nn.py 414.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
486 487 488
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
489
            hidden_dim = 512
490 491 492 493 494 495
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
496
                                           bias_attr=False)
497

W
wopeizl 已提交
498 499 500
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
501
    assert in_dygraph_mode(
502
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
546 547


P
phlrain 已提交
548 549 550 551 552 553
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
554
         dropout_prob=0.0,
P
phlrain 已提交
555 556 557 558 559
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
560
    """
P
phlrain 已提交
561
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
562 563

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
564
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
565 566
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
567
    .. math::
M
minqiyang 已提交
568 569 570 571 572 573 574

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
575
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
576 577 578 579

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
580 581

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
582 583 584 585 586 587
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
588 589 590
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
591
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
592

M
minqiyang 已提交
593
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
594 595 596 597 598
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
599
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
600 601 602 603 604
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
605
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
606 607
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
608 609
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
610 611 612 613 614 615
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
616
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
617

L
liuhongyu 已提交
618 619

    Returns:
M
minqiyang 已提交
620 621
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
622
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
623

H
haowang101779990 已提交
624 625 626 627
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
628
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
629 630
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
631
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
632 633 634 635


    Examples:
        .. code-block:: python
636 637 638 639 640 641
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
642 643 644 645 646 647
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
648 649 650 651 652
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
653 654 655 656
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
657 658 659
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
719 720 721 722 723 724 725 726 727 728
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
729
                  proj_activation='tanh',
730
                  dtype='float32',
X
xuezhong 已提交
731 732 733 734 735
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
736 737 738
    """
    **Dynamic LSTMP Layer**

739 740 741 742 743 744
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
745 746 747 748 749

    The formula is as follows:

    .. math::

750
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
751

752
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
753

754
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
755

756
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
757

758
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
759

760
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
761

762
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
763

Y
Yibing Liu 已提交
764 765 766 767 768 769
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
770
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
771
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
772
          bias vector).
Y
Yibing Liu 已提交
773 774 775
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
776
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
777
    * :math:`h`: The hidden state.
778
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
779 780
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
781
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
782
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
783
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
784 785
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
786 787 788 789

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
790

Y
Yibing Liu 已提交
791 792 793 794 795 796 797 798 799 800 801 802
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
803
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
804 805
                               hidden-hidden weight and projection weight.

806 807
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
808 809
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
810 811
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
812
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
813 814 815 816 817

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
818
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
819 820 821 822 823 824
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
825
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
826 827 828
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
829
                                - The shape is (1 x 7D).
C
chengduo 已提交
830 831 832 833 834

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
835 836 837 838 839 840 841 842 843
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
844
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
845 846
                              default "tanh".
        proj_activation(str): The activation for projection output.
847
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
848
                              default "tanh".
Y
Yibing Liu 已提交
849
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
850 851
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
852 853 854 855 856 857 858 859 860 861 862
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
863 864

    Returns:
865 866 867 868
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
869 870

    Examples:
871

Y
Yibing Liu 已提交
872 873
        .. code-block:: python

874 875 876 877
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
878
            hidden_dim, proj_dim = 512, 256
879
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
880
                                     act=None, bias_attr=None)
881 882 883
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
884 885 886 887
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
888
    """
889

L
lujun 已提交
890
    assert in_dygraph_mode(
891 892
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
893
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
894
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
895
    size = size // 4
Y
Yibing Liu 已提交
896 897 898 899 900 901 902 903 904 905
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
906 907 908 909 910 911
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
927

X
xuezhong 已提交
928 929 930 931 932
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
933 934
    helper.append_op(
        type='lstmp',
935
        inputs=inputs,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
945 946
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
947 948 949 950 951 952 953 954 955
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
956 957 958 959 960 961 962
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
963 964
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
965
    """
966
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
967

968 969 970
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
971

G
guosheng 已提交
972 973 974 975 976 977 978 979 980
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
981

G
guosheng 已提交
982
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
983

Q
Qiao Longfei 已提交
984 985 986

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
987 988 989 990 991 992 993 994 995 996 997 998
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
999
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1000 1001
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1002 1003 1004 1005
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1006
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1007 1008

    Args:
1009 1010
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1011
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1012
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1013 1014
            is the hidden size.
        size(int): The dimension of the gru cell.
1015
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1016 1017
            hidden-hidden weight matrix. Note:

1018
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1019
              :math:`D` is the hidden size.
1020
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1021
              The first part are weights of the update gate and reset gate with
1022
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1023
              candidate hidden state with shape :math:`(D \\times D)`.
1024 1025 1026 1027 1028

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1029
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1030
            the bias in the update gate, reset gate and candidate calculations.
1031 1032 1033
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1034 1035
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1036
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1037 1038 1039
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1040
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1041
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1042 1043 1044 1045
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1046 1047

    Returns:
G
guosheng 已提交
1048
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1049
            and sequence length is the same with the input.
1050

G
guosheng 已提交
1051
    Examples:
1052

G
guosheng 已提交
1053 1054
        .. code-block:: python

1055 1056
            import paddle.fluid as fluid

1057 1058 1059 1060
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1061
            hidden_dim = 512
1062
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1063
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1064 1065
    """

L
lujun 已提交
1066
    assert in_dygraph_mode(
1067 1068
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1069 1070 1071 1072 1073 1074 1075
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1076
    batch_size = input.shape[0]
G
guosheng 已提交
1077
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1078
    if h_0:
G
guosheng 已提交
1079
        assert h_0.shape == (
Y
Yancey 已提交
1080 1081 1082
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1083

X
Xin Pan 已提交
1084 1085 1086 1087
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1101 1102
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1103 1104 1105 1106
        })
    return hidden


Y
Yu Yang 已提交
1107 1108 1109
def gru_unit(input,
             hidden,
             size,
1110 1111
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1112
             activation='tanh',
Q
Qiao Longfei 已提交
1113 1114
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1115
    """
1116 1117 1118
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1119
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1120
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1121

1122 1123
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1124

1125
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1126

1127
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1144 1145

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1146 1147 1148
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1149 1150
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1151 1152
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1153 1154 1155
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1156 1157 1158

    Args:
        input (Variable): The fc transformed input value of current step.
1159
        hidden (Variable): The hidden value of gru unit from previous step.
1160
        size (integer): The input dimension value.
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1175
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1176
            the bias in the update gate, reset gate and candidate calculations.
1177 1178 1179
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1180 1181
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1182 1183 1184 1185
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1186

1187 1188 1189 1190 1191 1192
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1217
    size = size // 3
Y
Yu Yang 已提交
1218 1219

    # create weight
1220 1221
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1222

X
Xin Pan 已提交
1223 1224 1225
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1226
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1227
    # create bias
1228
    if helper.bias_attr:
Y
Yu Yang 已提交
1229 1230 1231
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1232
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1233 1234 1235

    helper.append_op(
        type='gru_unit',
1236
        inputs=inputs,
Y
Yu Yang 已提交
1237 1238 1239 1240 1241 1242
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1243 1244
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1245 1246 1247 1248 1249
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1250
@templatedoc()
1251
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1252 1253 1254 1255 1256 1257 1258
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1259
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1260 1261 1262 1263
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1264 1265 1266
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1267

J
JesseyXujin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1281
    """
Y
Yu Yang 已提交
1282 1283 1284 1285 1286 1287
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1288 1289 1290 1291 1292 1293 1294 1295
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1311 1312 1313 1314
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1315

W
wopeizl 已提交
1316 1317
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1318

W
wopeizl 已提交
1319
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1320

W
wopeizl 已提交
1321
        label(${label_type}): ${label_comment}
1322

W
wopeizl 已提交
1323 1324
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1325

W
wopeizl 已提交
1326 1327
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1328

Y
Yibing Liu 已提交
1329 1330 1331 1332 1333 1334 1335
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1336 1337 1338 1339 1340 1341 1342 1343
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1344
                "Transition": transition,
W
wopeizl 已提交
1345 1346
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1347

W
wopeizl 已提交
1348
    return viterbi_path
Y
Yu Yang 已提交
1349 1350


Y
yi.wu 已提交
1351
@templatedoc()
F
fengjiayi 已提交
1352
def cos_sim(X, Y):
Y
Yu Yang 已提交
1353
    """
Y
yi.wu 已提交
1354 1355 1356
    ${comment}

    Args:
1357 1358
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1359

Y
yi.wu 已提交
1360
    Returns:
1361
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1362 1363 1364 1365 1366 1367 1368

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1369
    """
F
fengjiayi 已提交
1370
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1371 1372 1373
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1384 1385 1386 1387 1388
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1389
            dropout_implementation="downgrade_in_infer"):
1390 1391 1392 1393 1394
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1395
    training. The dropout operator randomly sets (according to the given dropout
1396 1397 1398
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1399 1400
    dropout op can be removed from the program to make the program more efficient.

