layers.py 230.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
146
    'factorization_machine',
Q
qijun 已提交
147
]
Z
zhangjinchao01 已提交
148 149 150 151 152 153 154


class LayerType(object):
    """
    Layer type enumerations.
    """

155 156 157 158 159 160 161 162
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
163
    POOLING_AVG = 'average'
164
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
165
    COST = 'cost'
166 167
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
168
    HSIGMOID = 'hsigmoid'
169 170 171 172 173
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
174
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
175
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
176
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
177 178 179
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
180
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
181 182 183 184
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
185
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
186 187 188 189 190 191 192

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
193
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
194 195 196
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
197
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
198
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
199
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
211
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
212
    BLOCK_EXPAND = "blockexpand"
213
    MAXOUT = "maxout"
Q
qijun 已提交
214
    SPP_LAYER = "spp"
D
dangqingqing 已提交
215
    PAD_LAYER = "pad"
W
wwhu 已提交
216
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
217
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
218 219 220

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
221 222
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
223 224 225 226 227

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
228
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
229

230 231 232
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

233 234
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
235
    HUBER_REGRESSION = 'huber_regression'
236
    HUBER_CLASSIFICATION = 'huber_classification'
237 238
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
239
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
240 241 242 243 244 245
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
246
    SWITCH_ORDER_LAYER = 'switch_order'
247
    CROP_LAYER = 'crop'
C
caoying03 已提交
248
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
249
    CLIP_LAYER = 'clip'
250
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
251

252
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
253
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
254

255 256
    RESIZE = 'resize'

257 258
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
279
    """
L
Luo Tao 已提交
280
    PaddlePaddle supports three sequence types:
281 282 283

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
284 285
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
286

L
Luo Tao 已提交
287
    Accordingly, AggregateLevel supports two modes:
288

L
Luo Tao 已提交
289
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
290
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
291 292
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
293
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
294 295 296
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
297 298
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
299 300 301
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
324
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
325 326
    """

Q
qijun 已提交
327 328 329 330 331 332 333 334 335
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
336
                 reverse=None):
Z
zhangjinchao01 已提交
337 338
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
339
        assert size is not None
Z
zhangjinchao01 已提交
340 341
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
342
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
343
        self.layer_type = layer_type
344 345
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
346 347 348 349 350 351 352 353
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
354
        self.reverse = reverse
Z
zhangjinchao01 已提交
355

356 357 358 359 360 361 362 363
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

364 365 366 367
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

368 369 370 371 372 373 374 375
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
376 377 378

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
379
DEVICE = 'device'
Z
zhangjinchao01 已提交
380 381 382


def layer_support(*attrs):
383
    attrs_list = list(attrs)
384
    attrs_list.append(DEVICE)
Q
qijun 已提交
385

Z
zhangjinchao01 已提交
386 387 388
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
389
            for attr in attrs_list:
Z
zhangjinchao01 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
406 407 408 409 410
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
441
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
442 443 444 445 446 447 448 449
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
450 451
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
452 453 454 455
    proj.origin = input
    return proj


456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
477
    :param input: The input of this layer.
478 479 480 481 482 483 484 485
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
486 487
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
488 489 490 491
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
522
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
523 524 525 526 527 528 529 530
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
531 532
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
533 534 535 536
    proj.origin = input
    return proj


537
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
567
    :param input: The input of this layer.
568
    :type input: LayerOutput
Z
zhangjinchao01 已提交
569 570
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
571
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
572 573 574 575 576 577
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
578 579
        if size is None:
            size = input.size - offset
Q
qijun 已提交
580
        proj = IdentityOffsetProjection(
581
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
582 583 584 585
        proj.origin = input
    return proj


586 587
def slice_projection(input, slices):
    """
588 589
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
590 591

    .. math::
592
       output = [input.slices()]
593 594 595 596 597 598 599 600 601

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
602
    :param input: The input of this layer.
603 604 605 606
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
607
    :type slices: pair of int
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
640
    :param input: The input of this layer.
X
xuwei06 已提交
641 642 643 644 645 646
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
647
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
648 649 650 651
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
652
@wrap_param_attr_default()
653
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
654
    """
655
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
669
    :param input: The input of this layer.
670 671 672 673 674 675
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
676 677
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
678
    proj.origin = input
679
    return proj
Z
zhangjinchao01 已提交
680

681 682

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
683 684
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
685

Z
zhangjinchao01 已提交
686
    .. math::
L
Luo Tao 已提交
687
       out.row[i] += scale * (a.row[i] .* b.row[i])
688

Z
zhangjinchao01 已提交
689 690
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
691

Z
zhangjinchao01 已提交
692
    The example usage is:
693

Z
zhangjinchao01 已提交
694
    .. code-block:: python
695

L
Luo Tao 已提交
696
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
697

698 699 700 701
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
702 703
    :param scale: config scalar, default value is one.
    :type scale: float
704 705
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
706
    """
707 708 709
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
710
    a = kwargs.get('x', a)  # For Backward capacity.
711 712 713 714 715 716
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
717
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
718
    op.origin = [a, b]
719
    return op
Z
zhangjinchao01 已提交
720

721

Z
zhangjinchao01 已提交
722
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
723 724 725
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
740
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
741 742 743 744 745 746 747 748 749
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
750
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
751 752 753 754 755 756 757 758 759 760 761
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
762 763 764 765 766 767
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
781
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
782 783 784 785 786 787
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
788
        :param act: Activation type.
Z
zhangjinchao01 已提交
789
        :type act: BaseActivation
790 791 792 793
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
R
ranqiu 已提交
794
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
795 796 797
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
798 799 800 801 802 803 804
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
805 806 807 808 809
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

810
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
811 812 813 814 815 816 817 818
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
819
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
820
            self.inputs.append(other)
821 822 823 824
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
825 826 827 828 829 830 831 832
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

833
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
834 835
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
836
        assert len(self.inputs) != 0
837
        ml = MixedLayer(
Z
zhangjinchao01 已提交
838 839 840 841 842
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
843
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
844 845 846
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
847
        self.finalized = True
Z
zhangjinchao01 已提交
848 849 850 851 852 853


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
854 855 856 857 858
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
886
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
887
                  then this function will just return layer's name.
R
ranqiu 已提交
888
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
889
    :type act: BaseActivation
890 891 892 893
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
894
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
895 896 897 898 899 900 901 902 903
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
904 905 906 907 908 909
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
910
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
911 912 913 914 915 916 917 918
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
919 920
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
921 922 923 924 925 926 927
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
928
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
929

R
ranqiu 已提交
930
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
931 932 933
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
934
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
935
    :type height: int | None
L
Luo Tao 已提交
936
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
937
    :type width: int | None
Z
zhangjinchao01 已提交
938 939
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
940
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
941 942
    :rtype: LayerOutput
    """
Q
qijun 已提交
943 944 945 946
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
947
        depth=depth,
L
Luo Tao 已提交
948 949
        height=height,
        width=width,
Q
qijun 已提交
950
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
951

C
chengduoZH 已提交
952 953
    if depth is None:
        depth = 1
954 955
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
956 957
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
958
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
959 960

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
961 962 963 964


@wrap_name_default("embedding")
@wrap_param_attr_default()
965
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
966 967 968 969
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

970
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
971
    :type name: basestring
R
ranqiu 已提交
972
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
973 974 975 976 977
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
978
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
979
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
980
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
982 983
    :rtype: LayerOutput
    """
Q
qijun 已提交
984 985 986 987 988 989
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
990 991 992 993 994 995 996 997 998
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
999 1000 1001 1002 1003 1004 1005
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1018
    which is equal to:
Z
zhangjinchao01 已提交
1019 1020 1021 1022 1023 1024

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1025
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1026
    :type name: basestring
R
ranqiu 已提交
1027 1028
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1029 1030
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1031
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1032 1033 1034
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1035 1036 1037 1038
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1039
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1040
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1041
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1042
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1043 1044 1045 1046
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1047
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1048 1049
        param_attr = [param_attr]
    else:
1050
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1051 1052 1053 1054
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1055
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1056 1057

    Layer(
Q
qijun 已提交
1058 1059 1060
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1061 1062 1063 1064 1065
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1066 1067 1068
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1069

1070

1071
@wrap_name_default("print")
1072
def printer_layer(input, format=None, name=None):
1073 1074
    """
    Print the output value of input layers. This layer is useful for debugging.
1075

1076
    :param name: The name of this layer. It is optional.
1077
    :type name: basestring
R
ranqiu 已提交
1078 1079
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1080
    :return: LayerOutput
1081
    """
1082 1083 1084 1085 1086
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1087 1088 1089

    Layer(
        name=name,
1090
        format=format,
1091
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1092
        inputs=[l.name for l in input], )
1093
    # this layer don't return anything, can not be input of other layer.
1094

X
xuwei06 已提交
1095 1096 1097 1098 1099 1100 1101
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1102

