Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1644c72a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
1644c72a
编写于
10月 11, 2017
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add framework of the factorization machine layer
上级
3f874143
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
287 addition
and
5 deletion
+287
-5
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+11
-4
paddle/gserver/layers/FactorizationMachineLayer.cpp
paddle/gserver/layers/FactorizationMachineLayer.cpp
+65
-0
paddle/gserver/layers/FactorizationMachineLayer.h
paddle/gserver/layers/FactorizationMachineLayer.h
+59
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+19
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+3
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+15
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+65
-0
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_factorization_machine.protostr
...ests/configs/protostr/test_factorization_machine.protostr
+39
-0
python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py
...onfig_helpers/tests/configs/test_factorization_machine.py
+9
-0
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
1644c72a
...
...
@@ -54,7 +54,7 @@ img_conv
.. _api_v2.layer_context_projection:
context_projection
context_projection
------------------
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
...
...
@@ -70,7 +70,7 @@ Image Pooling Layer
img_pool
--------
.. autoclass:: paddle.v2.layer.img_pool
:noindex:
:noindex:
spp
---
...
...
@@ -99,7 +99,7 @@ sum_to_one_norm
---------------
.. autoclass:: paddle.v2.layer.sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. autoclass:: paddle.v2.layer.cross_channel_norm
...
...
@@ -109,7 +109,7 @@ row_l2_norm
-----------
.. autoclass:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers
================
...
...
@@ -395,6 +395,13 @@ multiplex
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Factorization Machine Layer
============================
factorization_machine
---------------------
.. autoclass:: paddle.v2.layer.factorization_machine
:noindex:
Slicing and Joining Layers
==========================
...
...
paddle/gserver/layers/FactorizationMachineLayer.cpp
0 → 100644
浏览文件 @
1644c72a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FactorizationMachineLayer.h"
#include <algorithm>
#include <vector>
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_LAYER
(
factorization_machine
,
FactorizationMachineLayer
);
bool
FactorizationMachineLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
factorSize_
=
config_
.
factor_size
();
/* initialize the latentVectors_ */
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
size_t
height
=
inputLayers_
[
0
]
->
getSize
();
latentVectors_
.
reset
(
new
Weight
(
height
,
factorSize_
,
parameters_
[
0
]));
return
true
;
}
void
FactorizationMachineLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
auto
input
=
getInput
(
0
);
int
batchSize
=
input
.
getBatchSize
();
int
size
=
getSize
();
reserveOutput
(
batchSize
,
size
);
MatrixPtr
outV
=
getOutputValue
();
/* activation */
{
REGISTER_TIMER_INFO
(
"FwAtvTimer"
,
getName
().
c_str
());
forwardActivation
();
}
}
void
FactorizationMachineLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
/* Do derivation */
{
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
}
}
// namespace paddle
paddle/gserver/layers/FactorizationMachineLayer.h
0 → 100644
浏览文件 @
1644c72a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/ThreadLocal.h"
namespace
paddle
{
/**
* @brief The Factorization Machine models pairwise (order-2) feature
* interactions as inner product of the learned latent vectors corresponding
* to each input feature.
*
* The Factorization Machine can effectively capture feature interactions
* especially when the input is sparse. While in principle FM can model higher
* order feature interaction, in practice usually only order-2 feature
* interactions are considered. The Factorization Machine Layer here only
* computes the order-2 interations with the formula:
*
* \f[
* y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
* \f]
*
* The config file api is factorization_machine.
*/
class
FactorizationMachineLayer
:
public
Layer
{
protected:
/// The latent vectors, shape: (size, factorSize_)
std
::
unique_ptr
<
Weight
>
latentVectors_
;
/// The hyperparameter that defines the dimensionality of the factorization
size_t
factorSize_
;
public:
explicit
FactorizationMachineLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
FactorizationMachineLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
1644c72a
...
...
@@ -2359,6 +2359,25 @@ TEST(Layer, ScaleShiftLayer) {
}
}
void
testFactorizationMachineLayer
(
InputType
type
,
bool
useGpu
)
{
const
int
FACTOR_SIZE
=
10
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"factorization_machine"
);
config
.
layerConfig
.
set_factor_size
(
FACTOR_SIZE
);
config
.
biasSize
=
1
;
config
.
inputDefs
.
push_back
({
type
,
"layer_0"
,
8192
,
0
});
config
.
layerConfig
.
add_inputs
();
testLayerGrad
(
config
,
"factorization_machine"
,
16
,
false
,
useGpu
,
false
);
}
TEST
(
Layer
,
FactorizationMachineLayer
)
{
testFactorizationMachineLayer
(
INPUT_DATA
,
false
);
testFactorizationMachineLayer
(
INPUT_SPARSE_FLOAT_VALUE_DATA
,
false
);
#ifdef PADDLE_WITH_CUDA
testFactorizationMachineLayer
(
INPUT_DATA
,
true
);
#endif
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
proto/ModelConfig.proto
浏览文件 @
1644c72a
...