1401
    Args:
1402 1403
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1404 1405 1406 1407 1408 1409 1410
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1411 1412
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1413
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1414 1415

                                           - train: out = input * mask
C
ceci3 已提交
1416
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1417 1418 1419

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1420
                                        2. upscale_in_train, upscale the outcome at training time
1421

H
haowang101779990 已提交
1422 1423
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1424

H
haowang101779990 已提交
1425 1426
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1427

M
minqiyang 已提交
1428

1429
    Returns:
1430
        Variable: A tensor variable is the shape with `x`.
1431 1432

    Examples:
1433

1434 1435
        .. code-block:: python

1436 1437
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1438 1439
    """

F
fengjiayi 已提交
1440
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1441 1442
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1443
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1444 1445 1446 1447

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1448 1449 1450 1451 1452
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1453 1454 1455 1456
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1457 1458
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1459
        })
1460 1461 1462
    return out


J
jerrywgz 已提交
1463
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1464
    """
Y
Yibing Liu 已提交
1465 1466
    **Cross Entropy Layer**

1467 1468 1469
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1470 1471

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1472
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1473

Y
Yibing Liu 已提交
1474
        .. math::
Y
yangyaming 已提交
1475

Y
Yibing Liu 已提交
1476 1477 1478
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1479 1480
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1481 1482 1483 1484 1485

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1486
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1487 1488 1489
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1490 1491
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1492
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1493

Y
Yibing Liu 已提交
1494
    Args:
Y
yangyaming 已提交
1495
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1496 1497 1498 1499
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1500
        label (Variable|list): the ground truth which is a 2-D tensor. When
1501 1502 1503 1504
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1505
        soft_label (bool): a flag indicating whether to
1506
                                           interpretate the given labels as soft
1507
                                           labels. Default: `False`.
M
minqiyang 已提交
1508 1509
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1510
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1511 1512 1513 1514 1515

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1516 1517 1518
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1519

H
haowang101779990 已提交
1520 1521
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1522

H
haowang101779990 已提交
1523 1524
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1525 1526 1527 1528

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1529 1530 1531 1532
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1533
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1534
    """
S
sneaxiy 已提交
1535 1536
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1537
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1538
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1539 1540 1541 1542 1543
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1544 1545
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1546 1547 1548
    return out


S
sneaxiy 已提交
1549 1550 1551 1552
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1553
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1554 1555 1556 1557 1558
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1559
                 'MatchX': [match_x],
S
sneaxiy 已提交
1560 1561 1562 1563 1564
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1565
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1566
    """
1567
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1568

1569
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1570
    The loss at a given point in one session is defined as:
1571 1572 1573

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1574 1575

    Learn more details by reading paper <session-based recommendations with recurrent
1576
    neural networks>.
F
frankwhzhang 已提交
1577

1578 1579 1580 1581 1582 1583
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1584 1585
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1586 1587 1588
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1589 1590 1591
    Examples:
        .. code-block:: python

1592 1593 1594 1595 1596 1597 1598
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1599
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1600
    """
1601 1602 1603 1604 1605
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1606
                'Label': [label]},
1607 1608 1609 1610
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1611
def square_error_cost(input, label):
Y
Yu Yang 已提交
1612
    """
1613 1614
    **Square error cost layer**

1615 1616
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1631 1632
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1633 1634

    Returns:
G
guosheng 已提交
1635
        Variable: The tensor variable storing the element-wise squared error \
1636
                  difference of input and label.
1637 1638 1639 1640

    Examples:
        .. code-block:: python

R
ruri 已提交
1641 1642 1643
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1644

Y
Yu Yang 已提交
1645
    """
F
fengjiayi 已提交
1646
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1647
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1648 1649 1650 1651 1652 1653
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1654
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1655
    helper.append_op(
F
fengjiayi 已提交
1656 1657
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1658 1659 1660
    return square_out


Y
yi.wu 已提交
1661
@templatedoc()
Y
Yu Yang 已提交
1662 1663 1664 1665
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1666
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1667
    """
Y
yi.wu 已提交
1668
    **Chunk Evaluator**
Y
yi.wu 已提交
1669

Y
yangyaming 已提交
1670
    This function computes and outputs the precision, recall and
1671
    F1-score of chunk detection.
Y
yi.wu 已提交
1672

M
minqiyang 已提交
1673
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1674
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1675 1676 1677 1678 1679 1680

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1681

Y
yi.wu 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1707

Y
yi.wu 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1732
    Args:
1733 1734 1735 1736 1737
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1738

Y
yi.wu 已提交
1739
    Returns:
Y
update  
yi.wu 已提交
1740 1741 1742
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1743

Y
yi.wu 已提交
1744 1745 1746
    Examples:
        .. code-block:: python

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1758
            crf = fluid.layers.linear_chain_crf(
1759
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1760
            crf_decode = fluid.layers.crf_decoding(
1761
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1762 1763 1764 1765 1766
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1767
    """
F
fengjiayi 已提交
1768
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1769 1770

    # prepare output
X
Xin Pan 已提交
1771 1772 1773 1774 1775 1776 1777
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1778 1779 1780 1781 1782 1783 1784 1785

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1786 1787 1788 1789
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1790 1791 1792
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1793 1794
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1795
        })
1796 1797
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1798 1799


1800
@templatedoc()
Y
Yu Yang 已提交
1801 1802 1803 1804 1805 1806 1807
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1808 1809
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1810 1811 1812 1813
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1814 1815 1816 1817 1818 1819 1820

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1834

1835 1836
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1837 1838
    """

L
lujun 已提交
1839
    assert not in_dygraph_mode(), (
1840
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1841 1842 1843 1844 1845
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1846
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1857
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1858 1859 1860 1861 1862 1863
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1864
def sequence_softmax(input, use_cudnn=False, name=None):
1865 1866 1867
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1868
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1885 1886 1887
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1900
    assert not in_dygraph_mode(), (
1901
        "sequence layer is not supported in dygraph mode yet.")
1902 1903
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1904
    softmax_out = helper.create_variable_for_type_inference(dtype)
1905 1906 1907 1908 1909 1910 1911 1912
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1913
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1914
    """
1915
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1916
    has the same shape as the input.
Q
qiaolongfei 已提交
1917

D
dengkaipeng 已提交
1918
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1919
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1920
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1921 1922 1923
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1924
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1925
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1926 1927 1928 1929 1930 1931 1932

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1933
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1934 1935 1936 1937 1938 1939 1940 1941

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1942 1943
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1944 1945
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1946 1947 1948
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1949 1950 1951 1952 1953 1954 1955 1956

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1957 1958
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1959
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1960
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1961
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1962 1963
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1964 1965

    """
1966 1967
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1968
    softmax_out = helper.create_variable_for_type_inference(dtype)
1969 1970 1971 1972
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1973 1974
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1975 1976 1977
    return softmax_out


Y
Yu Yang 已提交
1978 1979 1980
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1981 1982
           stride=1,
           padding=0,
1983
           dilation=1,
Y
Yu Yang 已提交
1984 1985 1986
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1987
           use_cudnn=True,
1988 1989
           act=None,
           name=None):
Y
Yu Yang 已提交
1990
    """
C
chengduoZH 已提交
1991
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1992 1993
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1994
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1995 1996 1997 1998 1999 2000 2001
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2002 2003 2004
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2005

2006
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2007

C
chengduoZH 已提交
2008 2009
    .. math::

C
refine  
chengduoZH 已提交
2010
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2011

T
tensor-tang 已提交
2012
    Where:
C
chengduoZH 已提交
2013

2014 2015 2016 2017 2018
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2019
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2020 2021 2022

    Example:

2023 2024
        - Input:

W
weixing02 已提交
2025
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2026

W
weixing02 已提交
2027
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2028

2029
        - Output:
T
tensor-tang 已提交
2030

W
weixing02 已提交
2031
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2032

C
chengduoZH 已提交
2033
        Where
2034 2035

        .. math::
C
chengduoZH 已提交
2036

W
weixing02 已提交
2037 2038
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2039 2040

    Args:
2041
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2042
        num_filters(int): The number of filter. It is as same as the output
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2060 2061 2062 2063 2064
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2065
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2066 2067 2068 2069 2070
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2071 2072
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2073 2074
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2075
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2076
            will be named automatically. Default: None
C
chengduoZH 已提交
2077 2078

    Returns:
G
guosheng 已提交
2079
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2080 2081
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2082
    Raises:
2083 2084
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2085

C
chengduoZH 已提交
2086 2087 2088
    Examples:
        .. code-block:: python

2089 2090
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2091 2092 2093
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2094
    assert param_attr is not False, "param_attr should not be False here."
2095
    l_type = 'conv2d'
X
xzl 已提交
2096 2097
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2098
        l_type = 'depthwise_conv2d'
2099 2100 2101 2102

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2103 2104 2105 2106 2107
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2108
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2109

C
chengduoZH 已提交
2110 2111 2112
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2113
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2114

C
chengduoZH 已提交
2115 2116
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2117 2118

    input_shape = input.shape
M
minqiyang 已提交
2119
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2120 2121

    def _get_default_param_initializer():
C
chengduo 已提交
2122 2123
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2124 2125 2126 2127 2128 2129 2130 2131
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2132
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2133