Y
yuan 已提交
1103
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1104
def priorbox_layer(input,
G
gaoyuan 已提交
1105
                   image,
G
gaoyuan 已提交
1106 1107 1108 1109 1110
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1111 1112 1113
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1114
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1115
    :type name: basestring
R
ranqiu 已提交
1116
    :param input: The input of this layer.
Y
yuan 已提交
1117
    :type input: LayerOutput
G
gaoyuan 已提交
1118 1119
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1131
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1132 1133 1134
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1135
        inputs=[input.name, image.name],
Y
yuan 已提交
1136 1137 1138 1139 1140 1141
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1142 1143
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1144
        parents=[input, image],
G
gaoyuan 已提交
1145 1146 1147
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1163
    :param name: The name of this layer. It is optional.
1164
    :type name: basestring
Y
yangyaming 已提交
1165 1166
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1167
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1168
    :type input_conf: LayerOutput | List of LayerOutput
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1190
    input_loc_num = len(input_loc)
1191 1192 1193 1194 1195 1196

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1197
    input_conf_num = len(input_conf)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1235 1236
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1237

1238
    :param name: The name of this layer. It is optional.
1239
    :type name: basestring
Y
yangyaming 已提交
1240 1241
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1242
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1243
    :type input_conf: LayerOutput | List of LayerOutput.
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1265
    input_loc_num = len(input_loc)
1266 1267 1268 1269 1270 1271

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1272 1273
    input_conf_num = len(input_conf)

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1302 1303
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1304 1305 1306 1307 1308
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1309

1310
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1311
    :type name: basestring
R
ranqiu 已提交
1312
    :param input: The input of this layer.
G
gaoyuan 已提交
1313 1314 1315 1316 1317
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1318
    assert input.num_filters is not None
G
gaoyuan 已提交
1319 1320
    Layer(
        name=name,
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1334 1335
    return LayerOutput(
        name,
1336
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1337 1338 1339 1340 1341
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1342 1343 1344 1345
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1346 1347 1348 1349
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1350
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1351
                  stride=-1,
Z
zhangjinchao01 已提交
1352 1353 1354 1355
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1356 1357
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1358 1359 1360
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1361
    operation. Note that for sequence with sub-sequence, the default value
1362 1363
    of stride is -1.

Z
zhangjinchao01 已提交
1364 1365 1366 1367 1368 1369
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1370
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1371

L
Luo Tao 已提交
1372 1373
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1374
    :type agg_level: AggregateLevel
1375
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1376
    :type name: basestring
R
ranqiu 已提交
1377
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1378 1379 1380
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1381
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1382
    :param stride: The step size between successive pooling regions.
1383
    :type stride: Int
1384 1385 1386 1387
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1388
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1389
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1390
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1391
    :return: LayerOutput object.
Y
Yu Yang 已提交
1392
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1393 1394
    """
    extra_dict = dict()
1395
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1396 1397
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1398 1399 1400 1401
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1402 1403
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1404 1405 1406
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1407 1408 1409 1410 1411 1412
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1413
        stride=stride,
Q
qijun 已提交
1414
        **extra_dict)
Z
zhangjinchao01 已提交
1415

Q
qijun 已提交
1416 1417
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1418

Q
qijun 已提交
1419

Z
zhangjinchao01 已提交
1420 1421
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1422
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1423 1424
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1425
@layer_support()
Q
qijun 已提交
1426 1427
def lstmemory(input,
              name=None,
1428
              size=None,
Q
qijun 已提交
1429 1430 1431 1432 1433 1434
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1435 1436 1437 1438 1439 1440 1441 1442
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1443
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1444

L
luotao02 已提交
1445
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1446

L
luotao02 已提交
1447
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1448

L
luotao02 已提交
1449
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1450

L
luotao02 已提交
1451
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1452 1453


C
caoying03 已提交
1454
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1455
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1456 1457 1458 1459
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1460

C
caoying03 已提交
1461
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1462 1463
    to config a simple plain lstm layer.

C
caoying03 已提交
1464 1465 1466 1467
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1468 1469 1470 1471 1472

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1473 1474
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1475
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1476 1477 1478
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1479
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1480 1481 1482 1483 1484
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1485 1486 1487 1488
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1489
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1490
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1491
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1492
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1493
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1494
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1495 1496 1497 1498 1499 1500
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1501
    assert input.size is not None and input.size % 4 == 0
1502

1503 1504 1505 1506 1507
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1508 1509 1510
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1511

Q
qijun 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1522

Q
qijun 已提交
1523 1524 1525 1526 1527
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1528

Z
zhangjinchao01 已提交
1529 1530 1531

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1532
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1533 1534
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1535
@layer_support()
Q
qijun 已提交
1536
def grumemory(input,
1537
              size=None,
Q
qijun 已提交
1538 1539 1540 1541 1542 1543
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1565 1566
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1567 1568 1569 1570 1571

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1572 1573 1574
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1575 1576 1577 1578 1579

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1580
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1581
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1582 1583 1584
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1585

C
caoying03 已提交
1586 1587 1588
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1589 1590 1591 1592 1593 1594 1595 1596

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1597 1598
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1599
    :type input: LayerOutput.
1600 1601
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1602
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1603
    :type reverse: bool
R
ranqiu 已提交
1604
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1605 1606 1607 1608 1609 1610
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1611 1612 1613 1614
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1615
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1616
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1617
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1618
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1619
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1620
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1621 1622 1623 1624
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1625 1626 1627 1628 1629 1630
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1631 1632 1633
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1634

Q
qijun 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1644

Q
qijun 已提交
1645 1646 1647 1648 1649
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1650

Z
zhangjinchao01 已提交
1651 1652 1653

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1654 1655
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1656
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1657
             stride=-1,
Z
zhangjinchao01 已提交
1658 1659 1660 1661
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1662 1663 1664
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1665
    of stride is -1.
1666

L
Luo Tao 已提交
1667 1668 1669 1670 1671 1672
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1673
    :param agg_level: Aggregated level
1674
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1675
    :type name: basestring
R
ranqiu 已提交
1676
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1677
    :type input: LayerOutput
L
Luo Tao 已提交
1678
    :param stride: The step size between successive pooling regions.
1679
    :type stride: Int
Z
zhangjinchao01 已提交
1680 1681
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1682
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1683 1684
    :rtype: LayerOutput
    """
1685 1686 1687 1688 1689 1690
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1691
    if agg_level == AggregateLevel.TO_SEQUENCE:
1692 1693
        assert stride == -1

Z
zhangjinchao01 已提交
1694 1695 1696 1697 1698
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1699
        stride=stride,
Q
qijun 已提交
1700 1701 1702 1703 1704 1705
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1706 1707 1708 1709


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1712
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
              stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1718 1719 1720
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1721
    of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: aggregation level
1730
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1731
    :type name: basestring
R
ranqiu 已提交
1732
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1733
    :type input: LayerOutput
L
Luo Tao 已提交
1734
    :param stride: The step size between successive pooling regions.
1735
    :type stride: Int
Z
zhangjinchao01 已提交
1736 1737
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1739 1740
    :rtype: LayerOutput
    """
1741 1742 1743 1744 1745 1746 1747

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1748
    if agg_level == AggregateLevel.TO_SEQUENCE:
1749 1750
        assert stride == -1

Z
zhangjinchao01 已提交
1751 1752 1753 1754 1755
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1756
        stride=stride,
Q
qijun 已提交
1757 1758 1759 1760 1761 1762
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1763 1764 1765


class ExpandLevel(object):
1766 1767 1768 1769 1770
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1771 1772
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1773 1774
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1775 1776
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1777 1778
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1779 1780
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1781 1782
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1783

1784

Z
zhangjinchao01 已提交
1785 1786
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1787 1788
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1789 1790
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1791
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1803
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1804

R
ranqiu 已提交
1805
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1806 1807 1808
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1809
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1810
    :type name: basestring
1811 1812 1813 1814
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1815
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1816 1817 1818 1819
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1820
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1830 1831 1832 1833 1834 1835
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1836 1837


X
xuwei06 已提交
1838
@wrap_name_default()
X
xuwei06 已提交
1839
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1840
@layer_support()
X
xuwei06 已提交
1841 1842 1843
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1844
                 act=None,
X
xuwei06 已提交
1845 1846
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1847
    """
X
xuwei06 已提交
1848
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1849

X
xuwei06 已提交
1850
    If as_row_vector:
X
xuwei06 已提交
1851
    .. math::
X
xuwei06 已提交
1852 1853 1854 1855 1856
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1857 1858 1859 1860 1861

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1862
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1863

R
ranqiu 已提交
1864
    :param input: The input of this layer.
X
xuwei06 已提交
1865 1866 1867
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1868
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1869 1870 1871 1872 1873 1874
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1875
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1876
    :type act: BaseActivation
X
xuwei06 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1887
        active_type=act.name,
X
xuwei06 已提交
1888
        num_filters=num_repeats,
X
xuwei06 已提交
1889
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1890
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1891 1892 1893 1894 1895
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1896
        activation=act,
Q
qijun 已提交
1897 1898
        parents=[input])

