2071

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2072 2073
                          height=100,
                          width=100)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2087 2088 2089
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2090
        width=width,
H
Haonan 已提交
2091 2092 2093 2094 2095 2096 2097 2098
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2099 2100


Z
zhangjinchao01 已提交
2101 2102
@wrap_name_default()
@layer_support()
2103
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2104 2105 2106 2107
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2108
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2109 2110 2111 2112 2113
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2114

2115 2116
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2117

L
Luo Tao 已提交
2118 2119 2120 2121 2122 2123
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2136
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2137 2138
    :rtype: LayerOutput
    """
2139
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2140 2141 2142 2143 2144 2145
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2146
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2147
    else:
2148 2149
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2150 2151 2152 2153 2154 2155
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2156
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2157
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2158

2159

Z
zhangjinchao01 已提交
2160 2161
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2162
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2163
@layer_support()
Q
qijun 已提交
2164 2165
def hsigmoid(input,
             label,
2166
             num_classes=None,
Q
qijun 已提交
2167 2168 2169 2170
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2182
                        label=data_layer)
Z
zhangjinchao01 已提交
2183 2184 2185 2186 2187 2188 2189

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2190
    :type num_classes: int|None
L
luotao02 已提交
2191 2192
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2193 2194 2195
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2196 2197
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2198 2199
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2200
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2201 2202 2203 2204
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2205 2206 2207 2208 2209 2210 2211 2212 2213
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2214 2215 2216
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2217 2218 2219 2220 2221
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2222 2223
    ipts_for_layer = []
    parents = []
2224
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2225
        assert isinstance(each_input, LayerOutput)
2226
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2227 2228 2229 2230
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2231
    l = Layer(
Z
zhangjinchao01 已提交
2232 2233 2234 2235 2236
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2237 2238 2239
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2240

2241

Z
zhangjinchao01 已提交
2242 2243 2244 2245 2246
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2263 2264
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2265
    """
2266
    Convolution layer for image. Paddle can support both square and non-square
2267
    input currently.
Z
zhangjinchao01 已提交
2268 2269 2270 2271

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2272

2273
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2274
    and non-square input currently.
2275

X
xuwei06 已提交
2276
    The details of convolution transpose layer,
2277 2278 2279
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2280 2281 2282 2283
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2284 2285 2286
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2287
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2288 2289
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2290

L
Luo Tao 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2301 2302 2303 2304
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2305 2306 2307
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2308 2309 2310
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2311
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2312 2313 2314 2315 2316
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2317 2318 2319
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2320 2321
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2322 2323 2324
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2339 2340
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2341
    :param layer_type: specify the layer_type, default is None. If trans=True,
2342 2343
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2344
                       "cudnn_conv"
2345
    :type layer_type: String
D
dangqingqing 已提交
2346
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2347 2348 2349 2350 2351
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2352

Z
zhangjinchao01 已提交
2353
    if filter_size_y is None:
2354 2355 2356 2357 2358 2359
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2360
    if stride_y is None:
2361 2362 2363 2364 2365 2366
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2367
    if padding_y is None:
2368 2369 2370 2371 2372 2373 2374 2375
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2376
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2377 2378 2379 2380
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2381

2382 2383
    if layer_type:
        if trans:
2384
            assert layer_type in ["exconvt", "cudnn_convt"]
2385 2386 2387 2388 2389
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2390

X
xuwei06 已提交
2391
    l = Layer(
Z
zhangjinchao01 已提交
2392
        name=name,
Q
qijun 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2405 2406 2407 2408
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2409
        type=lt,
Q
qijun 已提交
2410 2411 2412 2413 2414 2415 2416 2417
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2418 2419 2420 2421


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2432 2433
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2434 2435 2436 2437 2438 2439 2440
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2469
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2470
    :type padding: int
2471 2472
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2473 2474 2475 2476
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2477
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2478
    :type pool_size: int
2479 2480
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2481 2482
    :param num_channels: number of input channel.
    :type num_channels: int
2483
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2484 2485
                      MaxPooling.
    :type pool_type: BasePoolingType
2486
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2487
    :type stride: int
2488 2489
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2490 2491
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2492 2493 2494 2495
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2496 2497
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2508
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2509
        if (
Y
Yu Yang 已提交
2510
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2511
        else pool_type.name
2512 2513 2514 2515 2516

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2517
    l = Layer(
Z
zhangjinchao01 已提交
2518 2519
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2532
                    padding_y=padding_y))
Q
qijun 已提交
2533
        ],
2534
        ceil_mode=ceil_mode,
Q
qijun 已提交
2535 2536 2537 2538 2539 2540 2541
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2542 2543