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2148
    helper.append_op(
2149
        type=l_type,
Y
Yu Yang 已提交
2150 2151 2152 2153 2154
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2155 2156 2157
        attrs={
            'strides': stride,
            'paddings': padding,
2158
            'dilations': dilation,
C
chengduoZH 已提交
2159
            'groups': groups,
2160
            'use_cudnn': use_cudnn,
2161
            'use_mkldnn': False,
2162
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2163
        })
Y
Yu Yang 已提交
2164 2165 2166 2167 2168 2169

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2187 2188 2189 2190 2191 2192
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2202 2203
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2204 2205 2206
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2207
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2233
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2234 2235
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2236
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2237 2238
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2239
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2240 2241
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2242
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2243 2244 2245 2246 2247 2248
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2259 2260
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2261 2262
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2263
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2264
            will be named automatically. Default: None.
C
chengduoZH 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2277 2278
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2279 2280 2281
    """

    l_type = 'conv3d'
C
chengduo 已提交
2282
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2293
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2307 2308 2309
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2310 2311 2312 2313 2314 2315 2316 2317
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2318
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2333
            'use_mkldnn': False
C
chengduoZH 已提交
2334 2335
        })

2336
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2337 2338 2339 2340

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2341
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2342
    """
Y
yangyaming 已提交
2343 2344 2345
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2357
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2358 2359 2360 2361 2362
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2363
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2364 2365 2366 2367 2368 2369 2370

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2371 2372
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2373

L
Luo Tao 已提交
2374 2375
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2376
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2377
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2378
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2379 2380 2381 2382 2383 2384 2385

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2386

Y
yangyaming 已提交
2387
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2388 2389 2390 2391 2392
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2393 2394
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2395
    """
L
lujun 已提交
2396
    assert not in_dygraph_mode(), (
2397
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2398
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2399
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2400 2401
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2402 2403 2404 2405 2406 2407

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2408 2409
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2410

Y
yangyaming 已提交
2411 2412 2413 2414 2415
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2416 2417 2418
    return pool_out


C
add doc  
chengduoZH 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2437
    assert not in_dygraph_mode(), (
2438
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2439
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2440
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2441 2442 2443 2444 2445
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2446
def sequence_first_step(input):
L
Luo Tao 已提交
2447
    """
L
Luo Tao 已提交
2448
    This function gets the first step of sequence.
L
Luo Tao 已提交
2449 2450 2451 2452

    .. code-block:: text

       x is a 1-level LoDTensor:
2453
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2454 2455 2456 2457 2458
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2459
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2460
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2461

L
Luo Tao 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2471

Y
yangyaming 已提交
2472
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2473 2474 2475
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2476 2477 2478
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2479
def sequence_last_step(input):
L
Luo Tao 已提交
2480
    """
L
Luo Tao 已提交
2481
    This function gets the last step of sequence.
L
Luo Tao 已提交
2482 2483 2484 2485

    .. code-block:: text

       x is a 1-level LoDTensor:
2486
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2487 2488 2489 2490 2491
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2492
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2493
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2494

L
Luo Tao 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2504

Y
yangyaming 已提交
2505
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2506 2507 2508
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2509 2510 2511
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2512 2513 2514 2515
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2516
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2517 2518 2519 2520 2521
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2522

H
haowang101779990 已提交
2523
              - Case:
Y
Yibing Liu 已提交
2524

2525
            Given the input Variable **input**:
2526

2527 2528 2529
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2530

2531
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2532

2533
            the output Variable will be
2534

2535 2536 2537
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2538

M
minqiyang 已提交
2539
    Note:
H
haowang101779990 已提交
2540
          The first dimension size of **input**, **offset** and **length**
2541
          should be equal. The **offset** should start from 0.
2542

Y
Yibing Liu 已提交
2543
    Args:
2544
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2545
                         sequences.
Y
Yibing Liu 已提交
2546 2547 2548 2549 2550 2551
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2552
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2563
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2564 2565
                                                   length=length)
    """
L
lujun 已提交
2566
    assert not in_dygraph_mode(), (
2567
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2568 2569
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2570
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2585
@templatedoc()
Y
Yu Yang 已提交
2586
def pool2d(input,
C
chengduoZH 已提交
2587 2588
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2589 2590
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2591
           global_pooling=False,
C
chengduoZH 已提交
2592
           use_cudnn=True,
2593
           ceil_mode=False,
2594 2595
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2596
    """
F
fengjiayi 已提交
2597
    ${comment}
2598 2599

    Args:
2600 2601 2602
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2603
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2604
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2605 2606
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2607
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2608 2609 2610 2611 2612 2613
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2614 2615 2616
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2617
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2618
                        layer will be named automatically.
2619
        exclusive (bool): Whether to exclude padding points in average pooling
2620
                          mode, default is true
F
fengjiayi 已提交
2621

2622
    Returns:
F
fengjiayi 已提交
2623
        Variable: The pooling result.
F
fengjiayi 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2636
          pool2d = fluid.layers.pool2d(
2637 2638 2639 2640
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2641
                            global_pooling=False)
Y
Yu Yang 已提交
2642 2643 2644 2645 2646
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2647

C
chengduoZH 已提交
2648 2649 2650 2651 2652
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2653 2654 2655 2656
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2657 2658
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2659

C
Add doc  
chengduoZH 已提交
2660
    l_type = 'pool2d'
2661 2662

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2663
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2664
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2665 2666

    helper.append_op(
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2678 2679
            "use_mkldnn": False,
            "exclusive": exclusive,
2680 2681 2682 2683 2684
        })

    return pool_out


D
dengkaipeng 已提交
2685
@templatedoc()
2686 2687 2688 2689 2690 2691 2692 2693
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2694 2695
           name=None,
           exclusive=True):
2696
    """
2697
    ${comment}
2698 2699

    Args:
D
dengkaipeng 已提交
2700 2701 2702 2703 2704
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2705 2706 2707 2708 2709
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2710 2711 2712 2713 2714 2715 2716
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2717
        exclusive (bool): Whether to exclude padding points in average pooling
2718
                          mode, default is true
2719

2720
    Returns:
2721
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2735 2736 2737 2738 2739
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2740

C
chengduoZH 已提交
2741 2742 2743 2744 2745
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2746 2747 2748
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2749

C
chengduoZH 已提交
2750 2751
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2752

2753 2754
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2755
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2756
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2757 2758

    helper.append_op(
2759
        type=l_type,
Y
Yu Yang 已提交
2760 2761 2762 2763 2764 2765 2766
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2767
            "paddings": pool_padding,
2768
            "use_cudnn": use_cudnn,
2769
            "ceil_mode": ceil_mode,
2770 2771
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2772 2773 2774 2775 2776
        })

    return pool_out


2777 2778 2779 2780 2781 2782 2783
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2784 2785 2786 2787 2788 2789 2790
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2805 2806 2807 2808 2809 2810 2811 2812 2813

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2814 2815
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2830
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2831
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2832
          # of input data into m * n grids averagely and performs poolings in each
2833 2834
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2835
          #
2836 2837 2838 2839 2840 2841 2842 2843
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2844 2845
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2846
          pool_out = fluid.layers.adaptive_pool2d(
2847 2848
                            input=data,
                            pool_size=[3, 3],
2849
                            pool_type='avg')
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2860
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2886
    return (pool_out, mask) if require_index else pool_out
2887 2888 2889 2890 2891 2892 2893 2894 2895


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2896 2897 2898 2899 2900 2901 2902
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2921 2922 2923

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2924 2925 2926
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2927
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2928
            it must contain three integers, (Depth, Height, Width).
2929
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2930 2931
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2946 2947
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2948
          # of input data into l * m * n grids averagely and performs poolings in each
2949 2950
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2951
          #
2952 2953 2954 2955 2956 2957 2958 2959 2960
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2961
          #                 output[:, :, i, j, k] =
2962 2963
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2964 2965 2966

          import paddle.fluid as fluid

2967
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2968 2969
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2970
                            input=data,
D
dengkaipeng 已提交
2971
                            pool_size=[3, 3, 3],
2972
                            pool_type='avg')
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2983
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3009
    return (pool_out, mask) if require_index else pool_out
3010 3011


Y
Yu Yang 已提交
3012 3013 3014 3015 3016 3017 3018
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3019
               data_layout='NCHW',
Y
Yang Yang 已提交
3020
               in_place=False,
3021 3022
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3023
               moving_variance_name=None,
3024
               do_model_average_for_mean_and_var=False,
3025 3026
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3027
    """
Q
qiaolongfei 已提交
3028 3029 3030 3031
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3032

Q
qiaolongfei 已提交
3033
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3034

Q
qiaolongfei 已提交
3035 3036
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3037 3038 3039
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3066
    Args:
Q
qingqing01 已提交
3067
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3068
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3078 3079 3080 3081 3082 3083 3084 3085
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3086
        data_layout(string, default NCHW): NCHW|NHWC
3087
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3088 3089 3090 3091
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3092
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3093
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3094 3095 3096 3097 3098
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3099 3100

    Returns:
Q
qiaolongfei 已提交
3101
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3102 3103 3104 3105 3106