X
xuwei06 已提交
1899

1900 1901 1902
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1903
@layer_support(ERROR_CLIPPING, DROPOUT)
1904 1905 1906 1907 1908 1909 1910 1911
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1912
    the dimension of each instance is M, and the input reshape_size is N, then the
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1923
    :param input: The input of this layer.
1924 1925 1926
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1927
    :param name: The name of this layer. It is optional.
1928
    :type name: basestring
R
ranqiu 已提交
1929
    :param act: Activation type. IdentityActivation is the default.
1930 1931 1932
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1933 1934 1935 1936
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1937
    :type bias_attr: ParameterAttribute | None | bool | Any
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1976 1977
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1978 1979
    :param weight: Weight layer.
    :type weight: LayerOutput
1980
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1981 1982 1983
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1984
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1985 1986
    :rtype: LayerOutput
    """
1987
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1988
    assert len(input) == 2
1989 1990 1991 1992 1993 1994 1995
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1996 1997 1998 1999
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2000 2001 2002 2003 2004 2005
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2006 2007


L
liaogang 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2024
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2025

L
liaogang 已提交
2026
    :param   input:        A input layer.
L
liaogang 已提交
2027
    :type    input:        LayerOutput.
L
liaogang 已提交
2028
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2029
    :type    out_size_x:   int | None
L
liaogang 已提交
2030
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2031
    :type    out_size_y:   int | None
L
liaogang 已提交
2032
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2033
    :type    name:         None | basestring
L
liaogang 已提交
2034
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2035 2036 2037 2038 2039 2040 2041
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2042
    assert input.num_filters is not None
L
liaogang 已提交
2043
    num_channels = input.num_filters
Q
qijun 已提交
2044 2045 2046 2047 2048 2049 2050
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2051
                channels=num_channels)),
Q
qijun 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2061

Z
zhangjinchao01 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2081
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2082 2083 2084
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2085
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2086 2087 2088
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2089
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2090 2091
    :rtype: LayerOutput
    """
2092 2093 2094
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2095 2096 2097
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2098
        inputs=[weight.name, input.name],
Q
qijun 已提交
2099 2100 2101
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2102 2103 2104 2105 2106 2107


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2108
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2109 2110

    .. math::
2111
       y  = w x
Z
zhangjinchao01 已提交
2112

2113 2114 2115 2116 2117
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2118 2119 2120 2121 2122 2123 2124

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2125
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2126 2127 2128
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2129
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2130 2131 2132
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2133
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2134 2135
    :rtype: LayerOutput
    """
2136 2137 2138
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2139 2140 2141 2142
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2143 2144 2145
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2146 2147 2148 2149 2150 2151


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2152
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2165
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2166
    :type input: LayerOutput
2167
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2168 2169 2170
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2171
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2172 2173 2174 2175 2176 2177
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2178 2179 2180
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2181 2182


2183 2184
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2185
def rotate_layer(input, height, width, name=None, layer_attr=None):
2186
    """
H
Haonan 已提交
2187 2188
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2189 2190

    .. math::
H
Haonan 已提交
2191
       y(j,i,:) = x(M-i-1,j,:)
2192

H
Haonan 已提交
2193
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2194 2195 2196 2197 2198 2199

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2200 2201
                          height=100,
                          width=100)
2202

R
ranqiu 已提交
2203
    :param input: The input of this layer.
2204 2205 2206
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2207
    :param name: The name of this layer. It is optional.
2208 2209 2210 2211 2212 2213 2214
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2215 2216 2217
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2218
        width=width,
H
Haonan 已提交
2219 2220 2221 2222 2223 2224 2225 2226
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2227 2228


Z
zhangjinchao01 已提交
2229 2230
@wrap_name_default()
@layer_support()
2231
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2232 2233 2234 2235
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2236
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2237 2238 2239 2240 2241
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2242

2243 2244
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2245

L
Luo Tao 已提交
2246 2247 2248 2249 2250 2251
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2252
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2264
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2265 2266
    :rtype: LayerOutput
    """
2267
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2268 2269 2270 2271 2272 2273
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2274
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2275
    else:
2276 2277
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2278 2279 2280 2281 2282 2283
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2284
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2285
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2286

2287

Z
zhangjinchao01 已提交
2288 2289
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2290
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2291
@layer_support()
Q
qijun 已提交
2292 2293
def hsigmoid(input,
             label,
2294
             num_classes=None,
Q
qijun 已提交
2295 2296 2297 2298
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2310
                        label=data_layer)
Z
zhangjinchao01 已提交
2311

R
ranqiu 已提交
2312 2313
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2314 2315 2316
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2317
    :type num_classes: int | None
2318
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2319
    :type name: basestring
2320 2321 2322 2323
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2324
    :type bias_attr: ParameterAttribute | None | bool | Any
2325
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2326
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2327 2328
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2329
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2330 2331 2332 2333
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2334 2335 2336 2337 2338 2339 2340 2341 2342
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2343 2344 2345
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2346 2347 2348 2349 2350
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2351 2352
    ipts_for_layer = []
    parents = []
2353
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2354
        assert isinstance(each_input, LayerOutput)
2355
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2356 2357 2358 2359
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2360
    l = Layer(
Z
zhangjinchao01 已提交
2361 2362 2363 2364 2365
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2366 2367 2368
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2369

2370

Z
zhangjinchao01 已提交
2371 2372 2373 2374 2375
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2385
                   dilation=1,
Q
qijun 已提交
2386 2387 2388 2389 2390 2391 2392
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2393
                   dilation_y=None,
2394 2395
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2396
    """
2397
    Convolution layer for image. Paddle can support both square and non-square
2398
    input currently.
Z
zhangjinchao01 已提交
2399 2400 2401 2402

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2403

2404
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2405
    and non-square input currently.
2406

X
xuwei06 已提交
2407
    The details of convolution transpose layer,
2408 2409 2410
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2411 2412 2413 2414
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2415 2416 2417
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2418
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2419 2420
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2421

L
Luo Tao 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2432
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2433
    :type name: basestring
R
ranqiu 已提交
2434
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2435
    :type input: LayerOutput
2436 2437
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2438
    :type filter_size: int | tuple | list
C
caoying03 已提交
2439 2440 2441
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2442
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2443
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2444
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2445 2446 2447
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2448 2449
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2450
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2451 2452
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2453 2454
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2455
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2456 2457
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2458 2459
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2460
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2461 2462
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2463 2464 2465 2466
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2467
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2477 2478
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2479
    :param layer_type: specify the layer_type, default is None. If trans=True,
2480 2481
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2482
                       "cudnn_conv"
2483
    :type layer_type: String
D
dangqingqing 已提交
2484
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2485 2486 2487 2488 2489
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2490

Z
zhangjinchao01 已提交
2491
    if filter_size_y is None:
2492 2493 2494 2495 2496 2497
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2498
    if stride_y is None:
2499 2500 2501 2502 2503 2504
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2505
    if padding_y is None:
2506 2507 2508 2509 2510 2511
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2512 2513 2514 2515 2516 2517 2518
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2519 2520
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2521
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2522 2523 2524 2525
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2526

2527
    if layer_type:
W
wanghaoshuang 已提交
2528 2529
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2530
        if trans:
2531
            assert layer_type in ["exconvt", "cudnn_convt"]
2532 2533 2534 2535 2536
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2537

X
xuwei06 已提交
2538
    l = Layer(
Z
zhangjinchao01 已提交
2539
        name=name,
Q
qijun 已提交
2540 2541 2542 2543 2544
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2545
                dilation=dilation,
Q
qijun 已提交
2546 2547 2548 2549 2550
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2551
                dilation_y=dilation_y,
Q
qijun 已提交
2552 2553
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2554 2555 2556 2557
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2558
        type=lt,
Q
qijun 已提交
2559 2560 2561 2562 2563 2564 2565 2566
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2567 2568 2569 2570


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2581 2582
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2583 2584 2585 2586 2587 2588 2589
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2618
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2619
    :type padding: int
2620
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2621
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2622 2623
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2624
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2625
    :type input: LayerOutput
2626
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2627
    :type pool_size: int
2628
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2629
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2630 2631
    :param num_channels: number of input channel.
    :type num_channels: int
2632
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2633 2634
                      MaxPooling.
    :type pool_type: BasePoolingType
2635
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2636
    :type stride: int
2637
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2638
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2639 2640
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2641 2642 2643 2644
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2645 2646
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2657 2658 2659 2660
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2661
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2662
        if (
Y
Yu Yang 已提交
2663
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2664
        else pool_type.name
2665 2666 2667 2668
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2669
    l = Layer(
Z
zhangjinchao01 已提交
2670 2671
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2684
                    padding_y=padding_y))
Q
qijun 已提交
2685
        ],
2686
        ceil_mode=ceil_mode,
Q
qijun 已提交
2687 2688 2689 2690 2691 2692 2693
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2694 2695


C
chengduoZH 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2748
    :type padding: int | tuple | list
C
chengduoZH 已提交
2749 2750
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2751
    :param input: The input of this layer.
C
chengduoZH 已提交
2752 2753
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2754
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2755 2756 2757 2758 2759 2760
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2761
    :type stride: int | tuple | list
C
chengduoZH 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2836 2837
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2838 2839 2840 2841 2842 2843
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2844 2845 2846 2847 2848
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2849 2850 2851 2852
    The example usage is:

    ..  code-block:: python

2853 2854 2855
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2856 2857
                        pool_type=MaxPooling())

2858
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2859
    :type name: basestring
R
ranqiu 已提交
2860
    :param input: The input of this layer.
Q
qijun 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2886
    l = Layer(
Q
qijun 已提交
2887 2888
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2889 2890 2891 2892 2893
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2894
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2906 2907 2908 2909
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2910
    l = Layer(
Q
qijun 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2930 2931 2932 2933


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2934 2935 2936 2937 2938 2939
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2940
                      layer_attr=None):
Z
zhangjinchao01 已提交
2941
    """
2942
    Response normalization across feature maps.
D
dangqingqing 已提交
2943 2944
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2945

L
Luo Tao 已提交
2946 2947 2948
    The example usage is:

    ..  code-block:: python
2949

L
Luo Tao 已提交
2950 2951
        norm = img_cmrnorm_layer(input=net, size=5)

2952
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2953 2954
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2955
    :type input: LayerOutput
2956
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2957
    :type size: int
D
dangqingqing 已提交
2958
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2959
    :type scale: float
D
dangqingqing 已提交
2960
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2961 2962 2963 2964 2965
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2966
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2967 2968 2969
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2970
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2971 2972 2973


@wrap_bias_attr_default()
2974 2975
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2976 2977
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2978
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2979 2980 2981
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2982
                     img3D=False,
Q
qijun 已提交
2983 2984 2985 2986
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2987 2988
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2989 2990
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3009 3010 3011
    The example usage is:

    ..  code-block:: python
3012

L
Luo Tao 已提交
3013 3014
        norm = batch_norm_layer(input=net, act=ReluActivation())

3015
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3029
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3039
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3051
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3052 3053 3054 3055 3056
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3057 3058
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3059
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3070
    l = Layer(
Z
zhangjinchao01 已提交
3071
        name=name,
C
chengduoZH 已提交
3072
        img3D=img3D,
Q
qijun 已提交
3073 3074
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3075 3076 3077 3078 3079 3080
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3081
        mean_var_names=mean_var_names,
Q
qijun 已提交
3082
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3083

Q
qijun 已提交
3084 3085 3086 3087 3088 3089 3090
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3112
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3113
    :type input: LayerOutput
3114
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3115 3116 3117
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3118
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3119 3120 3121 3122 3123 3124
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3125 3126 3127
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3128 3129


G
guosheng 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3148
    :param input: The input of this layer.
G
guosheng 已提交
3149
    :type input: LayerOutput
3150
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3166 3167 3168
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3169
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3170
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3193 3194 3195
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3196 3197

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3198 3199
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3200 3201
    Please refer to dropout_layer for details.

3202
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3203 3204 3205
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3206 3207
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3208
    :type act: BaseActivation
3209 3210 3211 3212
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3213
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3214 3215
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3216
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3217 3218 3219 3220 3221 3222
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3223
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3224 3225 3226 3227 3228 3229 3230
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3231
    l = Layer(
Q
qijun 已提交
3232 3233 3234
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3235 3236
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3237
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3238

Q
qijun 已提交
3239 3240 3241 3242 3243 3244 3245
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3246 3247 3248 3249


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3250
@layer_support(DROPOUT, ERROR_CLIPPING)
3251
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3252 3253 3254 3255
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3256 3257 3258 3259 3260 3261
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3262
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3263 3264
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3265 3266
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3267 3268 3269
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3270
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3271 3272 3273 3274 3275 3276 3277 3278
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3279
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3280 3281

    def __is_type__(o, tp):
3282
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3304 3305
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3306

Q
qijun 已提交
3307 3308
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3309

3310 3311
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3312

3313
    layer = Layer(
Q
qijun 已提交
3314 3315
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3316 3317
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3318
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3319
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3320

3321
    sz = layer.config.size
Z
zhangjinchao01 已提交
3322

Q
qijun 已提交
3323 3324 3325 3326 3327 3328 3329 3330
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3331 3332
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3333
@wrap_bias_attr_default(has_bias=False)
3334
@layer_support(DROPOUT, ERROR_CLIPPING)
3335 3336 3337 3338
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3339

3340
    Inputs:
X
xuwei06 已提交
3341
      - a = [a1, a2, ..., am]
3342
      - b = [b1, b2, ..., bn]
3343

X
xuwei06 已提交
3344 3345 3346 3347
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3348 3349 3350 3351 3352 3353 3354

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3355
    :param name: The name of this layer. It is optional.
3356 3357 3358 3359 3360
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3361
    :param act: Activation type. IdentityActivation is the default.
3362 3363 3364
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3365 3366 3367 3368
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3369
    :type bias_attr: ParameterAttribute | None | bool | Any
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3391
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3392 3393
def memory(name,
           size,
3394
           memory_name=None,
Q
qijun 已提交
3395 3396 3397 3398
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3419 3420 3421 3422 3423 3424 3425 3426 3427
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3428

3429 3430 3431 3432 3433 3434 3435
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3436 3437 3438
    :type name: basestring
    :param size: size of memory.
    :type size: int
3439 3440 3441
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3442
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3443 3444
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3445
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3446
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3447
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3448 3449 3450 3451
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3452
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3463 3464
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3465

3466 3467 3468 3469 3470 3471 3472 3473
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3474 3475

    lout = LayerOutput(
3476
        name=memory_name,
Q
qijun 已提交
3477 3478 3479
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3480 3481 3482 3483
    return lout


@wrap_bias_attr_default()
3484 3485
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3486 3487 3488
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3489 3490
def lstm_step_layer(input,
                    state,
3491
                    size=None,
Q
qijun 已提交
3492 3493 3494 3495 3496 3497
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3498
    """
3499 3500
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3501 3502 3503

    ..  math::

3504
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3505

3506
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3507

3508
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3509

3510
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3511

L
luotao02 已提交
3512
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3513 3514


L
luotao02 已提交
3515
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3516
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3517
    input vectors.
Z
zhangjinchao01 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3528 3529
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3530 3531
    :code:`get_output_layer` to extract this output.

3532
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3533
    :type name: basestring
3534 3535
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3536 3537 3538 3539 3540 3541
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3542
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3543
    :type act: BaseActivation
R
ranqiu 已提交
3544
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3545
    :type gate_act: BaseActivation
R
ranqiu 已提交
3546
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3547
    :type state_act: BaseActivation
3548 3549 3550 3551
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3552
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3553 3554
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3555
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3556 3557
    :rtype: LayerOutput
    """
3558 3559 3560

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3561 3562 3563 3564 3565 3566 3567
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3568
        size=state.size,
Q
qijun 已提交
3569 3570
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3571

Q
qijun 已提交
3572 3573 3574 3575 3576 3577 3578
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3579 3580 3581


@wrap_bias_attr_default()
W
wangyang59 已提交
3582
@wrap_param_attr_default()
Q
qijun 已提交
3583
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3584 3585 3586
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3587 3588 3589 3590 3591 3592 3593
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3594
                   param_attr=None,
Q
qijun 已提交
3595
                   layer_attr=None):
Z
zhangjinchao01 已提交
3596 3597 3598 3599 3600 3601 3602
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3603
    :type act: BaseActivation
3604
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3605 3606
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3607 3608 3609 3610
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3611
    :type bias_attr: ParameterAttribute | None | bool | Any
3612 3613
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3614
    :param layer_attr:
D
dangqingqing 已提交
3615
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3616 3617 3618 3619 3620 3621 3622 3623
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3624 3625 3626 3627
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3628
        # backward model compatibility.
3629
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3630 3631 3632 3633
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3634
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3635
    return LayerOutput(
Q
qijun 已提交
3636 3637
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3638
        parents=[input, output_mem],
Q
qijun 已提交
3639 3640
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3641 3642


Y
Yu Yang 已提交
3643 3644 3645 3646
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3647
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3665
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3666
    :param act:
R
ranqiu 已提交
3667 3668 3669
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3670 3671 3672 3673
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3674
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3675 3676 3677
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3678
    :rtype: LayerOutput
Y
Yu Yang 已提交
3679 3680 3681 3682 3683 3684
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3685
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3686 3687 3688 3689
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3690

Y
Yu Yang 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3728 3729 3730 3731
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3732 3733 3734 3735
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3736

3737
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3738 3739 3740 3741 3742 3743 3744
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3745
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3746 3747 3748 3749 3750 3751 3752
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3753 3754 3755 3756 3757 3758 3759
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3760

Q
qijun 已提交
3761 3762 3763 3764 3765
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3766 3767 3768 3769 3770 3771 3772


