Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b0ad9c90
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b0ad9c90
编写于
6月 28, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable intializing memory state for lstmemory_group.
上级
633082ad
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
57 addition
and
42 deletion
+57
-42
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+26
-25
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+31
-17
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
b0ad9c90
...
...
@@ -1149,10 +1149,10 @@ def pooling_layer(input,
@
layer_support
(
DROPOUT
)
def
lstmemory
(
input
,
name
=
None
,
size
=
None
,
reverse
=
False
,
act
=
None
,
gate_act
=
None
,
size
=
None
,
state_act
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
...
...
@@ -1194,6 +1194,8 @@ def lstmemory(input,
:param name: The lstmemory layer name.
:type name: basestring
:param size: DEPRECATED. size of the lstm cell
:type size: int
:param input: input layer name.
:type input: LayerOutput
:param reverse: is sequence process reversed or not.
...
...
@@ -1220,15 +1222,15 @@ def lstmemory(input,
assert
state_act
.
support_hppl
assert
act
.
support_hppl
assert
input
.
size
is
not
None
and
input
.
size
%
4
==
0
if
size
is
not
None
:
if
input
.
size
/
4
==
size
:
plog
=
logger
.
warning
else
:
plog
=
logger
.
fatal
plog
(
"NOTE: The lstmemory layer[%s]'s size is set by previous input "
"layer. The lstm size should be equal with input layer size/4. The"
" size which is set explicitly will be ignored."
%
name
)
plog
(
"size of lstmemory layer: %s is automatically set to "
"size of input layer / 4. The parameter size passing to "
"this layer is ignored."
%
(
name
))
Layer
(
name
=
name
,
...
...
@@ -1255,11 +1257,11 @@ def lstmemory(input,
@
wrap_name_default
(
"gru"
)
@
layer_support
(
DROPOUT
)
def
grumemory
(
input
,
size
=
None
,
name
=
None
,
reverse
=
False
,
act
=
None
,
gate_act
=
None
,
size
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
layer_attr
=
None
):
...
...
@@ -1318,6 +1320,8 @@ def grumemory(input,
:type name: None|basestring
:param input: input layer.
:type input: LayerOutput.
:param size: DEPRECATED. size of the gru cell
:type size: int
:param reverse: Whether sequence process is reversed or not.
:type reverse: bool
:param act: activation type, TanhActivation by default. This activation
...
...
@@ -1334,9 +1338,6 @@ def grumemory(input,
:type param_attr: ParameterAttribute|None|False
:param layer_attr: Extra Layer attribute
:type layer_attr: ExtraLayerAttribute|None
:param size: Stub parameter of size, but actually not used. If set this size
will get a warning.
:type size: None
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -1348,9 +1349,9 @@ def grumemory(input,
plog
=
logger
.
warning
else
:
plog
=
logger
.
fatal
plog
(
"
NOTE: the gru memory layer's size is set by previous input layer,
"
"
and should be input size / 3. Set size explicitly will be
"
"
ignored."
)
plog
(
"
size of grumemory layer: %s is automatically set to
"
"
size of input layer / 3. The parameter size passing to this
"
"
layer is ignored."
%
(
name
)
)
Layer
(
name
=
name
,
...
...
@@ -2524,8 +2525,8 @@ def img_cmrnorm_layer(input,
@
wrap_bias_attr_default
()
@
wrap_param_attr_default
(
default_factory
=
lambda
_
:
ParamAttr
(
initial_mean
=
1.0
,
initial_std
=
0.
))
@
wrap_param_attr_default
(
default_factory
=
lambda
_
:
ParamAttr
(
initial_mean
=
1.0
,
initial_std
=
0.
))
@
wrap_act_default
(
act
=
ReluActivation
())
@
wrap_name_default
(
"batch_norm"
)
@
layer_support
(
DROPOUT
)
...
...
@@ -3013,25 +3014,25 @@ def lstm_step_layer(input,
bias_attr
=
None
,
layer_attr
=
None
):
"""
LSTM Step Layer.
It used in recurrent_group. The lstm equations are shown
as follow
.
LSTM Step Layer.
This function is used only in recurrent_group.
The lstm equations are shown as follows
.