Q
qijun 已提交
2544 2545
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2546 2547 2548 2549 2550 2551
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2552 2553 2554 2555 2556
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2557 2558 2559 2560
    The example usage is:

    ..  code-block:: python

2561 2562 2563
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2564 2565
                        pool_type=MaxPooling())

Q
qijun 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2594
    l = Layer(
Q
qijun 已提交
2595 2596
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2597 2598 2599 2600 2601
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2602
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2614 2615 2616 2617
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2618
    l = Layer(
Q
qijun 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2638 2639 2640 2641


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2642 2643 2644 2645 2646 2647
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2648
                      layer_attr=None):
Z
zhangjinchao01 已提交
2649
    """
2650
    Response normalization across feature maps.
D
dangqingqing 已提交
2651 2652
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2653

L
Luo Tao 已提交
2654 2655 2656
    The example usage is:

    ..  code-block:: python
2657

L
Luo Tao 已提交
2658 2659
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2660
    :param name: layer name.
D
dangqingqing 已提交
2661
    :type name: None|basestring
Z
zhangjinchao01 已提交
2662 2663
    :param input: layer's input.
    :type input: LayerOutput
2664
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2665
    :type size: int
D
dangqingqing 已提交
2666
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2667
    :type scale: float
D
dangqingqing 已提交
2668
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2669 2670 2671 2672 2673
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2675 2676 2677
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2678
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2679 2680 2681


@wrap_bias_attr_default()
2682 2683
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2684 2685
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2686
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2687 2688 2689 2690 2691 2692 2693
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2715 2716 2717
    The example usage is:

    ..  code-block:: python
2718

L
Luo Tao 已提交
2719 2720
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2735
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2763
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2774
    l = Layer(
Z
zhangjinchao01 已提交
2775
        name=name,
Q
qijun 已提交
2776 2777
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2778 2779 2780 2781 2782 2783
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2784
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2785

Q
qijun 已提交
2786 2787 2788 2789 2790 2791 2792
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2820
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2821 2822 2823 2824 2825 2826
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2827 2828 2829
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2830 2831


G
guosheng 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2868 2869 2870
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2871
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2872
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2895 2896 2897
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2898 2899

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2900 2901
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2916
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2917 2918 2919 2920 2921 2922
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2923
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2924 2925 2926 2927 2928 2929 2930
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2931
    l = Layer(
Q
qijun 已提交
2932 2933 2934
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2935 2936
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2937
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2938

Q
qijun 已提交
2939 2940 2941 2942 2943 2944 2945
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2946 2947 2948 2949


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
2950
@layer_support(DROPOUT, ERROR_CLIPPING)
2951
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2952 2953 2954 2955
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2956 2957 2958 2959 2960 2961
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2962 2963 2964
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2965
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2966 2967 2968 2969
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2970
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2971 2972 2973 2974 2975 2976 2977 2978
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2979
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2980 2981

    def __is_type__(o, tp):
2982
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3004 3005
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3006

Q
qijun 已提交
3007 3008
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3009

3010 3011
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3012

3013
    layer = Layer(
Q
qijun 已提交
3014 3015
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3016 3017
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3018
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3019
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3020

3021
    sz = layer.config.size
Z
zhangjinchao01 已提交
3022

Q
qijun 已提交
3023 3024 3025 3026 3027 3028 3029 3030
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3031 3032
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3033
@wrap_bias_attr_default(has_bias=False)
3034
@layer_support(DROPOUT, ERROR_CLIPPING)
3035 3036 3037 3038
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3039

3040
    Inputs:
X
xuwei06 已提交
3041
      - a = [a1, a2, ..., am]
3042
      - b = [b1, b2, ..., bn]
3043

X
xuwei06 已提交
3044 3045 3046 3047
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3065 3066 3067 3068
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3090
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3091 3092
def memory(name,
           size,
3093
           memory_name=None,
Q
qijun 已提交
3094 3095 3096 3097
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3118 3119 3120 3121 3122 3123 3124 3125 3126
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3127

3128 3129 3130 3131 3132 3133 3134
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3135 3136 3137
    :type name: basestring
    :param size: size of memory.
    :type size: int
3138 3139 3140
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3141
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3151
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3162 3163
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3164

3165 3166 3167 3168 3169 3170 3171 3172
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3173 3174

    lout = LayerOutput(
3175
        name=memory_name,
Q
qijun 已提交
3176 3177 3178
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3179 3180 3181 3182
    return lout