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3773 3774 3775 3776 3777 3778 3779
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3780
    """
3781 3782
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3799
    :param input: The input of this layer.
3800
    :type input: LayerOutput
R
ranqiu 已提交
3801
    :param act: Activation type. TanhActivation is the default.
3802
    :type act: BaseActivation
3803 3804 3805 3806
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3807
    :type bias_attr: ParameterAttribute | None | bool | Any
3808 3809
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3810
    :param name: The name of this layer. It is optional.
3811 3812 3813
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3814
    :return: LayerOutput object.
3815
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3816
    """
Q
qijun 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3832 3833 3834 3835 3836 3837


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3838 3839
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3840
    """
3841

Z
zhangjinchao01 已提交
3842 3843 3844
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3845
        assert input.size is not None
Z
zhangjinchao01 已提交
3846
        if size is not None:
3847
            assert input.size == size
Z
zhangjinchao01 已提交
3848 3849


3850
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3851
    """
3852
    DEPRECATED.
Z
zhangjinchao01 已提交
3853 3854 3855 3856 3857 3858 3859 3860
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3861
    return input
Z
zhangjinchao01 已提交
3862 3863 3864


@wrap_name_default("recurrent_group")
3865
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3866
    """
C
caoying03 已提交
3867 3868 3869 3870 3871
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3914
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3915

3916 3917
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3918
    :type reverse: bool
3919

3920 3921
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3922 3923 3924 3925 3926 3927 3928

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3929
    :type targetInlink: LayerOutput | SubsequenceInput
3930

D
dangqingqing 已提交
3931
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3932 3933 3934 3935
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3936
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3937
        input = [input]
3938
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3939 3940

    def is_in_links(x):
3941
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3942 3943 3944 3945

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3946
        name=name,
3947 3948
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3949 3950
    in_args = []
    for each_input in input:
3951
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3952
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3953
            mem = memory(
3954
                name=None,
Q
qijun 已提交
3955 3956
                size=each_input.input.size,
                boot_layer=each_input.input)
3957
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3958
            in_args.append(mem)
3959 3960
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3961

Z
zhangjinchao01 已提交
3962 3963 3964 3965 3966
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3967 3968 3969 3970 3971 3972
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3973 3974 3975

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3976
    for layer_out in layer_outs:
3977 3978
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3979 3980
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3981 3982 3983 3984 3985
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3986

Z
zhangjinchao01 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4015 4016

    def before_real_step(self):
Q
qijun 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4026 4027 4028
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4029
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4047
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4048
    :type input: LayerOutput
4049
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4050 4051 4052
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4053
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4054 4055 4056 4057
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4068

4069

H
Haonan 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4082
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4106

Z
zhangjinchao01 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4123
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4124
    :type name: basestring
R
ranqiu 已提交
4125
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4126 4127 4128 4129 4130
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4132 4133
    :rtype: LayerOutput
    """
Q
qijun 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4145 4146 4147


@wrap_name_default()
Q
qijun 已提交
4148 4149 4150 4151 4152 4153 4154
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4155
                num_results_per_sample=None):
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4167
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4168 4169 4170 4171
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4172 4173 4174 4175 4176
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4177 4178
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4179 4180
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4181 4182
                               bos_id=0,
                               eos_id=1,
4183
                               beam_size=5)
4184 4185 4186 4187 4188 4189 4190 4191 4192

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4193
                 step, and it is applied to sequences with arbitrary length by
4194 4195 4196 4197 4198
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4199 4200
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4201
                  In beam_search, none of the input's type should be LayerOutput.
4202
    :type input: list
4203 4204 4205
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4206
                   symbol is essential, since it is used to initialize the RNN
4207 4208 4209 4210 4211 4212 4213 4214
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4215 4216
    :param max_length: Max generated sequence length.
    :type max_length: int
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4227 4228
    :return: The generated word index.
    :rtype: LayerOutput
4229 4230
    """

Z
zhangjinchao01 已提交
4231 4232 4233 4234 4235
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4236
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4237 4238 4239 4240 4241 4242
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4243 4244 4245
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4246
        if isinstance(each_input, BaseGeneratedInput):
4247 4248
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4249
            generated_input_index = i
4250

Z
zhangjinchao01 已提交
4251 4252 4253
        else:
            real_input.append(each_input)

4254
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4255 4256 4257 4258 4259 4260 4261 4262

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4263 4264 4265 4266 4267 4268
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4269 4270 4271 4272 4273 4274

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4275
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4276 4277
        return predict

4278 4279
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4280

Q
qijun 已提交
4281

4282 4283
def __cost_input__(input, label, weight=None):
    """
4284
    inputs and parents for cost layers.
4285
    """
C
caoying03 已提交
4286 4287 4288 4289 4290 4291
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4292
    if weight is not None:
4293
        assert weight.size == 1
4294 4295 4296
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4297

Z
zhangjinchao01 已提交
4298 4299

@wrap_name_default()
L
luotao1 已提交
4300
@layer_support()
4301 4302 4303 4304 4305 4306
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4307
    """
4308
    sum of square error cost:
L
Luo Tao 已提交
4309 4310 4311

    ..  math::

4312
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4313

4314
    :param name: The name of this layer. It is optional.
4315
    :type name: basestring
Z
zhangjinchao01 已提交
4316
    :param input: Network prediction.
4317
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4318
    :param label: Data label.
4319 4320 4321 4322
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4323 4324
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4325 4326
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4327
    :return: LayerOutput object.
4328
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4329
    """
4330 4331
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4332 4333 4334 4335
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4336
        coeff=coeff,
Q
qijun 已提交
4337
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4338
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4339 4340


4341
regression_cost = square_error_cost
L
Luo Tao 已提交
4342 4343


Z
zhangjinchao01 已提交
4344
@wrap_name_default("cost")
4345
@layer_support()
Q
qijun 已提交
4346 4347 4348 4349
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4350
                        evaluator=classification_error_evaluator,
4351 4352
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4353 4354 4355
    """
    classification cost Layer.

4356
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4357 4358 4359 4360 4361
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4362 4363 4364
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4365
    :param evaluator: Evaluator method.
4366 4367
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4368 4369
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4370
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4371 4372 4373 4374 4375
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4376 4377 4378

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4379 4380 4381 4382
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4383
        coeff=coeff,
Q
qijun 已提交
4384
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4395
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4396

4397
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4398 4399 4400 4401 4402
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4403
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4404

4405

Q
qijun 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4415 4416
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4427 4428
       op = conv_operator(img=input1,
                          filter=input2,
4429
                          filter_size=3,
Z
zhangjinchao01 已提交
4430 4431 4432
                          num_filters=64,
                          num_channels=64)

4433 4434 4435 4436
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4437 4438
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4439 4440 4441
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4442
    :type filter_size_y: int
4443 4444
    :param num_filters: channel of output data.
    :type num_filters: int
4445 4446
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4447
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4448
    :type stride: int
Z
zhangjinchao01 已提交
4449
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4450
    :type stride_y: int
Z
zhangjinchao01 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4464

4465 4466
    if num_channels is None:
        num_channels = img.num_filters
4467 4468

    assert isinstance(filter, LayerOutput)
4469
    assert filter.size is not None
4470

4471 4472 4473
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4485

4486
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4487 4488
    return op

Q
qijun 已提交
4489

4490
@wrap_param_attr_default()
Q
qijun 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4501 4502
                    param_attr=None,
                    trans=False):
4503 4504 4505 4506 4507 4508 4509 4510 4511
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4512
       proj = conv_projection(input=input1,
4513 4514 4515 4516
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4517
    :param input: The input of this layer.
4518 4519 4520 4521 4522 4523 4524 4525 4526
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4527 4528
    :param num_channels: channel of input data.
    :type num_channels: int
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4541
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4542
    :type trans: bool
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4573
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4574 4575 4576 4577 4578
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4579 4580 4581
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4594 4595 4596 4597

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4598

D
dangqingqing 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4616

D
dangqingqing 已提交
4617
    For example,
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4640 4641

    The simply usage is:
D
dangqingqing 已提交
4642 4643 4644 4645 4646 4647 4648 4649

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4650
    :param input: The input of this layer.
D
dangqingqing 已提交
4651 4652
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4653
    :type pad_c: list | None
D
dangqingqing 已提交
4654
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4655
    :type pad_h: list | None
D
dangqingqing 已提交
4656
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4657
    :type pad_w: list | None
D
dangqingqing 已提交
4658 4659
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4660
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4703
@wrap_name_default()
L
luotao1 已提交
4704 4705
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4717 4718 4719 4720
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4721 4722 4723 4724 4725

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4726
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4727

4728
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4729
    :type name: basestring
4730 4731
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4732
    :param b: input layer b.
4733
    :type b: LayerOutput
L
luotao1 已提交
4734 4735
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4737 4738
    :rtype: LayerOutput
    """
4739 4740
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4741 4742 4743
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4744
        inputs=[a.name, b.name],
Q
qijun 已提交
4745
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4746

Q
qijun 已提交
4747 4748
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4749 4750 4751 4752 4753


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4754
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4755
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4756 4757 4758 4759 4760 4761 4762 4763
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4764 4765 4766 4767 4768
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4769
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4770 4771

    In this formular:
4772 4773
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4774 4775
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4776
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4777 4778 4779 4780 4781

    The simple usage is:

    .. code-block:: python

4782
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4783

4784
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4785
    :type name: basestring
4786 4787 4788 4789
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4790
    :param size: the layer dimension.
L
luotao02 已提交
4791
    :type size: int.
R
ranqiu 已提交
4792
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4793 4794
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4795
    :type param_attr: ParameterAttribute
4796 4797 4798 4799
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4800
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4801
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4802
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4803
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4804 4805
    :rtype: LayerOutput
    """
4806
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4807 4808 4809 4810 4811 4812
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4813 4814 4815 4816
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4817 4818 4819 4820 4821 4822


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4823
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4824 4825
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4826
                       select=None,
Q
qijun 已提交
4827 4828
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4829 4830 4831
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4832 4833 4834
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4845
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4846

4847
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4848
    :type name: basestring
R
ranqiu 已提交
4849 4850
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4851 4852
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4853
                   If is None, acts exactly like fc_layer.
4854
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4855 4856
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4857
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4858 4859 4860
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4861 4862 4863 4864
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4865
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4866
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4867
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4868
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4869 4870 4871 4872
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4873
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4874 4875
        param_attr = [param_attr]
    else:
4876
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4877 4878 4879 4880
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4881 4882 4883 4884
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4885
    Layer(
Q
qijun 已提交
4886 4887 4888
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4889 4890 4891
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4892
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4893 4894 4895 4896
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4897 4898 4899 4900 4901 4902 4903
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4904 4905 4906


@wrap_name_default()
L
luotao1 已提交
4907 4908
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4919
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4920
    :type input: LayerOutput
4921
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4922
    :type name: basestring
L
luotao1 已提交
4923
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4924
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4925
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4926 4927
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4928
    l = Layer(
Z
zhangjinchao01 已提交
4929 4930 4931
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4932 4933 4934
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4935 4936 4937


@wrap_name_default()
L
luotao1 已提交
4938
@layer_support()
Q
qijun 已提交
4939 4940 4941 4942
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4943
                          layer_attr=None):
Z
zhangjinchao01 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4957
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4958
    :type input: LayerOutput
4959
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4960 4961 4962 4963 4964
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4965
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4966
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4967
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4968 4969 4970 4971 4972 4973 4974 4975
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4976 4977 4978
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4979 4980 4981


@wrap_name_default()
L
luotao1 已提交
4982
@layer_support()
Q
qijun 已提交
4983
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4984
    """
4985 4986 4987 4988
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4989 4990 4991

    .. math::

4992
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4993

4994 4995 4996 4997 4998
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4999

5000
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5001 5002

    In this formular:
5003 5004 5005 5006 5007 5008
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5009 5010 5011 5012 5013

    The simple usage is:

    .. code-block:: python

5014
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5015 5016
                                       size=elem_dim)

5017 5018 5019 5020
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5021 5022
    :param size: the dimension of this layer.
    :type size: int
5023
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5024
    :type name: basestring
L
luotao1 已提交
5025
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5026
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5027
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5028 5029
    :rtype: LayerOutput
    """
5030 5031 5032 5033
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5034
            size = vectors.size / weights.size
5035 5036
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5037 5038
    Layer(
        name=name,
5039
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5040
        size=size,
5041
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5042 5043 5044
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5045

5046

5047
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5048

5049

Z
zhangjinchao01 已提交
5050
@wrap_name_default()
L
luotao1 已提交
5051
@layer_support()
Z
zhangjinchao01 已提交
5052 5053 5054 5055 5056 5057 5058
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5059
                       num_channels=None,
L
luotao1 已提交
5060 5061
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5062 5063
    """
    Expand feature map to minibatch matrix.
5064
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5065
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5076
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5077 5078
    convolution neural network, and before recurrent neural network.

5079 5080 5081 5082
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5083
       block_expand = block_expand_layer(input=layer,
5084
                                         num_channels=128,
5085 5086 5087 5088 5089
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5090
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5091
    :type input: LayerOutput
5092
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5093
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5106
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5107
    :type name: None | basestring.
L
luotao1 已提交
5108
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5109
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5110
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5111 5112
    :rtype: LayerOutput
    """
5113 5114 5115
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5133 5134


5135 5136
@wrap_name_default()
@layer_support()
5137
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5138 5139 5140 5141 5142
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5143
    So groups should be larger than 1, and the num of channels should be able
5144 5145
    to devided by groups.

X
xuwei06 已提交
5146 5147 5148 5149 5150 5151 5152 5153
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5154
    Please refer to Paper:
5155 5156 5157 5158
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5159

5160 5161 5162 5163 5164 5165 5166 5167
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5168
    :param input: The input of this layer.
5169 5170 5171
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5172
    :type num_channels: int | None
5173 5174
    :param groups: The group number of input layer.
    :type groups: int
5175
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5176
    :type name: None | basestring.
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5197 5198


Z
zhangjinchao01 已提交
5199
@wrap_name_default()
L
luotao1 已提交
5200
@layer_support()
Q
qijun 已提交
5201 5202 5203 5204 5205
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5206
              layer_attr=None):
Z
zhangjinchao01 已提交
5207 5208 5209 5210 5211
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5212 5213
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5214 5215
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5216 5217 5218 5219 5220 5221 5222 5223

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5224
    The example usage is:
Z
zhangjinchao01 已提交
5225 5226 5227 5228 5229 5230 5231 5232

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5233
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5234 5235 5236
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5237
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5238
    :type size: int
5239
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5240
    :type name: basestring | None
Z
zhangjinchao01 已提交
5241 5242
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5243
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5244
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5245
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5246 5247 5248 5249
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5250 5251 5252 5253 5254
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5255
    Layer(
5256 5257 5258 5259
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5260
        inputs=[input.name, label.name],
Q
qijun 已提交
5261
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5262 5263
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5264

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5276
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5277
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5278 5279 5280 5281 5282 5283 5284
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5285 5286 5287
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5288
    icml2006_GravesFGS06.pdf>`_.
5289 5290 5291

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5292 5293 5294
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5295 5296
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5297
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5298
          'linear' activation is expected instead in the 'input' layer.
5299

C
caoying03 已提交
5300
    The example usage is:
5301 5302 5303 5304 5305 5306 5307 5308 5309

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5310
    :param input: The input of this layer.
5311 5312 5313 5314 5315
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5316
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5317
    :type name: basestring | None
5318 5319 5320 5321 5322
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5323
    :type layer_attr: ExtraLayerAttribute | None
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5346
@wrap_name_default()
5347
@wrap_param_attr_default()
L
luotao1 已提交
5348
@layer_support()
Q
qijun 已提交
5349 5350 5351 5352 5353 5354
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5355
              coeff=1.0,
L
luotao1 已提交
5356
              layer_attr=None):
Z
zhangjinchao01 已提交
5357 5358 5359 5360
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5361
    The example usage is:
Z
zhangjinchao01 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5372
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5373 5374 5375 5376 5377 5378 5379
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5380
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5381
    :type name: None | basestring
5382 5383
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5384
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5385
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5386
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5387 5388 5389 5390 5391
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5392 5393 5394 5395 5396 5397
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5398

Q
qijun 已提交
5399
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5400 5401 5402 5403
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5404 5405 5406 5407
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5408
        coeff=coeff,
Q
qijun 已提交
5409
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5410 5411 5412
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5413 5414 5415 5416
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5417

5418

Z
zhangjinchao01 已提交
5419
@wrap_name_default()
5420
@wrap_param_attr_default()
L
luotao1 已提交
5421
@layer_support()
Q
qijun 已提交
5422 5423 5424 5425 5426
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5427
                       layer_attr=None):
Z
zhangjinchao01 已提交
5428 5429 5430 5431 5432 5433 5434
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5435
    The example usage is:
L
Luo Tao 已提交
5436 5437 5438 5439 5440 5441

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5442 5443 5444 5445 5446 5447 5448 5449
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5450
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5451
    :type name: None | basestring
L
luotao1 已提交
5452
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5453
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5454
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5455 5456 5457 5458 5459 5460
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5461
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5462 5463 5464 5465
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5466 5467 5468 5469
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5470
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5471 5472 5473
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5474 5475 5476 5477
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5478

Q
qijun 已提交
5479

Y
Yu Yang 已提交
5480
@wrap_act_default(act=SigmoidActivation())
5481
@wrap_bias_attr_default(has_bias=True)
5482
@wrap_param_attr_default()
5483 5484
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5485 5486
def nce_layer(input,
              label,
C
caoying03 已提交
5487
              num_classes=None,
Y
Yu Yang 已提交
5488
              act=None,
5489
              param_attr=None,
Q
qijun 已提交
5490 5491 5492 5493 5494 5495
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5496 5497 5498 5499 5500 5501 5502 5503 5504
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5505 5506
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5507 5508
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5509
    :param name: The name of this layer. It is optional.
5510
    :type name: basestring
R
ranqiu 已提交
5511
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5512
    :type input: LayerOutput | list | tuple | collections.Sequence
5513 5514 5515 5516 5517
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5518
    :type num_classes: int
R
ranqiu 已提交
5519
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5520
    :type act: BaseActivation
5521 5522
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5523
    :param num_neg_samples: number of negative samples. Default is 10.
5524
    :type num_neg_samples: int
5525 5526 5527
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5528
    :type neg_distribution: list | tuple | collections.Sequence | None
5529 5530 5531 5532
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
5533
    :type bias_attr: ParameterAttribute | None | bool | Any
5534 5535 5536 5537 5538 5539 5540
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5541 5542 5543 5544 5545 5546 5547 5548
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5549
    assert isinstance(input, collections.Sequence)
5550