.. math::
i_t & =
\\
sigma(W_{x
i}x_{t} + W_{hi}h_{t-1} + W_{c
i}c_{t-1} + b_i)
i_t & =
\\
sigma(W_{x
_i}x_{t} + W_{h_i}h_{t-1} + W_{c_
i}c_{t-1} + b_i)
f_t & =
\\
sigma(W_{x
f}x_{t} + W_{hf}h_{t-1} + W_{c
f}c_{t-1} + b_f)
f_t & =
\\
sigma(W_{x
_f}x_{t} + W_{h_f}h_{t-1} + W_{c_
f}c_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x
c}x_t+W_{h
c}h_{t-1} + b_c)
c_t & = f_tc_{t-1} + i_t tanh (W_{x
_c}x_t+W_{h_
c}h_{t-1} + b_c)
o_t & =
\\
sigma(W_{x
o}x_{t} + W_{ho}h_{t-1} + W_{c
o}c_t + b_o)
o_t & =
\\
sigma(W_{x
_o}x_{t} + W_{h_o}h_{t-1} + W_{c_
o}c_t + b_o)
h_t & = o_t tanh(c_t)
The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
:code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
input vector.
input vector
s
.
The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do
...
...
@@ -3042,14 +3043,14 @@ def lstm_step_layer(input,
...
This layer
contain
s two outputs. Default output is :math:`h_t`. The other
output is :math:`o_t`, wh
ich
name is 'state' and can use
This layer
ha
s two outputs. Default output is :math:`h_t`. The other
output is :math:`o_t`, wh
ose
name is 'state' and can use
:code:`get_output_layer` to extract this output.
:param name: Layer's name.
:type name: basestring
:param size: Layer's size. NOTE: lstm layer's size, should be equal
as
:code:`input.size/4`, and should be equal
as
:param size: Layer's size. NOTE: lstm layer's size, should be equal
to
:code:`input.size/4`, and should be equal
to
:code:`state.size`.
:type size: int
:param input: input layer. :math:`Wx_t + Wh_{t-1}`
...
...
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
b0ad9c90
...
...
@@ -614,6 +614,7 @@ def simple_lstm(input,
@
wrap_name_default
(
'lstm_unit'
)
def
lstmemory_unit
(
input
,
memory_boot
=
None
,
name
=
None
,
size
=
None
,
param_attr
=
None
,
...
...
@@ -626,9 +627,9 @@ def lstmemory_unit(input,
lstm_layer_attr
=
None
,
get_output_layer_attr
=
None
):
"""
Define calculations that a LSTM unit performs
in
a single time step.
This function itself is not a recurrent layer, so
that
it can not be
directly
applied to sequence input
. This function is always used in
Define calculations that a LSTM unit performs
during
a single time step.
This function itself is not a recurrent layer, so it can not be
directly
used to process sequence inputs
. This function is always used in
recurrent_group (see layers.py for more details) to implement attention
mechanism.
...
...
@@ -638,13 +639,13 @@ def lstmemory_unit(input,
.. math::
i_t & =
\\
sigma(W_{x
i}x_{t} + W_{hi}h_{t-1} + W_{c
i}c_{t-1} + b_i)
i_t & =
\\
sigma(W_{x
_i}x_{t} + W_{h_i}h_{t-1} + W_{c_
i}c_{t-1} + b_i)
f_t & =
\\
sigma(W_{x
f}x_{t} + W_{hf}h_{t-1} + W_{c
f}c_{t-1} + b_f)
f_t & =
\\
sigma(W_{x
_f}x_{t} + W_{h_f}h_{t-1} + W_{c_
f}c_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x
c}x_t+W_{h
c}h_{t-1} + b_c)
c_t & = f_tc_{t-1} + i_t tanh (W_{x
_c}x_t+W_{h_
c}h_{t-1} + b_c)
o_t & =
\\
sigma(W_{x
o}x_{t} + W_{ho}h_{t-1} + W_{c
o}c_t + b_o)
o_t & =
\\
sigma(W_{x
_o}x_{t} + W_{h_o}h_{t-1} + W_{c_
o}c_t + b_o)
h_t & = o_t tanh(c_t)
...
...
@@ -661,6 +662,8 @@ def lstmemory_unit(input,
:param input: input layer name.
:type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None
:param name: lstmemory unit name.
:type name: basestring
:param size: lstmemory unit size.
...
...
@@ -692,7 +695,8 @@ def lstmemory_unit(input,
assert
input
.
size
%
4
==
0
size
=
input
.
size
/
4
out_mem
=
memory
(
name
=
name
,
size
=
size
)
state_mem
=
memory
(
name
=
"%s_state"
%
name
,
size
=
size
)
state_mem
=
memory
(
name
=
"%s_state"
%
name
,
size
=
size
,
boot_layer
=
memory_boot
)
with
mixed_layer
(
name
=
"%s_input_recurrent"
%
name
,
...
...
@@ -726,6 +730,7 @@ def lstmemory_unit(input,
def
lstmemory_group
(
input
,
size
=
None
,
name
=
None
,
memory_boot
=
None
,
reverse
=
False
,
param_attr
=
None
,
act
=
None
,
...
...