@wrap_bias_attr_default()
3183 3184
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3185 3186
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3187
@layer_support()
Q
qijun 已提交
3188 3189
def lstm_step_layer(input,
                    state,
3190
                    size=None,
Q
qijun 已提交
3191 3192 3193 3194 3195 3196
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3197
    """
3198 3199
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3200 3201 3202

    ..  math::

3203
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3204

3205
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3206

3207
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3208

3209
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3210

L
luotao02 已提交
3211
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3212 3213


L
luotao02 已提交
3214
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3215
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3216
    input vectors.
Z
zhangjinchao01 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3227 3228
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3229 3230 3231 3232
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3233 3234
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3253
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3254 3255
    :rtype: LayerOutput
    """
3256 3257 3258

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3259 3260 3261 3262 3263 3264 3265
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3266
        size=state.size,
Q
qijun 已提交
3267 3268
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3269

Q
qijun 已提交
3270 3271 3272 3273 3274 3275 3276
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3277 3278 3279


@wrap_bias_attr_default()
W
wangyang59 已提交
3280
@wrap_param_attr_default()
Q
qijun 已提交
3281
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3282 3283 3284
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3285 3286 3287 3288 3289 3290 3291
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3292
                   param_attr=None,
Q
qijun 已提交
3293
                   layer_attr=None):
Z
zhangjinchao01 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3304 3305
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3306
    :param layer_attr:
D
dangqingqing 已提交
3307
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3308 3309 3310 3311 3312 3313 3314 3315
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3316 3317 3318 3319
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3320
        # backward model compatibility.
3321
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3322 3323 3324 3325
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3326
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3327
    return LayerOutput(
Q
qijun 已提交
3328 3329
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3330
        parents=[input, output_mem],
Q
qijun 已提交
3331 3332
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3333 3334


Y
Yu Yang 已提交
3335 3336 3337 3338
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3339
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3407 3408 3409 3410
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3411 3412 3413 3414
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3424
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3425 3426 3427 3428 3429 3430 3431
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3432 3433 3434 3435 3436 3437 3438
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3439

Q
qijun 已提交
3440 3441 3442 3443 3444
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3445 3446 3447 3448 3449 3450 3451


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3452 3453 3454 3455 3456 3457 3458
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3459
    """
3460 3461
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3462

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3490
    :return: LayerOutput object.
3491
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3492
    """
Q
qijun 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3508 3509 3510 3511 3512 3513


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3514 3515
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3516
    """
3517

Z
zhangjinchao01 已提交
3518 3519 3520
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3521
        assert input.size is not None
Z
zhangjinchao01 已提交
3522
        if size is not None:
3523
            assert input.size == size
Z
zhangjinchao01 已提交
3524 3525


3526
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3527
    """
3528
    DEPRECATED.
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3537
    return input
Z
zhangjinchao01 已提交
3538 3539 3540


@wrap_name_default("recurrent_group")
3541
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3542
    """
C
caoying03 已提交
3543 3544 3545 3546 3547
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3592 3593
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3594
    :type reverse: bool
3595

3596 3597
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3598 3599 3600 3601 3602 3603 3604 3605 3606

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3607
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3608 3609 3610 3611
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3612
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3613
        input = [input]
3614
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3615 3616

    def is_in_links(x):
3617
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3618 3619 3620 3621

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3622
        name=name,
3623 3624
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3625 3626
    in_args = []
    for each_input in input:
3627
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3628
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3629
            mem = memory(
3630
                name=None,
Q
qijun 已提交
3631 3632
                size=each_input.input.size,
                boot_layer=each_input.input)
3633
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3634
            in_args.append(mem)
3635 3636
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3637

Z
zhangjinchao01 已提交
3638 3639 3640 3641 3642
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3643 3644 3645 3646 3647 3648
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3649 3650 3651

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3652
    for layer_out in layer_outs:
3653 3654
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3655 3656
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3657 3658 3659 3660 3661
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3662

Z
zhangjinchao01 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3691 3692

    def before_real_step(self):
Q
qijun 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3702 3703 3704
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3705
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3729
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3730 3731 3732 3733
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3744

3745

H
Haonan 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3782

Z
zhangjinchao01 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3799 3800
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3801 3802 3803 3804 3805 3806
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3807
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3808 3809
    :rtype: LayerOutput
    """
Q
qijun 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3821 3822 3823