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3107
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3108 3109
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3110
    """
C
chengduo 已提交
3111
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3112 3113 3114
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3115 3116 3117 3118
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3137
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3138

3139 3140
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3141 3142 3143
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3144
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3145
        shape=param_shape,
W
Wu Yi 已提交
3146
        dtype=dtype)
3147 3148 3149 3150 3151 3152
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3153
            trainable=False,
W
wanghaoshuang 已提交
3154
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3155
        shape=param_shape,
W
Wu Yi 已提交
3156
        dtype=dtype)
3157
    variance.stop_gradient = True
Y
Yu Yang 已提交
3158 3159 3160 3161 3162 3163

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3164 3165 3166 3167
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3168

X
Xin Pan 已提交
3169 3170
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3188 3189 3190 3191
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3192
            "data_layout": data_layout,
X
Xin Pan 已提交
3193
            "use_mkldnn": False,
3194 3195
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3196
        })
Y
Yu Yang 已提交
3197 3198 3199 3200

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3252 3253
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3254

3255 3256
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3322
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3323 3324 3325 3326

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3327
@templatedoc()
G
guosheng 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3338
    ${comment}
G
guosheng 已提交
3339 3340 3341

    The formula is as follows:

Y
yuyang18 已提交
3342
    ..  math::
G
guosheng 已提交
3343 3344 3345 3346 3347 3348 3349

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3350 3351 3352 3353 3354 3355 3356 3357
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3358

G
guosheng 已提交
3359 3360
    Args:
        input(Variable): The input tensor variable.
3361
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3362
            normalization. Default True.
3363
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3364 3365
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3366
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3367
            Default 1.
3368
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3369
            division by zero. Default 1e-05.
G
guosheng 已提交
3370
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3371 3372
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3373 3374
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3375
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3376 3377
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3378
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3379
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3380
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3381 3382 3383
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3384 3385

    Returns:
Y
yuyang18 已提交
3386
        ${y_comment}
G
guosheng 已提交
3387 3388 3389

    Examples:

Y
yuyang18 已提交
3390 3391 3392
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3393
    """
L
lujun 已提交
3394
    assert in_dygraph_mode(
L
lujun 已提交
3395
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3410
    if shift:
G
guosheng 已提交
3411 3412 3413 3414 3415 3416
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3417 3418 3419 3420 3421
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3449
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3497 3498
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3516
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3517 3518 3519
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3520
    This layer calculates the spectral normalization value of weight parameters of
3521
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3522
    Parameters. Calculations are showed as follows.
3523

D
dengkaipeng 已提交
3524 3525 3526
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3527
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3540
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3541 3542 3543 3544

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3545

D
dengkaipeng 已提交
3546
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3547 3548
                

D
dengkaipeng 已提交
3549 3550 3551 3552
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3553 3554 3555
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3556 3557 3558
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3559
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3560 3561

    Examples:
K
Kaipeng Deng 已提交
3562
       .. code-block:: python
D
dengkaipeng 已提交
3563

K
Kaipeng Deng 已提交
3564 3565 3566 3567 3568
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3569 3570
    """
    helper = LayerHelper('spectral_norm', **locals())
3571
    dtype = weight.dtype
D
dengkaipeng 已提交
3572 3573 3574

    # create intput and parameters
    inputs = {'Weight': weight}
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3593 3594

    # create output
3595
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3596 3597

    helper.append_op(
3598
        type="spectral_norm",
D
Dun 已提交
3599
        inputs=inputs,
3600 3601 3602 3603 3604 3605
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3606

3607
    return out
D
Dun 已提交
3608 3609


Y
Yu Yang 已提交
3610 3611 3612 3613
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3614 3615 3616
                     padding=0,
                     stride=1,
                     dilation=1,
3617
                     groups=None,
C
caoying03 已提交
3618
                     param_attr=None,
3619
                     bias_attr=None,
C
chengduoZH 已提交
3620
                     use_cudnn=True,
3621
                     act=None,
C
caoying03 已提交
3622
                     name=None):
Y
Yu Yang 已提交
3623
    """
3624 3625 3626 3627 3628 3629 3630 3631
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3632 3633
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3634 3635 3636
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3637 3638 3639 3640 3641

    For each input :math:`X`, the equation is:

    .. math::

3642
        Out = \sigma (W \\ast X + b)
3643

3644
    Where:
3645 3646 3647

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3648 3649 3650 3651
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3652

3653 3654 3655 3656
    Example:

        - Input:

3657
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3658

3659
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3660 3661 3662

        - Output:

3663
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3664 3665

        Where
Y
Yu Yang 已提交
3666

3667 3668
        .. math::

3669 3670
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3671 3672
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3673 3674

    Args:
3675 3676 3677 3678
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3679 3680 3681 3682
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3711
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3712 3713 3714
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3715
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3716
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3717 3718

    Returns:
3719
        Variable: The tensor variable storing the convolution transpose result.
3720 3721

    Raises:
3722 3723
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3724 3725 3726 3727

    Examples:
       .. code-block:: python

3728 3729
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3730
    """
C
chengduo 已提交
3731
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3732 3733 3734 3735 3736 3737 3738 3739
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3740 3741 3742
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3743 3744 3745
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3746

C
chengduoZH 已提交
3747 3748
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3749

Y
Yu Yang 已提交
3750 3751 3752 3753 3754
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3755

Y
Yu Yang 已提交
3756 3757
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3758

C
chengduoZH 已提交
3759
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3760
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3761
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3762
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3763
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3764 3765 3766
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3767

3768 3769 3770 3771 3772 3773 3774
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3775
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3776
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3777

Y
Yu Yang 已提交
3778 3779 3780
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3781
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3782
    helper.append_op(
3783
        type=op_type,
Y
Yu Yang 已提交
3784 3785
        inputs={'Input': [input],
                'Filter': [img_filter]},
3786
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3787
        attrs={
3788
            'output_size': output_size,
3789 3790 3791 3792 3793
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3794 3795
        })

3796 3797 3798
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3799 3800


3801
def conv3d_transpose(input,
Y
Yu Yang 已提交
3802 3803 3804
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3805 3806 3807
                     padding=0,
                     stride=1,
                     dilation=1,
3808
                     groups=None,
C
caoying03 已提交
3809
                     param_attr=None,
3810
                     bias_attr=None,
C
chengduoZH 已提交
3811
                     use_cudnn=True,
3812
                     act=None,
C
caoying03 已提交
3813
                     name=None):
Y
Yu Yang 已提交
3814
    """
3815
    **Convlution3D transpose layer**
3816

3817
    The convolution3D transpose layer calculates the output based on the input,
3818
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3819 3820 3821 3822 3823 3824
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3825 3826 3827
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3828 3829 3830 3831 3832

    For each input :math:`X`, the equation is:

    .. math::

3833
        Out = \sigma (W \\ast X + b)
3834 3835 3836

    In the above equation:

3837 3838
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3839 3840 3841 3842
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3843

3844 3845 3846 3847
    Example:

        - Input:

3848
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3849

3850
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3851 3852 3853

        - Output:

3854
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3855 3856

        Where
Y
Yu Yang 已提交
3857

3858 3859
        .. math::

3860 3861 3862
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3863 3864

    Args:
3865
        input(Variable): The input image with [N, C, D, H, W] format.
3866 3867 3868
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3869
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3870 3871
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3872
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3873 3874 3875
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3876 3877
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3878
        stride(int|tuple): The stride size. If stride is a tuple, it must
3879 3880
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3881
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3882 3883 3884
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3885 3886 3887 3888 3889
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3899 3900
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3901 3902
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3903 3904
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3905 3906

    Returns:
3907
        Variable: The tensor variable storing the convolution transpose result.
3908 3909

    Raises:
3910 3911
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3912 3913 3914 3915

    Examples:
       .. code-block:: python

3916 3917
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3918
    """
C
chengduo 已提交
3919
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3920 3921
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3922
    if not isinstance(input, Variable):
3923
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3924 3925
    input_channel = input.shape[1]

3926 3927 3928
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3929

C
chengduoZH 已提交
3930 3931 3932
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3933 3934 3935 3936 3937 3938
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3939 3940 3941
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3942

3943
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3944
                         padding[0] - 1) // dilation[0] + 1
3945
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3946
                         padding[1] - 1) // dilation[1] + 1
3947
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3948
                         padding[2] - 1) // dilation[2] + 1
3949
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3950
    else:
3951 3952
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3953

3954
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3955
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3956 3957 3958
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3959
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3960
    helper.append_op(
3961
        type=l_type,
Y
Yu Yang 已提交
3962 3963
        inputs={'Input': [input],
                'Filter': [img_filter]},
3964
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3965 3966 3967 3968
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3969
            'groups': groups,
C
chengduoZH 已提交
3970 3971
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3972

3973 3974
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3975
    return out
Y
yangyaming 已提交
3976 3977


Y
yangyaming 已提交
3978
def sequence_expand(x, y, ref_level=-1, name=None):
3979
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3980 3981 3982 3983
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3984 3985 3986 3987 3988

