提交 5bab98a3 编写于 作者: L Luo Tao

remove top_k argument in classification_cost

上级 29a0bc83
......@@ -3860,7 +3860,6 @@ def classification_cost(input,
label,
weight=None,
name=None,
top_k=None,
evaluator=classification_error_evaluator,
layer_attr=None):
"""
......@@ -3875,8 +3874,6 @@ def classification_cost(input,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
......@@ -3904,7 +3901,7 @@ def classification_cost(input,
assert isinstance(e.for_classification, bool)
assert e.for_classification
e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
e(name=e.__name__, input=input, label=label, weight=weight)
if not isinstance(evaluator, collections.Sequence):
evaluator = [evaluator]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册