@wrap_name_default()
Q
qijun 已提交
3824 3825 3826 3827 3828 3829 3830
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3831
                num_results_per_sample=None):
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3843
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3844 3845 3846 3847
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3848 3849 3850 3851 3852
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3853 3854
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3855 3856
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3857 3858
                               bos_id=0,
                               eos_id=1,
3859
                               beam_size=5)
3860 3861 3862 3863 3864 3865 3866 3867 3868

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3869
                 step, and it is applied to sequences with arbitrary length by
3870 3871 3872 3873 3874
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3875 3876
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3877
                  In beam_search, none of the input's type should be LayerOutput.
3878
    :type input: list
3879 3880 3881
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3882
                   symbol is essential, since it is used to initialize the RNN
3883 3884 3885 3886 3887 3888 3889 3890
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3891 3892
    :param max_length: Max generated sequence length.
    :type max_length: int
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3903 3904
    :return: The generated word index.
    :rtype: LayerOutput
3905 3906
    """

Z
zhangjinchao01 已提交
3907 3908 3909 3910 3911
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3912
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3913 3914 3915 3916 3917 3918
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3919 3920 3921
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
3922
        if isinstance(each_input, BaseGeneratedInput):
3923 3924
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
3925
            generated_input_index = i
3926

Z
zhangjinchao01 已提交
3927 3928 3929
        else:
            real_input.append(each_input)

3930
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
3931 3932 3933 3934 3935 3936 3937 3938

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3939 3940 3941 3942 3943 3944
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3945 3946 3947 3948 3949 3950

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

3951
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
3952 3953
        return predict

3954 3955
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
3956

Q
qijun 已提交
3957

3958 3959
def __cost_input__(input, label, weight=None):
    """
3960
    inputs and parents for cost layers.
3961 3962 3963 3964
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3965
        assert weight.size == 1
3966 3967 3968
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3969

Z
zhangjinchao01 已提交
3970 3971

@wrap_name_default()
L
luotao1 已提交
3972
@layer_support()
3973
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
3974
    """
L
Luo Tao 已提交
3975 3976 3977 3978
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
3979
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
3980 3981

    :param name: layer name.
3982
    :type name: basestring
Z
zhangjinchao01 已提交
3983
    :param input: Network prediction.
3984
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3985
    :param label: Data label.
3986 3987 3988 3989
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3990 3991
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
3992 3993
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3994
    :return: LayerOutput object.
3995
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3996
    """
3997 3998
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3999 4000 4001 4002
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4003
        coeff=coeff,
Q
qijun 已提交
4004
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4005
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4006 4007


L
Luo Tao 已提交
4008 4009 4010
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4011
@wrap_name_default("cost")
4012
@layer_support()
Q
qijun 已提交
4013 4014 4015 4016
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4017
                        evaluator=classification_error_evaluator,
4018 4019
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4029 4030 4031
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4032
    :param evaluator: Evaluator method.
4033 4034
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4035 4036
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4037
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4038 4039 4040 4041 4042
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4043 4044 4045

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4046 4047 4048 4049
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4050
        coeff=coeff,
Q
qijun 已提交
4051
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4062
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4063

4064
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4065 4066 4067 4068 4069
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4070
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4071

4072

Q
qijun 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4082 4083
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4094 4095
       op = conv_operator(img=input1,
                          filter=input2,
4096
                          filter_size=3,
Z
zhangjinchao01 已提交
4097 4098 4099
                          num_filters=64,
                          num_channels=64)

4100 4101 4102 4103
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4104 4105
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4106 4107 4108
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4109
    :type filter_size_y: int
4110 4111
    :param num_filters: channel of output data.
    :type num_filters: int
4112 4113
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4114
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4115
    :type stride: int
Z
zhangjinchao01 已提交
4116
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4117
    :type stride_y: int
Z
zhangjinchao01 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4131

4132 4133
    if num_channels is None:
        num_channels = img.num_filters
4134 4135 4136

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4137
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4138

4139 4140 4141
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4153

4154
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4155 4156
    return op

Q
qijun 已提交
4157

4158
@wrap_param_attr_default()
Q
qijun 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4169 4170
                    param_attr=None,
                    trans=False):
4171 4172 4173 4174 4175 4176 4177 4178 4179
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4180
       proj = conv_projection(input=input1,
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4195 4196
    :param num_channels: channel of input data.
    :type num_channels: int
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4209 4210
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4241
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4242 4243 4244 4245 4246
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4247 4248 4249
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4262 4263 4264 4265

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4266

D
dangqingqing 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4284

D
dangqingqing 已提交
4285
    For example,
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4308 4309