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3989
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3990
                x.data = [[a], [b], [c], [d]]
3991 3992 3993
                x.dims = [4, 1]

            y is a LoDTensor:
3994 3995
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3996

Y
yangyaming 已提交
3997
            ref_level: 0
3998

Y
yangyaming 已提交
3999
            then output is a 1-level LoDTensor:
4000
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4001
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4002 4003 4004 4005
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4006
                x.data = [[a], [b], [c]]
4007 4008 4009
                x.dims = [3, 1]

            y is a LoDTensor:
4010
                y.lod = [[2, 0, 3]]
4011

Y
yangyaming 已提交
4012
            ref_level: -1
4013

Y
yangyaming 已提交
4014 4015 4016
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4017 4018 4019
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4020 4021
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4022
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4023
                        will be named automatically.
4024 4025 4026 4027 4028 4029

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4030 4031
	
            import paddle.fluid.layers as layers
4032 4033 4034
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4035
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4036
    """
L
lujun 已提交
4037
    assert not in_dygraph_mode(), (
4038
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4039
    helper = LayerHelper('sequence_expand', input=x, **locals())
4040
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4041
    tmp = helper.create_variable_for_type_inference(dtype)
4042
    helper.append_op(
Y
yangyaming 已提交
4043 4044 4045 4046 4047
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4048
    return tmp
4049 4050


C
chengduo 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4099
            import paddle.fluid.layers as layers
C
chengduo 已提交
4100 4101 4102 4103 4104 4105

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4106
    assert not in_dygraph_mode(), (
4107
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4108 4109
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4110
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4111 4112 4113 4114 4115 4116 4117 4118
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4119
@templatedoc()
4120
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4121 4122 4123 4124 4125
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4126 4127 4128
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4129
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4130 4131 4132 4133
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4134 4135 4136
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4137

F
fengjiayi 已提交
4138
    Returns:
M
minqiyang 已提交
4139
        Variable: The padded sequence batch and the original lengths before
4140
                  padding. All sequences has the same length.
M
minqiyang 已提交
4141

F
fengjiayi 已提交
4142 4143 4144 4145 4146 4147 4148
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4149
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4150
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4151 4152 4153
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4154
    assert not in_dygraph_mode(), (
4155
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4156 4157
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4158 4159
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4160 4161 4162 4163

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4164 4165 4166 4167 4168 4169
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4170 4171
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4172
        attrs={'padded_length': maxlen})
4173
    return out, length
F
fengjiayi 已提交
4174 4175


4176
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4177
    """
4178
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4179

4180 4181
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4191 4192 4193
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4194
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4195 4196 4197 4198 4199 4200

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4201
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4202 4203 4204 4205 4206 4207

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4208 4209
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4222
    assert not in_dygraph_mode(), (
4223
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4224 4225
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4226
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4238 4239 4240 4241 4242 4243 4244
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4245
                is_accumulated=True,
4246 4247
                name=None,
                return_parent_idx=False):
4248
    """
4249 4250
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4251 4252 4253

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4254 4255

    This layer does the search in beams for one time step. Specifically, it
4256 4257 4258
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4270 4271 4272 4273

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4274

4275
    Args:
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4299 4300
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4301 4302
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4303 4304 4305 4306
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4307

4308
    Returns:
4309 4310 4311 4312
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4313 4314 4315 4316

    Examples:
        .. code-block:: python

4317 4318
            import paddle.fluid as fluid

4319 4320 4321
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4334
                axis=0)
4335
            selected_ids, selected_scores = fluid.layers.beam_search(
4336 4337 4338 4339 4340 4341 4342
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4343
    helper = LayerHelper('beam_search', **locals())
4344 4345 4346 4347 4348 4349
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4350

X
Xin Pan 已提交
4351 4352 4353
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4354 4355 4356 4357 4358
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4359 4360 4361

    helper.append_op(
        type='beam_search',
4362
        inputs=inputs,
Q
Qiao Longfei 已提交
4363 4364 4365
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4366
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4367 4368 4369 4370 4371 4372
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4373
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4374
        })
4375 4376 4377 4378
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4379 4380


4381 4382 4383 4384 4385 4386 4387
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4398

4399 4400 4401 4402 4403 4404
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4405

4406 4407
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4408

4409 4410
            import paddle.fluid as fluid

4411 4412
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4413 4414 4415
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4416 4417 4418
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4419 4420
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4436 4437 4438 4439
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4440
              param_attr=None,
C
caoying03 已提交
4441 4442
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4443 4444 4445 4446
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4447
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4448

4449
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4450

4451
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4452

4453
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4454 4455 4456

            h_t & = o_t tanh(c_t)

4457 4458 4459 4460 4461 4462
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4463 4464 4465

        .. math::

4466
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4467 4468 4469 4470 4471 4472 4473 4474

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4475
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4476 4477

    Args:
Y
yangyaming 已提交
4478 4479 4480 4481 4482 4483
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4484
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4497 4498
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4499 4500

    Returns:
Y
yangyaming 已提交
4501
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4502 4503

    Raises:
4504 4505 4506 4507
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4508 4509 4510 4511 4512

    Examples:

        .. code-block:: python

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4540
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4541 4542 4543 4544
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4545 4546
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4547 4548 4549
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4550
    size = cell_t_prev.shape[1]
4551
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4552 4553
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4554
                param_attr=param_attr,
4555
                bias_attr=bias_attr)
Y
yangyaming 已提交
4556
    dtype = x_t.dtype
X
Xin Pan 已提交
4557 4558
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4568
    return h, c
G
guosheng 已提交
4569 4570


C
caoying03 已提交
4571
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4572
    """
Y
yangyaming 已提交
4573
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4574 4575 4576

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4577
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4578 4579
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4580 4581
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4582
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4583
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4584
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4585 4586
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4587 4588 4589

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4590

G
guosheng 已提交
4591 4592 4593 4594 4595 4596
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4597
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4598 4599 4600 4601
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4602 4603 4604 4605

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4606
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4607 4608 4609
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4610 4611
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4612
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4613 4614
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4615 4616 4617 4618 4619
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4620
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4621 4622 4623 4624
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4625 4626


C
caoying03 已提交
4627
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4628
    """
Y
Yibing Liu 已提交
4629
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4630 4631 4632

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4633 4634 4635
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4636
            must be in the range :math:`[-rank(input), rank(input))`. If
4637
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4638
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4639 4640
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4641
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4642
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4643
                       will be named automatically.
G
guosheng 已提交
4644 4645

    Returns:
Y
Yibing Liu 已提交
4646
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4647

G
guosheng 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4658 4659
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4660 4661 4662 4663 4664 4665 4666

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4667 4668
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4669
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4670 4671
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4672 4673 4674 4675 4676
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4677
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4678 4679 4680 4681
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4682 4683


C
caoying03 已提交
4684
def reduce_max(input, dim=None, keep_dim=False, name=None):
4685
    """
Y
yangyaming 已提交
4686
    Computes the maximum of tensor elements over the given dimension.
4687 4688 4689

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4690
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4691 4692 4693
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4694
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4695 4696
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4697
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4698 4699
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4700 4701 4702

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4715 4716 4717 4718 4719 4720 4721

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4722 4723
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4724
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4725 4726
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4727 4728 4729 4730 4731
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4732
            'dim': dim if dim != None else [0],
4733 4734 4735 4736 4737 4738
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4739
def reduce_min(input, dim=None, keep_dim=False, name=None):
4740
    """
Y
yangyaming 已提交
4741
    Computes the minimum of tensor elements over the given dimension.
4742 4743 4744

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4745
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4746 4747 4748
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4749
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4750 4751
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4752
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4753 4754
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4755 4756 4757

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4758

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4770 4771 4772 4773 4774 4775 4776

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4777 4778
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4779
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4780 4781
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4782 4783 4784 4785 4786
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4787
            'dim': dim if dim != None else [0],
4788 4789 4790 4791
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4792 4793


4794 4795 4796 4797 4798 4799
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4800
        dim (list|int|None): The dimensions along which the product is performed. If
4801 4802
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4803 4804
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4805 4806 4807
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4808
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4809
            layer will be named automatically.
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4824
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4825
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4826 4827 4828 4829 4830 4831 4832

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4833 4834
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4835
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4836 4837
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4838 4839 4840 4841 4842
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4843
            'dim': dim if dim != None else [0],
4844 4845 4846 4847 4848 4849
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4850 4851
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4852
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4872
        
Z
zhoukunsheng 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4902
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4922

Z
zhoukunsheng 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4945 4946 4947 4948 4949
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4950
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4951
    """
C
caoying03 已提交
4952
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4953 4954 4955

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4956 4957 4958 4959 4960
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4961
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4962
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4963
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4964 4965
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4966 4967

    Returns:
D
dzhwinter 已提交
4968
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4978 4979
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4991
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4992 4993 4994
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4995
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5018
    .. math::
5019 5020

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5021 5022 5023 5024 5025

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5026
        x(Variable|list): The input tensor to l2_normalize layer.
5027
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5028 5029
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5030
        epsilon(float): The epsilon value is used to avoid division by zero, \
5031
            the defalut value is 1e-12.
5032
        name(str|None): A name for this layer(optional). If set None, the layer \
5033
            will be named automatically.
C
caoying03 已提交
5034 5035