5551 5552
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5553 5554
    if num_classes is None:
        num_classes = label.size
5555 5556 5557
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5558
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5559 5560
    if not isinstance(act, BaseActivation):
        raise TypeError()
5561

5562 5563
    ipts_for_layer = []
    parents = []
5564
    for each_input, attr in zip(input, param_attr):
5565
        assert isinstance(each_input, LayerOutput)
5566
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5577
    l = Layer(
5578 5579 5580 5581
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5582
        active_type=act.name,
5583 5584 5585
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5586 5587
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5588 5589 5590 5591 5592
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5593

5594

Z
zhangjinchao01 已提交
5595 5596 5597
"""
following are cost Layers.
"""
5598 5599


Z
zhangjinchao01 已提交
5600
@wrap_name_default()
L
luotao1 已提交
5601
@layer_support()
Q
qijun 已提交
5602 5603 5604 5605 5606 5607 5608
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5609
    """
5610
    A cost Layer for learning to rank using gradient descent. Details can refer
5611 5612
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5613 5614 5615 5616 5617
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5618
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5619

L
luotao02 已提交
5620
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5621

L
luotao02 已提交
5622
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5623 5624 5625 5626 5627 5628 5629 5630

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5631
    The example usage is:
Z
zhangjinchao01 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5648
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5649
    :type name: None | basestring
Z
zhangjinchao01 已提交
5650 5651
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5652 5653
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5654
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5667 5668 5669 5670 5671 5672
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5673

X
xuwei06 已提交
5674
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5675

5676

Z
zhangjinchao01 已提交
5677
@wrap_name_default()
L
luotao1 已提交
5678
@layer_support()
Q
qijun 已提交
5679 5680 5681 5682 5683 5684
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5685 5686 5687
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5688
    The example usage is:
Z
zhangjinchao01 已提交
5689 5690 5691 5692 5693 5694 5695 5696

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5697
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5698 5699 5700 5701
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5702
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5703 5704 5705 5706 5707 5708
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5709 5710 5711
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5712
    :type max_sort_size: int
R
ranqiu 已提交
5713
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5714
    :type name: None | basestring
L
luotao1 已提交
5715 5716
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5717
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5718 5719
    :rtype: LayerOutput
    """
5720 5721 5722
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5723 5724 5725 5726 5727 5728 5729
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5730

Q
qijun 已提交
5731 5732
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5733

5734

Z
zhangjinchao01 已提交
5735
@wrap_name_default()
L
luotao1 已提交
5736
@layer_support()
5737 5738 5739 5740 5741 5742
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5743 5744 5745
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5746 5747
    The example usage is:

Z
zhangjinchao01 已提交
5748 5749
    .. code-block:: python

X
xuwei06 已提交
5750
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5751
                            label=label_layer)
Z
zhangjinchao01 已提交
5752 5753 5754 5755 5756

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5757
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5758
    :type name: None | basestring.
5759 5760
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5761
    :type coeff: float.
5762 5763 5764 5765
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5766 5767
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5768
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5769 5770 5771
    :rtype: LayerOutput.
    """

5772
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5773 5774 5775
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5776
        inputs=ipts,
Q
qijun 已提交
5777 5778
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5779
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5780

5781

Z
zhangjinchao01 已提交
5782
@wrap_name_default()
L
luotao1 已提交
5783
@layer_support()
Q
qijun 已提交
5784 5785 5786 5787
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5788 5789
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5790 5791
    """
    A loss layer for multi class entropy with selfnorm.
5792
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5793

C
caoying03 已提交
5794 5795
    The example usage is:

Z
zhangjinchao01 已提交
5796 5797
    .. code-block:: python

X
xuwei06 已提交
5798
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5799
                                          label=label_layer)
Z
zhangjinchao01 已提交
5800 5801 5802 5803 5804

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5805
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5806
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5807 5808 5809 5810
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5811 5812
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5813
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5814 5815
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5816 5817 5818 5819 5820 5821 5822
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5823

Q
qijun 已提交
5824 5825 5826 5827 5828
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5829

5830

X
xuwei06 已提交
5831 5832 5833 5834 5835 5836
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5837 5838
    The example usage is:

X
xuwei06 已提交
5839 5840
    .. code-block:: python

L
Luo Tao 已提交
5841
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5842

R
ranqiu 已提交
5843
    :param input: The input of this layer.
X
xuwei06 已提交
5844
    :type input: LayerOutput.
R
ranqiu 已提交
5845
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5846
    :type name: None | basestring.
X
xuwei06 已提交
5847 5848 5849 5850 5851
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5852
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5853 5854 5855 5856 5857
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5858

Q
qijun 已提交
5859
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5860 5861


Z
zhangjinchao01 已提交
5862
@wrap_name_default()
L
luotao1 已提交
5863
@layer_support()
L
Luo Tao 已提交
5864 5865 5866 5867 5868 5869
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5870
    """
5871 5872 5873
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5874 5875 5876 5877 5878
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5879

C
caoying03 已提交
5880 5881
    The example usage is:

Z
zhangjinchao01 已提交
5882 5883
    .. code-block:: python

L
Luo Tao 已提交
5884 5885 5886 5887 5888 5889
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5890
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5891
    :type name: None | basestring.
L
Luo Tao 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5913
@wrap_name_default()
L
luotao1 已提交
5914
@layer_support()
5915 5916 5917 5918 5919
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5920
    """
5921 5922 5923
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5924 5925 5926
    loss is defined as:

    .. math:
5927
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5928
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5929

C
caoying03 已提交
5930 5931
    The example usage is:

Z
zhangjinchao01 已提交
5932 5933
    .. code-block:: python

5934
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5935 5936 5937 5938 5939

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5940
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5941
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5942 5943
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5944 5945
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5947 5948
    :rtype: LayerOutput.
    """
5949 5950 5951
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5952 5953
    Layer(
        name=name,
5954
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5955 5956 5957
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5958 5959
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5960

5961

Z
zhangjinchao01 已提交
5962
@wrap_name_default()
L
luotao1 已提交
5963
@layer_support()
Q
qijun 已提交
5964 5965 5966 5967
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5968
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5969 5970 5971
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5972 5973
    The example usage is:

Z
zhangjinchao01 已提交
5974 5975
    .. code-block:: python

X
xuwei06 已提交
5976
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5977
                                               label=label_layer)
Z
zhangjinchao01 已提交
5978 5979 5980 5981 5982

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5983
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5984
    :type name: None | basestring
Z
zhangjinchao01 已提交
5985 5986
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5987 5988
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5989
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5990 5991 5992
    :rtype: LayerOutput
    """

5993 5994
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5995 5996 5997 5998
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6011 6012


C
caoying03 已提交
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6035 6036
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6037
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6038
    """
C
caoying03 已提交
6039 6040 6041
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6042

C
caoying03 已提交
6043 6044 6045 6046 6047
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6048

C
caoying03 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6067
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6088
    :param input: Input beams for this layer.
C
caoying03 已提交
6089
    :type input: BeamInput
R
ranqiu 已提交
6090
    :param name: The name of this layer.
C
caoying03 已提交
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6117 6118 6119
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6120 6121
@wrap_name_default()
@layer_support()
6122
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6123 6124
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6125
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6135
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6136

D
dangqingqing 已提交
6137 6138 6139
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6140 6141
    The example usage is:

D
dangqingqing 已提交
6142 6143
    .. code-block:: python

6144 6145
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6146 6147 6148 6149 6150

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6151
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6152
    :type name: None | basestring
6153 6154
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6168
        coeff=coeff,
D
dangqingqing 已提交
6169 6170 6171
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6191 6192
    The example usage is:

W
wwhu 已提交
6193 6194 6195 6196 6197 6198
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6199
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6225 6226


6227 6228 6229 6230
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6231 6232 6233 6234 6235 6236
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6237
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6238
    :type name: basestring
R
ranqiu 已提交
6239
    :param input: The input of this layer.
R
ranqiu 已提交
6240 6241 6242 6243 6244
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6245 6246 6247 6248 6249 6250 6251
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6252 6253


D
dangqingqing 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6267
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6268 6269 6270 6271 6272 6273 6274
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6275
    efficient manner to improve unidirectional RNNs.
6276

R
ranqiu 已提交
6277
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6278 6279 6280 6281
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6282

D
dangqingqing 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6298
    :param input: The input of this layer.
D
dangqingqing 已提交
6299 6300 6301 6302
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6303
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6304 6305
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6306
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6307 6308
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
6309
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6326 6327