    The simply usage is:
D
dangqingqing 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4371
@wrap_name_default()
L
luotao1 已提交
4372 4373
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4385 4386 4387 4388
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4389 4390 4391 4392 4393

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4394
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4395 4396 4397

    :param name: layer name
    :type name: basestring
4398 4399
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4400
    :param b: input layer b.
4401
    :type b: LayerOutput
L
luotao1 已提交
4402 4403
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4404
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4405 4406
    :rtype: LayerOutput
    """
4407 4408
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4409 4410 4411
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4412
        inputs=[a.name, b.name],
Q
qijun 已提交
4413
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4414

Q
qijun 已提交
4415 4416
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4417 4418 4419 4420 4421


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4422
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4423
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4424 4425 4426 4427 4428 4429 4430 4431
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4432 4433 4434 4435 4436
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4437
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4438 4439

    In this formular:
4440 4441
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4442 4443
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4444
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4445 4446 4447 4448 4449

    The simple usage is:

    .. code-block:: python

4450
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4451 4452 4453

    :param name: layer name
    :type name: basestring
4454 4455 4456 4457
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4458
    :param size: the layer dimension.
L
luotao02 已提交
4459
    :type size: int.
Z
zhangjinchao01 已提交
4460 4461 4462
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4463
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4464 4465 4466 4467 4468 4469
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4470
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4471 4472
    :rtype: LayerOutput
    """
4473
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4474 4475 4476 4477 4478 4479
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4480 4481 4482 4483
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4484 4485 4486 4487 4488 4489


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4490
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4491 4492
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4493
                       select=None,
Q
qijun 已提交
4494 4495
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4496 4497 4498
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4499 4500 4501
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4512
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4513 4514 4515 4516 4517

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4518 4519
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4520
                   If is None, acts exactly like fc_layer.
4521
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4534
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4535 4536 4537 4538
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4539
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4540 4541
        param_attr = [param_attr]
    else:
4542
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4543 4544 4545 4546
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4547 4548 4549 4550
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4551
    Layer(
Q
qijun 已提交
4552 4553 4554
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4555 4556 4557
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4558
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4559 4560 4561 4562
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4563 4564 4565 4566 4567 4568 4569
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4570 4571 4572


@wrap_name_default()
L
luotao1 已提交
4573 4574
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4589 4590
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4591
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4592 4593
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4594
    l = Layer(
Z
zhangjinchao01 已提交
4595 4596 4597
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4598 4599 4600
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4601 4602 4603


@wrap_name_default()
L
luotao1 已提交
4604
@layer_support()
Q
qijun 已提交
4605 4606 4607 4608
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4609
                          layer_attr=None):
Z
zhangjinchao01 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4631 4632
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4633
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4634 4635 4636 4637 4638 4639 4640 4641
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4642 4643 4644
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4645 4646 4647


@wrap_name_default()
L
luotao1 已提交
4648
@layer_support()
Q
qijun 已提交
4649
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4650
    """
4651 4652 4653 4654
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4655 4656 4657

    .. math::

4658
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4659

4660 4661 4662 4663 4664
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4665

4666
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4667 4668

    In this formular:
4669 4670 4671 4672 4673 4674
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4675 4676 4677 4678 4679

    The simple usage is:

    .. code-block:: python

4680
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4681 4682
                                       size=elem_dim)

4683 4684 4685 4686
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4687 4688 4689 4690
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4691 4692
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4693
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4694 4695
    :rtype: LayerOutput
    """
4696 4697 4698 4699
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4700
            size = vectors.size / weights.size
4701 4702
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4703 4704
    Layer(
        name=name,
4705
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4706
        size=size,
4707
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4708 4709 4710
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4711

4712

4713
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4714

4715

Z
zhangjinchao01 已提交
4716
@wrap_name_default()
L
luotao1 已提交
4717
@layer_support()
Z
zhangjinchao01 已提交
4718 4719 4720 4721 4722 4723 4724
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4725
                       num_channels=None,
L
luotao1 已提交
4726 4727
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4728 4729
    """
    Expand feature map to minibatch matrix.
4730
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4731
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4742
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4743 4744
    convolution neural network, and before recurrent neural network.

4745 4746 4747 4748
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4749
       block_expand = block_expand_layer(input=layer,
4750
                                         num_channels=128,
4751 4752 4753 4754 4755
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4756 4757
    :param input: The input layer.
    :type input: LayerOutput
4758 4759
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4774 4775
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4776
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4777 4778
    :rtype: LayerOutput
    """
4779 4780 4781
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4799 4800


4801 4802
@wrap_name_default()
@layer_support()
4803
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4804 4805 4806 4807 4808
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4809
    So groups should be larger than 1, and the num of channels should be able
4810 4811
    to devided by groups.