@@ -737,7 +742,7 @@ def lstmemory_group(input,
lstm_layer_attr
=
None
,
get_output_layer_attr
=
None
):
"""
lstm_group is a recurrent
layer
group version of Long Short Term Memory. It
lstm_group is a recurrent
_
group version of Long Short Term Memory. It
does exactly the same calculation as the lstmemory layer (see lstmemory in
layers.py for the maths) does. A promising benefit is that LSTM memory
cell states, or hidden states in every time step are accessible to the
...
...
@@ -748,8 +753,8 @@ def lstmemory_group(input,
NOTE: In PaddlePaddle's implementation, the following input-to-hidden
multiplications:
:math:`W_{x
i}x_{t}` , :math:`W_{x
f}x_{t}`,
:math:`W_{x
c}x_t`, :math:`W_{x
o}x_{t}` are not done in lstmemory_unit to
:math:`W_{x
_i}x_{t}` , :math:`W_{x_
f}x_{t}`,
:math:`W_{x
_c}x_t`, :math:`W_{x_
o}x_{t}` are not done in lstmemory_unit to
speed up the calculations. Consequently, an additional mixed_layer with
full_matrix_projection must be included before lstmemory_unit is called.
...
...
@@ -765,8 +770,10 @@ def lstmemory_group(input,
:param input: input layer name.
:type input: LayerOutput
:param name:
lstmemory group name
.
:param name:
name of the lstmemory group
.
:type name: basestring
:param memory_boot: the initialization state of LSTM cell.
:type memory_boot: LayerOutput | None
:param size: lstmemory group size.
:type size: int
:param reverse: is lstm reversed
...
...
@@ -798,6 +805,7 @@ def lstmemory_group(input,
def
__lstm_step__
(
ipt
):
return
lstmemory_unit
(
input
=
ipt
,
memory_boot
=
memory_boot
,
name
=
name
,
size
=
size
,
mixed_bias_attr
=
mixed_bias_attr
,
...
...
@@ -819,6 +827,7 @@ def lstmemory_group(input,
@
wrap_name_default
(
'gru_unit'
)
def
gru_unit
(
input
,
memory_boot
=
None
,
size
=
None
,
name
=
None
,
gru_bias_attr
=
None
,
...
...
@@ -829,8 +838,8 @@ def gru_unit(input,
naive
=
False
):
"""
Define calculations that a gated recurrent unit performs in a single time
step. This function itself is not a recurrent layer, so
that
it can not be
directly
applied to sequence input. This function is almost
always used in
step. This function itself is not a recurrent layer, so it can not be
directly
used to process sequence inputs. This function is
always used in
the recurrent_group (see layers.py for more details) to implement attention
mechanism.
...
...
@@ -838,6 +847,8 @@ def gru_unit(input,
:param input: input layer name.
:type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None
:param name: name of the gru group.
:type name: basestring
:param size: hidden size of the gru.
...
...
@@ -856,7 +867,7 @@ def gru_unit(input,
if
size
is
None
:
size
=
input
.
size
/
3
out_mem
=
memory
(
name
=
name
,
size
=
size
)
out_mem
=
memory
(
name
=
name
,
size
=
size
,
boot_layer
=
memory_boot
)
if
naive
:
__step__
=
gru_step_naive_layer
...
...
@@ -878,6 +889,7 @@ def gru_unit(input,
@
wrap_name_default
(
'gru_group'
)
def
gru_group
(
input
,
memory_boot
=
None
,
size
=
None
,
name
=
None
,
reverse
=
False
,
...
...
@@ -888,7 +900,7 @@ def gru_group(input,
gru_layer_attr
=
None
,
naive
=
False
):
"""
gru_group is a recurrent
layer
group version of Gated Recurrent Unit. It
gru_group is a recurrent
_
group version of Gated Recurrent Unit. It
does exactly the same calculation as the grumemory layer does. A promising
benefit is that gru hidden states are accessible to the user. This is
especially useful in attention model. If you do not need to access
...
...
@@ -908,6 +920,8 @@ def gru_group(input,
:param input: input layer name.
:type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None
:param name: name of the gru group.
:type name: basestring
:param size: hidden size of the gru.
...
...
@@ -929,6 +943,7 @@ def gru_group(input,
def
__gru_step__
(
ipt
):
return
gru_unit
(
input
=
ipt
,
memory_boot
=
memory_boot
,
name
=
name
,
size
=
size
,
gru_bias_attr
=
gru_bias_attr
,
...
...
@@ -1083,7 +1098,6 @@ def simple_gru2(input,
return
grumemory
(
name
=
name
,
size
=
size
,
input
=
m
,
reverse
=
reverse
,
bias_attr
=
gru_bias_attr
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录