    Returns:
5036
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5037 5038

    Examples:
5039

C
caoying03 已提交
5040 5041
        .. code-block:: python

5042 5043 5044 5045
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5046 5047
    """

F
fengjiayi 已提交
5048 5049
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5050 5051
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5052 5053
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5054
    helper.append_op(
5055 5056 5057 5058
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5059
        attrs={
5060 5061
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5062 5063
        })
    return out
5064 5065


S
sneaxiy 已提交
5066
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5067
    """
Y
ying 已提交
5068 5069 5070 5071
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5072

C
chengduoZH 已提交
5073
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5074
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5075

5076 5077 5078 5079 5080
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5081
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5082

C
chengduoZH 已提交
5083
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5084
      performs in the following way.
G
guosheng 已提交
5085

5086
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5087
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5088
        last two dimensions and a batched matrix multiply supporting broadcast
5089
        applies on the two tensors.
G
guosheng 已提交
5090

Y
ying 已提交
5091 5092
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5093
    removed after matrix multiplication.
G
guosheng 已提交
5094 5095 5096

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5097 5098 5099
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5100
        alpha (float): The scale of output. Default 1.0.
5101
        name(str|None): A name for this layer(optional). If set None, the layer
5102
            will be named automatically.
G
guosheng 已提交
5103 5104

    Returns:
5105
        Variable: The product Tensor variable.
G
guosheng 已提交
5106

G
guosheng 已提交
5107 5108 5109
    Examples:
        .. code-block:: python

5110
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5111 5112
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5113

5114 5115
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5116

5117 5118
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5119

5120 5121
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5122 5123 5124 5125

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5126 5127
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5128

Y
ying 已提交
5129
            # x: [M], y: [N]
5130
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5131
    """
Y
ying 已提交
5132 5133 5134 5135 5136 5137 5138

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5139
            y_shape = y_shape + [1]
Y
ying 已提交
5140 5141 5142 5143 5144 5145 5146

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5147 5148
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5149

C
chengduo 已提交
5150
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5151
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5152 5153 5154
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5155
                if dim_x != y_shape[i]:
C
chengduo 已提交
5156 5157
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5158 5159 5160

    __check_input(x, y)

5161
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5163
    helper.append_op(
5164 5165 5166 5167
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5168 5169 5170
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5171
            'alpha': float(alpha),
S
sneaxiy 已提交
5172
        })
5173
    return out
5174 5175


5176
def topk(input, k, name=None):
Q
qingqing01 已提交
5177 5178 5179 5180
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5181
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5182 5183 5184 5185 5186 5187
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5209 5210 5211
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5212
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5213
                 of input.
5214
        name(str|None): A name for this layer(optional). If set None, the layer
5215
                       will be named automatically.
F
fengjiayi 已提交
5216
                       Default: None
Q
qingqing01 已提交
5217 5218

    Returns:
5219 5220 5221
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5222
        within the last dimension of input.
Q
qingqing01 已提交
5223

F
fengjiayi 已提交
5224 5225
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5226 5227 5228 5229

    Examples:
        .. code-block:: python

5230 5231
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5232 5233 5234
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5235 5236
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5237 5238 5239 5240 5241 5242
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5243 5244
    helper.append_op(
        type="top_k",
W
whs 已提交
5245
        inputs=inputs,
Q
qingqing01 已提交
5246 5247
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5248
        attrs=attrs)
Q
qingqing01 已提交
5249 5250 5251 5252 5253
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5254
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5255
    """
Y
ying 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5265

Y
ying 已提交
5266
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5267

5268
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5269 5270
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5271
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5272

5273
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5274 5275
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5276

5277 5278 5279
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5280
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5281
                          the length of reference string.
5282
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5283
                                     calculating edit distance.
5284
        name (str): The name of this layer. It is optional.
5285

W
wanghaoshuang 已提交
5286
    Returns:
W
wanghaoshuang 已提交
5287
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5288 5289 5290 5291

    Examples:
        .. code-block:: python

T
tink2123 已提交
5292 5293
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5294
            cost = fluid.layers.edit_distance(input=x,label=y)
5295
    """
5296
    helper = LayerHelper("edit_distance", **locals())
5297

5298
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5299
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5300 5301
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5302 5303 5304 5305 5306

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5307
            attrs={"tokens": ignored_tokens})
5308 5309 5310 5311 5312
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5313
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5314
            attrs={"tokens": ignored_tokens})
5315 5316
        label = erased_label

5317
    # edit distance op
X
Xin Pan 已提交
5318 5319
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5320 5321 5322 5323
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5324 5325
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5326 5327
        attrs={"normalized": normalized})

5328
    return edit_distance_out, sequence_num
5329 5330 5331 5332 5333


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5334

Y
ying 已提交
5335 5336 5337 5338
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5356
        input.lod = [[4, 4]]
M
minqiyang 已提交
5357

W
whs 已提交
5358
        Computation:
5359

W
whs 已提交
5360 5361 5362 5363 5364 5365
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5366 5367 5368 5369 5370

        output.data = [[2],
                       [1],
                       [3]]

5371
        output.lod = [[2, 1]]
5372

W
whs 已提交
5373

5374 5375
    Args:

Y
ying 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5385
        name (str): The name of this layer. It is optional.
5386 5387

    Returns:
H
haowang101779990 已提交
5388 5389 5390
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5391
                  LoD [[]] and dims [1, 1].
5392 5393 5394 5395

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5396
            import paddle.fluid as fluid
5397 5398
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5399
    """
5400
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5401
    _, topk_indices = topk(input, k=1)
5402 5403

    # ctc align op
X
Xin Pan 已提交
5404
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5405 5406 5407
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5408
        outputs={"Output": [ctc_out]},
5409 5410
        attrs={"merge_repeated": True,
               "blank": blank})
5411
    return ctc_out
5412 5413


W
Wu Yi 已提交
5414
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5415
    """
5416 5417
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5418
    to compute Connectionist Temporal Classification (CTC) loss.
5419 5420
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5421 5422 5423
    input tensor.

    Args:
5424
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5425 5426 5427 5428
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5429
       label (Variable): The ground truth of variable-length sequence,
5430 5431 5432
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5433 5434
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5435 5436 5437
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5438
         follewed by a mean_op.
W
Wu Yi 已提交
5439
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5440 5441

    Returns:
5442 5443
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5444 5445

    Examples:
5446

W
wanghaoshuang 已提交
5447
        .. code-block:: python
5448

5449 5450 5451
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5452 5453

    """
F
fengjiayi 已提交
5454
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5455 5456
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5457 5458 5459 5460 5461 5462
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5463 5464 5465 5466 5467
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5468
    return loss_out
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5484 5485 5486
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5487 5488 5489 5490 5491
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5492

5493
            out.lod  = [[0, 1, 3]]
5494 5495 5496 5497

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5498 5499 5500 5501 5502 5503 5504
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5505 5506 5507

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5508 5509

    Returns:
5510

5511 5512 5513 5514 5515
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5516
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5517
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5518
    """
L
lujun 已提交
5519
    assert not in_dygraph_mode(), (
5520
        "sequence layer is not supported in dygraph mode yet.")
5521
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5522
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5523 5524 5525 5526 5527 5528
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5529 5530


5531 5532 5533 5534
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5535 5536 5537 5538 5539 5540
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5541
        num_neg_samples=None,
5542 5543 5544
        name=None,
        sampler="uniform",
        custom_dist=None,
5545 5546
        seed=0,
        is_sparse=False):
5547 5548 5549 5550 5551 5552 5553
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5554 5555
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5556
            sample is 1.0.
C
chengduo 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5566
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5567 5568
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5569 5570 5571
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5572
        custom_dist (float[]): A float[] with size=num_total_classes.
5573 5574 5575 5576
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5577
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5578

5579
    Returns:
Y
Yibing Liu 已提交
5580 5581 5582 5583 5584 5585
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5586
	    import numpy as np
Y
Yibing Liu 已提交
5587

Y
Yibing Liu 已提交
5588 5589 5590 5591 5592 5593 5594 5595
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5596

Y
Yibing Liu 已提交
5597 5598 5599 5600
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5601

Y
Yibing Liu 已提交
5602 5603 5604
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5605

Y
Yibing Liu 已提交
5606 5607 5608 5609
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5610

Y
Yibing Liu 已提交
5611 5612 5613 5614 5615 5616 5617 5618
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5619
    """
Y
Yang Yu 已提交
5620 5621 5622
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5623 5624

    dim = input.shape[1]
Y
Yang Yu 已提交
5625 5626 5627 5628 5629 5630
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5631
    inputs = {}
C
chengduo 已提交
5632 5633 5634 5635 5636 5637 5638
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5639 5640 5641
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5642

5643 5644 5645 5646
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5647 5648 5649 5650 5651 5652 5653