X
xuwei06 已提交
4812 4813 4814 4815 4816 4817 4818 4819
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4820
    Please refer to Paper:
4821 4822 4823 4824
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4825

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4864 4865


Z
zhangjinchao01 已提交
4866
@wrap_name_default()
L
luotao1 已提交
4867
@layer_support()
Q
qijun 已提交
4868 4869 4870 4871 4872
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4873
              layer_attr=None):
Z
zhangjinchao01 已提交
4874 4875 4876 4877 4878
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4879 4880
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4881 4882
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4883 4884 4885 4886 4887 4888 4889 4890

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4891
    The example usage is:
Z
zhangjinchao01 已提交
4892 4893 4894 4895 4896 4897 4898 4899

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4900
    :param input: The input layer.
Z
zhangjinchao01 已提交
4901 4902 4903
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4904
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4905
    :type size: int
4906 4907
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4908 4909
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4910 4911
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4912
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4913 4914 4915 4916
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4917 4918 4919 4920 4921
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4922
    Layer(
4923 4924 4925 4926
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4927
        inputs=[input.name, label.name],
Q
qijun 已提交
4928
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4929 4930
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4931

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
4943
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4944
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4962 4963 4964 4965

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
4966
    icml2006_GravesFGS06.pdf>`_.
4967 4968 4969

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
4970 4971 4972
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4973 4974
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4975
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4976
          'linear' activation is expected instead in the 'input' layer.
4977

C
caoying03 已提交
4978
    The example usage is:
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5024
@wrap_name_default()
5025
@wrap_param_attr_default()
L
luotao1 已提交
5026
@layer_support()
Q
qijun 已提交
5027 5028 5029 5030 5031 5032
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5033
              coeff=1.0,
L
luotao1 已提交
5034
              layer_attr=None):
Z
zhangjinchao01 已提交
5035 5036 5037 5038
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5039
    The example usage is:
Z
zhangjinchao01 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5050
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5060 5061
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5062 5063
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5064
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5065 5066 5067 5068 5069
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5070 5071 5072 5073 5074 5075
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5076

Q
qijun 已提交
5077
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5078 5079 5080 5081
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5082 5083 5084 5085
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5086
        coeff=coeff,
Q
qijun 已提交
5087
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5088 5089 5090
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5091 5092 5093 5094
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5095

5096

Z
zhangjinchao01 已提交
5097
@wrap_name_default()
5098
@wrap_param_attr_default()
L
luotao1 已提交
5099
@layer_support()
Q
qijun 已提交
5100 5101 5102 5103 5104
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5105
                       layer_attr=None):
Z
zhangjinchao01 已提交
5106 5107 5108 5109 5110 5111 5112
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5113
    The example usage is:
L
Luo Tao 已提交
5114 5115 5116 5117 5118 5119

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5130 5131
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5132
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5133 5134 5135 5136 5137 5138
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5139
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5140 5141 5142 5143
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5144 5145 5146 5147
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5148
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5149 5150 5151
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5152 5153 5154 5155
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5156

Q
qijun 已提交
5157

Y
Yu Yang 已提交
5158
@wrap_act_default(act=SigmoidActivation())
5159
@wrap_bias_attr_default(has_bias=True)
5160
@wrap_param_attr_default()
5161 5162
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5163 5164
def nce_layer(input,
              label,
C
caoying03 已提交
5165
              num_classes=None,
Y
Yu Yang 已提交
5166
              act=None,
5167
              param_attr=None,
Q
qijun 已提交
5168 5169 5170 5171 5172 5173
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5174 5175 5176 5177 5178 5179 5180 5181 5182
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5183 5184
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5196
    :type num_classes: int
Y
Yu Yang 已提交
5197 5198
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5199 5200
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5201
    :param num_neg_samples: number of negative samples. Default is 10.
5202
    :type num_neg_samples: int
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5216 5217 5218 5219 5220 5221 5222 5223
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5224
    assert isinstance(input, collections.Sequence)
5225

5226 5227
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5228 5229
    if num_classes is None:
        num_classes = label.size
5230 5231 5232
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5233
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5234 5235
    if not isinstance(act, BaseActivation):
        raise TypeError()
5236