6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6347 6348 6349 6350 6351 6352
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6353
    :param name: The name of this layer. It is optional.
6354
    :type name: basestring
R
ranqiu 已提交
6355
    :param input: The input of this layer.
6356 6357
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6358 6359 6360 6361 6362 6363

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6364
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6365
    :type param_attr: ParameterAttribute | None
6366
    :param layer_attr: Extra layer configurations. Default is None.
R
ranqiu 已提交
6367
    :type layer_attr: ExtraLayerAttribute | None
6368 6369 6370 6371
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6372
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6373
    assert isinstance(param_attr, ParameterAttribute)
6374 6375 6376

    l = Layer(
        name=name,
C
caoying03 已提交
6377
        type=LayerType.PRELU,
C
caoying03 已提交
6378
        inputs=Input(input.name, **param_attr.attr),
6379 6380 6381 6382 6383 6384 6385
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6386 6387


6388
@wrap_name_default()
C
caoying03 已提交
6389
@layer_support(ERROR_CLIPPING, DROPOUT)
6390 6391 6392 6393 6394 6395 6396
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6397 6398
                     gate_bias_attr=True,
                     inproj_attr=None,
6399 6400 6401 6402 6403 6404 6405
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6406
    product between :match:`X'` and :math:`\sigma` is finally returned.
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6420
    :param input: The input of this layer.
6421 6422 6423
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
R
ranqiu 已提交
6424
    :param act: Activation type of the projected input. LinearActivation is the default.
6425
    :type act: BaseActivation
6426
    :param name: The name of this layer. It is optional.
6427 6428 6429 6430
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
R
ranqiu 已提交
6431
    :type gate_attr: ExtraLayerAttribute | None
6432 6433
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
R
ranqiu 已提交
6434
    :type gate_param_attr: ParameterAttribute | None
C
caoying03 已提交
6435
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
R
ranqiu 已提交
6436
    :type gate_bias_attr: ParameterAttribute | None
C
caoying03 已提交
6437 6438 6439
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6440
    :type inproj_attr: ExtraLayerAttribute | None
6441 6442
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
R
ranqiu 已提交
6443
    :type inproj_param_attr: ParameterAttribute | None
6444 6445
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
R
ranqiu 已提交
6446
    :type inproj_bias_attr: ParameterAttribute | None
6447 6448 6449
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6450
    :type layer_attr: ExtraLayerAttribute | None
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6463
        layer_attr=inproj_attr,
6464 6465 6466 6467 6468 6469 6470 6471 6472
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6473
        param_attr=gate_param_attr,
6474 6475 6476 6477 6478
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6479 6480


6481
@layer_support()
6482
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6483 6484
def switch_order_layer(input,
                       name=None,
6485
                       reshape_axis=None,
W
wanghaoshuang 已提交
6486 6487
                       act=None,
                       layer_attr=None):
6488
    """
6489
    This layer switch dimension order of image input.
6490 6491
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6492 6493 6494 6495

    The example usage is:

    .. code-block:: python
6496 6497
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6498
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6499

R
ranqiu 已提交
6500
    :param input: The input of this layer.
6501
    :type input: LayerOutput
6502
    :param name: The name of this layer. It is optional.
6503
    :type name: basestring
R
ranqiu 已提交
6504 6505
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6506 6507 6508
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6509
    assert isinstance(input, LayerOutput)
6510 6511 6512 6513 6514
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6515 6516
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6517
        inputs=input.name,
6518 6519
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6520
        active_type=act.name,
6521 6522 6523
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6524
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6525
        activation=act,
6526 6527
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6528 6529


6530 6531
@wrap_name_default()
@layer_support()
6532
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6533
    """
R
ranqiu 已提交
6534
    This layer crops images by offset and shape. User can set crop shape by
6535
    args 'shape' explicitly or by reference input layer.
6536

6537 6538 6539
    The example usage is:

    .. code-block:: python
W
whs 已提交
6540
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6541

R
ranqiu 已提交
6542 6543 6544 6545
    :param input: The input of this layer. If two inputs are given, the second input
                  will be regarded as reference input.
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6546
    :type offset: Sequence
6547 6548 6549 6550 6551 6552 6553
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6554
    :type shape: Sequence | None
6555
    :param name: The name of this layer. It is optional.
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6577 6578


C
caoying03 已提交
6579 6580
@wrap_name_default()
@layer_support()
6581
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6582
    """
6583
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6584
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6585

C
caoying03 已提交
6586 6587 6588
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6589 6590 6591 6592

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6593

R
ranqiu 已提交
6594
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6595

C
caoying03 已提交
6596

R
ranqiu 已提交
6597
    :param input: The input of this layer. It is a nested sequence.
6598
    :type input: LayerOutput
R
ranqiu 已提交
6599
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6600
    :type input: LayerOutput
6601
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6602 6603 6604 6605
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6606

6607 6608 6609 6610 6611 6612 6613
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6614
    l = Layer(
6615 6616
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6617 6618 6619 6620 6621 6622 6623
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6624 6625


G
guosheng 已提交
6626
@wrap_name_default("clip")
6627
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6637
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6638

6639
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6640
    :type name: basestring
R
ranqiu 已提交
6641
    :param input: The input of this layer.
G
guosheng 已提交
6642
    :type input: LayerOutput.
6643 6644 6645 6646
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6647 6648
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6649 6650 6651 6652 6653
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6654 6655
        min=min,
        max=max)
G
guosheng 已提交
6656 6657
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6658 6659


6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6684
    :param name: The name of this layer. It is optional.
6685
    :type name: basestring
R
ranqiu 已提交
6686
    :param input: The input of this layer, which should be a sequence.
6687 6688
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
R
ranqiu 已提交
6689
    :type starts: LayerOutput | None
6690
    :param ends: end indices to slice the input sequence.
R
ranqiu 已提交
6691
    :type ends: LayerOutput | None
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6724 6725


6726 6727
@wrap_name_default()
@layer_support()
6728
def kmax_seq_score_layer(input, name=None, beam_size=1):
6729
    """
C
caoying03 已提交
6730
    This layer accepts one input which are scores over a sequence or a nested
6731 6732 6733 6734
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6735
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6736 6737


6738
    :param name: The name of this layer. It is optional.
6739
    :type name: basestring
R
ranqiu 已提交
6740
    :param input: The input of this layer. It stores scores over a sequence or a nested
6741
        sequence and its size must be 1.
R
ranqiu 已提交
6742
    :type input: LayerOutput
R
ranqiu 已提交
6743
    :param beam_size: sequence indices with top beam_size scores are returned.
6744 6745 6746 6747
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6748
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6749
                                            "accepts only one input.")
6750
    assert input.size == 1, (
6751
        "input of kmax_seq_score_layer is a score "
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6762 6763


6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6790
        conv = img_conv3d_layer(input=data, filter_size=1,
6791 6792 6793 6794 6795
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6796
    :param name: The name of this layer. It is optional.
6797
    :type name: basestring
R
ranqiu 已提交
6798
    :param input: The input of this layer.
6799
    :type input: LayerOutput
C
chengduoZH 已提交
6800
    :param filter_size: The x dimension of a filter kernel. Or input a list.
R
ranqiu 已提交
6801
    :type filter_size: int | tuple | list
6802
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
6803
    :param act: Activation type. ReluActivation is the default.
6804 6805 6806 6807 6808
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
6809
    :type stride: int | tuple | list
6810 6811
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
6812
    :type padding: int | tuple | list
6813 6814
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
R
ranqiu 已提交
6815
    :type bias_attr: ParameterAttribute | None | bool | Any
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6839 6840 6841 6842 6843 6844
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6845

C
chengduoZH 已提交
6846 6847 6848 6849 6850 6851
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6852

C
chengduoZH 已提交
6853 6854 6855 6856 6857 6858
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6905 6906


G
guosheng 已提交
6907 6908 6909 6910 6911
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6912 6913
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6914 6915
    adds a bias to it.

X
xuwei06 已提交
6916
    This layer is very like the SlopeInterceptLayer, except the scale and
6917 6918
    bias are trainable.

G
guosheng 已提交
6919 6920 6921 6922 6923 6924 6925 6926
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6927
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6928
    :type name: basestring
R
ranqiu 已提交
6929 6930
    :param input: The input of this layer.
    :type input: LayerOutput
G
guosheng 已提交
6931 6932
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6933 6934 6935 6936
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6937
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6948 6949 6950 6951 6952 6953 6954 6955 6956


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6957
    :param input: The input of this layer.
6958 6959 6960
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6961
    :param size: The resized output dimension of this layer.
6962 6963 6964 6965 6966 6967
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029


@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.

    The Factorization Machine can effectively capture feature interactions
    especially when the input is sparse. In practice, usually order 2 feature
    interactions are considered using Factorization Machine with the formula:

    .. math::

        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j

    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.

    .. code-block:: python

       factor_machine = factorization_machine(input=input_layer, factor_size=10)

    :param input: The input layer.
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
                        the latent vector size
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the latent vectors will
                       be initialized smartly. It's better to set it by
                       yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)