...
@@ -525,6 +525,9 @@ message LayerConfig {
// for switch order layer
optional
ReshapeConfig
reshape_conf
=
59
;
// for factorization machine layer
optional
uint32
factor_size
=
60
;
}
message
EvaluatorConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
1644c72a
...
...
@@ -3780,6 +3780,21 @@ class SwitchOrderLayer(LayerBase):
self
.
config
.
reshape_conf
.
width_axis
.
extend
(
reshape
[
'width'
])
@
config_layer
(
'factorization_machine'
)
class
FactorizationMachineLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
factor_size
,
**
xargs
):
super
(
FactorizationMachineLayer
,
self
).
__init__
(
name
,
'factorization_machine'
,
size
=
1
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'factorization machine layer must have one and only one input.'
)
self
.
config
.
factor_size
=
factor_size
input_layer
=
self
.
get_input_layer
(
0
)
psize
=
input_layer
.
size
*
factor_size
dims
=
[
input_layer
.
size
,
1
]
self
.
create_input_parameter
(
0
,
psize
,
dims
)
# Deprecated, use a new layer specific class instead
@
config_func
def
Layer
(
name
,
type
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
1644c72a
...
...
@@ -143,6 +143,7 @@ __all__ = [
'scale_shift_layer'
,
'img_conv3d_layer'
,
'resize_layer'
,
'factorization_machine'
,
]
...
...
@@ -253,6 +254,8 @@ class LayerType(object):
RESIZE
=
'resize'
FACTORIZATION_MACHINE
=
'factorization_machine'
@
staticmethod
def
is_layer_type
(
type_name
):
"""
...
...
@@ -6955,3 +6958,65 @@ def resize_layer(input, size, name=None):
"""
Layer
(
name
=
name
,
type
=
LayerType
.
RESIZE
,
inputs
=
Input
(
input
.
name
),
size
=
size
)
return
LayerOutput
(
name
,
LayerType
.
RESIZE
,
parents
=
[
input
],
size
=
input
.
size
)
@
wrap_name_default
()
@
wrap_act_default
(
act
=
LinearActivation
())
@
wrap_param_attr_default
()
@
layer_support
()
def
factorization_machine
(
input
,
factor_size
,
act
=
None
,
name
=
None
,
param_attr
=
None
,
layer_attr
=
None
):
"""
The Factorization Machine models pairwise feature interactions as inner
product of the learned latent vectors corresponding to each input feature.
The Factorization Machine can effectively capture feature interactions
especially when the input is sparse. In practice, usually order 2 feature
interactions are considered using Factorization Machine with the formula:
.. math::
y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j
\r
angle x_i x_j
Note:
X is the input vector with size n. V is the factor matrix. Each row of V
is the latent vector corresponding to each input dimesion. The size of
each latent vector is k.
.. code-block:: python
factor_machine = factorization_machine(input=input_layer, factor_size=10)
:param input: The input layer.
:type input: LayerOutput
:param factor_size: The hyperparameter that defines the dimensionality of
the latent vector size
:type context_len: int
:param act: Activation Type. Default is linear activation.
:type act: BaseActivation
:param param_attr: The Parameter Attribute. If None, the latent vectors will
be initialized smartly. It's better to set it by
yourself.
:type param_attr: ParameterAttribute
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
)
assert
factor_size
>
0
,
"the factor_size must be greater than 0."
Layer
(
inputs
=
[
Input
(
input
.
name
,
**
param_attr
.
attr
)],
name
=
name
,
factor_size
=
factor_size
,
type
=
LayerType
.
FACTORIZATION_MACHINE
,
active_type
=
act
.
name
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
FACTORIZATION_MACHINE
,
input
,
activation
=
act
,
size
=
1
)
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
1644c72a
...
...
@@ -10,6 +10,7 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
)
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_factorization_machine
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_factorization_machine.protostr
0 → 100644
浏览文件 @
1644c72a
type: "nn"
layers {
name: "data"
type: "data"
size: 1024
active_type: ""
}
layers {
name: "__factorization_machine_0__"
type: "factorization_machine"
size: 1
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___factorization_machine_0__.w0"
}
factor_size: 10
}
parameters {
name: "___factorization_machine_0__.w0"
size: 10240
initial_mean: 0.0
initial_std: 0.03125
dims: 1024
dims: 1
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__factorization_machine_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__factorization_machine_0__"
input_layer_names: "data"
output_layer_names: "__factorization_machine_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py
0 → 100644
浏览文件 @
1644c72a
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
1024
)
fm
=
factorization_machine
(
input
=
data
,
factor_size
=
10
)
outputs
(
fm
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录