5237 5238
    ipts_for_layer = []
    parents = []
5239
    for each_input, attr in zip(input, param_attr):
5240
        assert isinstance(each_input, LayerOutput)
5241
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5252
    l = Layer(
5253 5254 5255 5256
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5257
        active_type=act.name,
5258 5259 5260
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5261 5262
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5263 5264 5265 5266 5267
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5268

5269

Z
zhangjinchao01 已提交
5270 5271 5272
"""
following are cost Layers.
"""
5273 5274


Z
zhangjinchao01 已提交
5275
@wrap_name_default()
L
luotao1 已提交
5276
@layer_support()
Q
qijun 已提交
5277 5278 5279 5280 5281 5282 5283
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5284
    """
5285
    A cost Layer for learning to rank using gradient descent. Details can refer
5286 5287
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5288 5289 5290 5291 5292
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5293
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5294

L
luotao02 已提交
5295
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5296

L
luotao02 已提交
5297
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5298 5299 5300 5301 5302 5303 5304 5305

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5306
    The example usage is:
Z
zhangjinchao01 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5327 5328
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5329
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5342 5343 5344 5345 5346 5347
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5348

X
xuwei06 已提交
5349
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5350

5351

Z
zhangjinchao01 已提交
5352
@wrap_name_default()
L
luotao1 已提交
5353
@layer_support()
Q
qijun 已提交
5354 5355 5356 5357 5358 5359
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5360 5361 5362
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5363
    The example usage is:
Z
zhangjinchao01 已提交
5364 5365 5366 5367 5368 5369 5370 5371

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5372
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5384 5385 5386
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5387 5388 5389
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5390 5391
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5392
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5393 5394
    :rtype: LayerOutput
    """
5395 5396 5397
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5398 5399 5400 5401 5402 5403 5404
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5405

Q
qijun 已提交
5406 5407
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5408

5409

Z
zhangjinchao01 已提交
5410
@wrap_name_default()
L
luotao1 已提交
5411
@layer_support()
5412 5413 5414 5415 5416 5417
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5418 5419 5420
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5421 5422
    The example usage is:

Z
zhangjinchao01 已提交
5423 5424
    .. code-block:: python

X
xuwei06 已提交
5425
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5426
                            label=label_layer)
Z
zhangjinchao01 已提交
5427 5428 5429 5430 5431 5432 5433

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5434 5435
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5436
    :type coeff: float.
5437 5438 5439 5440
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5441 5442
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5443
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5444 5445 5446
    :rtype: LayerOutput.
    """

5447
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5448 5449 5450
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5451
        inputs=ipts,
Q
qijun 已提交
5452 5453
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5454
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5455

5456

Z
zhangjinchao01 已提交
5457
@wrap_name_default()
L
luotao1 已提交
5458
@layer_support()
Q
qijun 已提交
5459 5460 5461 5462
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5463 5464
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5465 5466
    """
    A loss layer for multi class entropy with selfnorm.
5467
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5468

C
caoying03 已提交
5469 5470
    The example usage is:

Z
zhangjinchao01 已提交
5471 5472
    .. code-block:: python

X
xuwei06 已提交
5473
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5474
                                          label=label_layer)
Z
zhangjinchao01 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5486 5487
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5488
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5489 5490
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5491 5492 5493 5494 5495 5496 5497
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5498

Q
qijun 已提交
5499 5500 5501 5502 5503
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5504

5505

X
xuwei06 已提交
5506 5507 5508 5509 5510 5511
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5512 5513
    The example usage is:

X
xuwei06 已提交
5514 5515
    .. code-block:: python

L
Luo Tao 已提交
5516
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5527
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5528 5529 5530 5531 5532
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5533

Q
qijun 已提交
5534
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5535 5536


Z
zhangjinchao01 已提交
5537
@wrap_name_default()
L
luotao1 已提交
5538 5539
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5540 5541 5542
    """
    A loss layer for huber loss.