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5654 5655
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5656
        custom_dist_len = num_total_classes
5657 5658 5659 5660 5661 5662
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5663
            if normal_prob - 1.0 > 0:
5664
                bigs.append((i, normal_prob))
5665
            elif 1.0 - normal_prob > 0:
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5681
            if big_left - 1.0 > 0:
5682
                bigs.append((big_idx, big_left))
5683
            elif 1.0 - big_left > 0:
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5713 5714 5715 5716
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5717 5718 5719 5720 5721
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5722 5723 5724 5725
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5726

Y
Yang Yu 已提交
5727 5728
    attrs = {
        'num_total_classes': int(num_total_classes),
5729 5730
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5731
        'sampler': sampler,
5732 5733
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5734
    }
Y
Yang Yu 已提交
5735 5736 5737

    helper.append_op(
        type='nce',
C
chengduo 已提交
5738
        inputs=inputs,
Y
Yang Yu 已提交
5739 5740 5741 5742 5743 5744
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5745
    return cost / (num_neg_samples + 1)
5746 5747


C
chengduo 已提交
5748 5749
def hsigmoid(input,
             label,
5750
             num_classes,
C
chengduo 已提交
5751 5752
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5753
             name=None,
5754 5755 5756
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5757
             is_sparse=False):
W
weixing02 已提交
5758 5759
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5760
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5761
    complete binary tree, or you can use is_custom to pass your own tree to
5762
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5763 5764 5765 5766 5767 5768
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5769
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5770
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5771

5772 5773
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5774 5775 5776 5777
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5778
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5779
       related to the same batch of inputs.
5780

W
weixing02 已提交
5781
    Args:
M
minqiyang 已提交
5782
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5783 5784 5785 5786
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5787 5788
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5789
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5801
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5802
            it should be in leaf -> root order
M
minqiyang 已提交
5803 5804 5805
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5806
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5807
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5808
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5809
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5810
             of W and input will be sparse.
W
weixing02 已提交
5811 5812

    Returns:
J
JiabinYang 已提交
5813
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5814 5815 5816 5817 5818

    Examples:

        .. code-block:: python

G
guosheng 已提交
5819 5820 5821
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5822 5823 5824 5825
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5826 5827
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5828
    dim = input.shape[1]
5829
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5830 5831 5832
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5833 5834 5835 5836 5837 5838 5839 5840 5841
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5842
    if (is_custom) and (path_code is None):
5843
        raise ValueError("path_code should not be None with custom tree")
5844
    elif (is_custom) and (path_table is None):
5845
        raise ValueError("path_table should not be None with custom tree")
5846
    elif (is_custom) and (num_classes is None):
5847
        raise ValueError("num_classes should not be None with custom tree")
5848 5849 5850
    else:
        pass

J
JiabinYang 已提交
5851
    weights = None
5852 5853 5854 5855
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5856
    if not is_custom:
J
JiabinYang 已提交
5857 5858 5859 5860 5861 5862 5863 5864
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5865
            shape=[num_classes, dim],
J
JiabinYang 已提交
5866 5867
            is_bias=False,
            dtype=input.dtype)
5868 5869 5870
    inputs = {
        "X": input,
        "W": weights,
5871
        "PathTable": path_table,
5872
        "PathCode": path_code,
5873 5874
        "Label": label
    }
W
weixing02 已提交
5875
    if helper.bias_attr:
5876
        if not is_custom:
J
JiabinYang 已提交
5877 5878
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5879
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5880 5881 5882 5883 5884 5885
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5886
                shape=[num_classes, 1],
J
JiabinYang 已提交
5887 5888 5889
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5890 5891
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5892
        inputs=inputs,
W
weixing02 已提交
5893
        outputs={"Out": out,
5894 5895 5896 5897 5898 5899 5900
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5901 5902 5903
    return out


Y
fix ci.  
ying 已提交
5904
def transpose(x, perm, name=None):
Y
ying 已提交
5905 5906 5907 5908 5909 5910 5911
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5912 5913 5914
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5915 5916 5917 5918 5919 5920 5921

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5922
            # use append_batch_size=False to avoid prepending extra
5923
            # batch size in shape
5924
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5925
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5926
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5927 5928
    """

Y
fix ci.  
ying 已提交
5929
    if len(perm) != len(x.shape):
Y
ying 已提交
5930 5931 5932
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5933 5934 5935 5936 5937 5938
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5939 5940

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5941 5942
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5943
    helper.append_op(
5944
        type='transpose2',
Y
fix ci.  
ying 已提交
5945
        inputs={'X': [x]},
5946 5947
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5948 5949
        attrs={'axis': perm})
    return out
5950 5951


5952 5953 5954 5955 5956 5957 5958
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5959
    """
5960 5961 5962 5963 5964 5965 5966
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5995 5996 5997 5998 5999 6000 6001 6002 6003
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6004 6005 6006
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6007 6008 6009 6010 6011
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6039 6040 6041
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6054
            output.dims = {8, 8}
6055

6056
            output.lod = [[4, 4]]
6057

T
Tink_Y 已提交
6058
    Examples:
6059 6060 6061

        .. code-block:: python

6062 6063
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
6064 6065

    """
L
lujun 已提交
6066
    assert not in_dygraph_mode(), (
6067
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6078 6079 6080 6081 6082 6083 6084
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6085
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6086
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6087
    helper.append_op(
6088
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6089
    return out
6090 6091


Y
yuyang18 已提交
6092
@templatedoc()
6093
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6094 6095
    """
    ${comment}
6096 6097

    Args:
Y
yuyang18 已提交
6098
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6099 6100
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6101 6102 6103 6104 6105
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6106
        ${out_comment}.
6107 6108

    Examples:
Y
yuyang18 已提交
6109 6110 6111 6112
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6113 6114 6115 6116 6117 6118
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6119
    out = helper.create_variable_for_type_inference(dtype)
6120 6121 6122 6123 6124
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6125
    return helper.append_activation(out)
6126 6127


Y
yuyang18 已提交
6128
@templatedoc()
6129 6130
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6131 6132
    ${comment}

L
lujun 已提交
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6176 6177

    Args:
Y
yuyang18 已提交
6178 6179
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6180 6181

    Returns:
Y
yuyang18 已提交
6182
        ${out_comment}.
6183 6184
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6185 6186 6187 6188 6189

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6190
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6191 6192 6193 6194 6195 6196
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6197 6198


6199 6200 6201
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6202
                               ignore_index=kIgnoreIndex,
6203
                               numeric_stable_mode=True,
6204 6205
                               return_softmax=False,
                               axis=-1):
6206 6207
    """
    **Softmax With Cross Entropy Operator.**
6208

6209
    Cross entropy loss with softmax is used as the output layer extensively. This
6210 6211 6212
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6213

6214 6215 6216
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6217

6218 6219 6220 6221
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6222

6223
    The equation is as follows:
6224

6225
    1) Hard label (one-hot label, so every sample has exactly one class)
6226

6227 6228 6229 6230
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6231

6232 6233 6234
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6235

6236 6237 6238 6239
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6240 6241
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6242 6243

    .. math::
6244

H
haowang101779990 已提交
6245
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6246

H
haowang101779990 已提交
6247
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6248

H
haowang101779990 已提交
6249
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6250 6251 6252

    and then cross entropy loss is calculated by softmax and label.

6253
    Args:
6254 6255 6256 6257 6258 6259
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6260
        soft_label (bool): A flag to indicate whether to interpretate the given
6261
            labels as soft labels. Default False.
M
minqiyang 已提交
6262 6263
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6264 6265
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6266 6267
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6268 6269 6270 6271
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6272
                                    Note that the speed may be slower when use
6273
                                    stable algorithm. Default: True
6274
        return_softmax (bool): A flag indicating whether to return the softmax
6275
                               along with the cross entropy loss. Default: False
6276 6277 6278
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6279

6280
    Returns:
H
haowang101779990 已提交
6281 6282
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6283 6284 6285 6286
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6287 6288 6289 6290 6291 6292 6293

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6294 6295
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6296 6297
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6298 6299
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6300 6301 6302 6303 6304 6305
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6306 6307 6308
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6309 6310
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6311
        })
6312 6313 6314 6315

    if return_softmax:
        return loss, softmax

6316 6317 6318
    return loss


6319 6320 6321
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6322
                                       num_true=1,
6323
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6324 6325 6326
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6327
                                       seed=0):
X
xuezhong 已提交
6328 6329 6330 6331 6332
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6333
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6334 6335 6336 6337 6338 6339 6340 6341
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6342
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6343 6344 6345 6346 6347 6348 6349 6350
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6351
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6363
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6364 6365 6366 6367 6368
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6369
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6370
            logits.
X
xuezhong 已提交
6371 6372 6373 6374 6375
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6376 6377 6378
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6399 6400
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6401 6402
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6403 6404 6405 6406 6407

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6408
            'Labels': label,
X
xuezhong 已提交
6409 6410
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6411 6412 6413 6414
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6415
            'SampledLabels': sampled_label,
6416 6417 6418
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6419 6420
        },
        attrs={
X
xuezhong 已提交
6421
            'use_customized_samples': use_customized_samples,
6422
            'uniq': True,
X
xuezhong 已提交
6423 6424 6425 6426
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6427 6428
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6429 6430 6431 6432 6433 6434
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6435 6436
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6437
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6438
                'Label': sampled_softlabel},
X
xuezhong 已提交
6439 6440 6441
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6442
            'soft_label': True,
X
xuezhong 已提交
6443 6444 6445
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6446
    return loss / num_true
X
xuezhong 已提交
6447 6448


6449 6450
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6451 6452
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6453
    For each instance, it computes the smooth L1 loss element by element first
6454
    and then sums all the losses. So the shape of ouput Variable is
6455
    [batch_size, 1].
6456

6457 6458
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6459
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6460
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6461
            L1 loss op with same shape as :attr:`x`.
6462
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6463 6464
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6465
            by this tensor element by element.
6466
        outside_weight (Variable|None): A tensor with rank at least 2. This
6467 6468
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6469
            element by element.
6470
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6471 6472
           scalar with default value 1.0.