C
caoying03 已提交
5543 5544
    The example usage is:

Z
zhangjinchao01 已提交
5545 5546
    .. code-block:: python

X
xuwei06 已提交
5547
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5548
                         label=label_layer)
Z
zhangjinchao01 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5558 5559
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5560
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5561 5562
    :rtype: LayerOutput.
    """
5563 5564 5565
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5566 5567 5568 5569 5570 5571
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5572
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5573

5574

Z
zhangjinchao01 已提交
5575
@wrap_name_default()
L
luotao1 已提交
5576
@layer_support()
Q
qijun 已提交
5577 5578 5579 5580
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5581
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5582 5583 5584
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5585 5586
    The example usage is:

Z
zhangjinchao01 已提交
5587 5588
    .. code-block:: python

X
xuwei06 已提交
5589
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5590
                                               label=label_layer)
Z
zhangjinchao01 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5600 5601
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5602
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5603 5604 5605
    :rtype: LayerOutput
    """

5606 5607
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5624 5625 5626 5627


@wrap_name_default()
@layer_support()
5628
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5629 5630
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5631
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5641
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5642

D
dangqingqing 已提交
5643 5644 5645
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5646 5647
    The example usage is:

D
dangqingqing 已提交
5648 5649
    .. code-block:: python

5650 5651
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5652 5653 5654 5655 5656 5657 5658

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5659 5660
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5674
        coeff=coeff,
D
dangqingqing 已提交
5675 5676 5677
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5697 5698
    The example usage is:

W
wwhu 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5731 5732


5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5749 5750


D
dangqingqing 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5773

D
dangqingqing 已提交
5774 5775 5776 5777 5778
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5779

D
dangqingqing 已提交
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5823 5824


5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5844 5845 5846 5847 5848 5849
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5850 5851 5852 5853 5854
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5855 5856 5857 5858 5859 5860

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5861 5862 5863 5864 5865 5866 5867 5868
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5869
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5870
    assert isinstance(param_attr, ParameterAttribute)
5871 5872 5873

    l = Layer(
        name=name,
C
caoying03 已提交
5874
        type=LayerType.PRELU,
C
caoying03 已提交
5875
        inputs=Input(input.name, **param_attr.attr),
5876 5877 5878 5879 5880 5881 5882
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5883 5884


5885
@wrap_name_default()
C
caoying03 已提交
5886
@layer_support(ERROR_CLIPPING, DROPOUT)
5887 5888 5889 5890 5891 5892 5893
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5894 5895
                     gate_bias_attr=True,
                     inproj_attr=None,
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
5932 5933 5934 5935 5936 5937
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
5960
        layer_attr=inproj_attr,
5961 5962 5963 5964 5965 5966 5967 5968 5969
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
5970
        param_attr=gate_param_attr,
5971 5972 5973 5974 5975
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
5976 5977


5978 5979
@wrap_name_default()
@layer_support()
5980
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
5981
    """
5982
    The crop layer crops images by offset and shape. User can set crop shape by
5983
    args 'shape' explicitly or by reference input layer.
5984

5985 5986 5987
    The example usage is:

    .. code-block:: python
W
whs 已提交
5988
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
5989 5990 5991 5992

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
5993 5994
    :param offset: The crop offset
    :type offset: Sequence
5995 5996 5997 5998 5999 6000 6001
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6002
    :type shape: Sequence | None
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6025 6026


C
caoying03 已提交
6027 6028
@wrap_name_default()
@layer_support()
6029
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6030
    """
6031
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6032
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6033

C
caoying03 已提交
6034 6035 6036
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6037 6038 6039 6040

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6041 6042

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6043

C
caoying03 已提交
6044

6045 6046 6047
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6048 6049 6050 6051 6052 6053
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6054

6055 6056 6057 6058 6059 6060 6061
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6062
    l = Layer(
6063 6064
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6065 6066 6067 6068 6069 6070 6071
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6072 6073


G
guosheng 已提交
6074
@wrap_name_default("clip")
6075
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6085
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6086 6087 6088 6089 6090

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6091 6092 6093 6094
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6095 6096
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6097 6098 6099 6100 6101
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6102 6103
        min=min,
        max=max)
G
guosheng 已提交
6104 6105
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6106 6107 6108 6109 6110


@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6111
    """
C
caoying03 已提交
6112
    This layer accepts one input which are scores over a sequence or a nested
6113 6114 6115 6116 6117 6118 6119 6120 6121
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6122
    :param input: The input layer. It stores scores over a sequence or a nested
6123 6124 6125 6126 6127 6128 6129
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6130
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6131
                                            "accepts only one input.")
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171


@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6172
        conv = img_conv3d_layer(input=data, filter_size=1,
6173 6174 6175 6176 6177 6178 6179 6180 6181
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
C
chengduoZH 已提交
6182
    :param filter_size: The x dimension of a filter kernel. Or input a list.
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
    :type filter_size: int|tuple|list
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6221 6222 6223 6224 6225 6226
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6227

C
chengduoZH 已提交
6228 6229 6230 6231 6232 6233
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6234

C
chengduoZH 已提交
6235 6236 6237 6238 6239 6240
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)