6473
    Returns:
6474
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6475 6476 6477 6478 6479

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6480 6481
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6482
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6483
            out = fluid.layers.smooth_l1(x=fc, y=label)
6484
    """
6485

6486
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6487 6488
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6499
        attrs={'sigma': sigma if sigma is not None else 1.0})
6500
    return loss
6501 6502 6503 6504


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6505
    This layer creates the one-hot representations for input indices.
6506 6507

    Args:
Y
Yibing Liu 已提交
6508 6509
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6510 6511

    Returns:
Y
Yibing Liu 已提交
6512
        Variable: The one-hot representations of input.
6513 6514

    Examples:
C
caoying03 已提交
6515
        .. code-block:: python
6516

Y
Yibing Liu 已提交
6517 6518
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6519 6520
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6521
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6522 6523 6524 6525
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6526 6527
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6528
    return one_hot_out
Y
Yu Yang 已提交
6529 6530


Y
Yu Yang 已提交
6531
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6532
    """
Y
yi.wu 已提交
6533 6534 6535
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6536 6537 6538 6539 6540 6541

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6542 6543
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6544 6545 6546 6547 6548

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6549
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6550 6551
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6552 6553
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6554 6555 6556 6557 6558
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6559
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6560
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6561 6562
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6563
            outputs={'Out': [counter]},
M
minqiyang 已提交
6564 6565
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6566 6567 6568
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6569 6570


6571
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6572
    """
C
caoying03 已提交
6573 6574
    Gives a new shape to the input Tensor without changing its data.

6575 6576 6577 6578 6579
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6580

6581
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6582

6583 6584 6585 6586
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6587
    2. 0 means the actual dimension value is going to be copied from the
6588 6589 6590 6591
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6592 6593

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6594
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6595
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6596

6597
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6598 6599
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6600 6601
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6602
    dimensions.
C
caoying03 已提交
6603

6604
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6605 6606 6607 6608
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6609 6610

    Args:
6611
        x(variable): The input tensor.
C
caoying03 已提交
6612 6613
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6614 6615 6616 6617 6618
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6619 6620
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6621 6622 6623
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6624
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6625
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6626

6627
    Returns:
G
guosheng 已提交
6628 6629 6630 6631
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6632

X
Xin Pan 已提交
6633 6634 6635
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6636 6637
    Examples:
        .. code-block:: python
G
guosheng 已提交
6638

6639
            data = fluid.layers.data(
6640
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6641
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6642
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6643 6644 6645
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6646
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6647 6648 6649 6650 6651
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6652

6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6668
    helper = LayerHelper("reshape2", **locals())
6669 6670
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6671
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6672
    helper.append_op(
6673
        type="reshape2",
X
Xin Pan 已提交
6674
        inputs=inputs,
D
dzhwinter 已提交
6675
        attrs={"shape": shape},
6676 6677
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6678

D
dzhwinter 已提交
6679
    return helper.append_activation(out)
6680

6681

6682
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6683
    """
M
minqiyang 已提交
6684 6685 6686
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6687
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6688

H
haowang101779990 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6710

Y
Yibing Liu 已提交
6711
    Args:
6712
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6713
        axes (list): List of integers, indicating the dimensions to be squeezed.
6714
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6715 6716 6717 6718 6719 6720 6721

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6722
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6723
            x = layers.data(name='x', shape=[5, 1, 10])
6724
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6725
    """
L
lujun 已提交
6726
    assert not in_dygraph_mode(), (
L
lujun 已提交
6727
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6728
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6729 6730
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6731
    helper.append_op(
6732
        type="squeeze2",
6733
        inputs={"X": input},
Y
Yibing Liu 已提交
6734
        attrs={"axes": axes},
6735 6736
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6737

6738 6739 6740
    return out


6741
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6742
    """
M
minqiyang 已提交
6743 6744 6745
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6746

M
minqiyang 已提交
6747
    For example:
H
haowang101779990 已提交
6748 6749 6750

    .. code-block:: text

M
minqiyang 已提交
6751
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6752
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6753

Y
Yibing Liu 已提交
6754
    Args:
6755
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6756
        axes (list): List of integers, indicating the dimensions to be inserted.
6757
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6758 6759 6760 6761 6762 6763 6764 6765

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6766
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6767 6768
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6769 6770
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6771
    helper.append_op(
6772
        type="unsqueeze2",
6773
        inputs={"X": input},
Y
Yibing Liu 已提交
6774
        attrs={"axes": axes},
6775 6776
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6777

6778 6779
    return out

6780

Y
yangyaming 已提交
6781
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6782
    """
Y
Yibing Liu 已提交
6783
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6784 6785 6786 6787
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6788
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6789 6790 6791 6792 6793 6794

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6795
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6796 6797 6798
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6799
            target_lod: [4, 2]
Y
yangyaming 已提交
6800 6801

            then we get a 1-level LoDTensor:
6802
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6803 6804 6805 6806 6807 6808
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6809
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6810 6811 6812 6813
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6814
                y.data = [[2, 4]]
Y
yangyaming 已提交
6815 6816 6817
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6818
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6819 6820 6821 6822 6823 6824
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6825
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6826 6827 6828 6829
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6830
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6831 6832 6833 6834
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6835
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6836 6837 6838 6839 6840
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6841
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6842
                           from :attr:`y`.
Y
yangyaming 已提交
6843
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6844
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6845 6846

    Returns:
Y
Yibing Liu 已提交
6847
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6848 6849

    Raises:
Y
Yibing Liu 已提交
6850
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6860
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6886
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6915 6916
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6929 6930 6931
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6945 6946 6947 6948


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6949
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6950
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6951

G
guosheng 已提交
6952 6953 6954 6955
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6978
                         The length of :attr:paddings must be
G
guosheng 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6989

G
guosheng 已提交
6990
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6991 6992
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6993 6994 6995 6996 6997
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6998
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6999 7000 7001 7002 7003 7004 7005
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7006 7007


C
chengduo 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7039 7040
		And
            pad_value = -1,
C
chengduo 已提交
7041

T
Tink_Y 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7072 7073 7074
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7075 7076 7077 7078 7079
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7080
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7090 7091 7092 7093 7094 7095 7096
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7097 7098
    called label-smoothing regularization (LSR).

7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7122
                              be :math:`(1, class\_num)`.
7123 7124
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7125
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7126 7127 7128 7129 7130 7131 7132 7133 7134
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7135 7136
            
            import paddle.fluid.layers as layers
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7147
    smooth_label = helper.create_variable_for_type_inference(dtype)
7148 7149 7150 7151 7152 7153 7154
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7155 7156


W
wopeizl 已提交
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7205 7206


J
jerrywgz 已提交
7207 7208 7209 7210 7211 7212
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7213 7214
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7231 7232 7233 7234
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7235 7236 7237
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7238 7239 7240 7241 7242 7243
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7244
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7285 7286
        .. code-block:: python

S
SunGaofeng 已提交
7287 7288 7289
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7290
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7291
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7292 7293
    """
    label = one_hot(label, depth=input.shape[-1])
7294
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7295 7296 7297 7298 7299 7300
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7301 7302


7303 7304 7305 7306
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7307
                 resample='BILINEAR',
7308 7309
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7310
                 align_mode=1):
7311
    """
Q
qiaolongfei 已提交
7312
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7313

7314
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7315 7316 7317
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7318

7319
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7320

7321
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7322

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7333
    Align_corners and align_mode are optinal parameters,the calculation method 
7334 7335 7336 7337
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7338
    .. code-block:: text
7339

T
Tink_Y 已提交
7340
        For scale:
7341
          
T
Tink_Y 已提交
7342
            if align_corners = True && out_size > 1 :
7343

T
Tink_Y 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7355

T
Tink_Y 已提交
7356 7357
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7358

T
Tink_Y 已提交
7359 7360
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7361

T
Tink_Y 已提交
7362 7363
          else:
              align_corners = True
7364

T
Tink_Y 已提交
7365 7366
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7367

T
Tink_Y 已提交
7368 7369
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7370

T
Tink_Y 已提交
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7381

T
Tink_Y 已提交
7382 7383 7384 7385
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7386

T
Tink_Y 已提交
7387 7388
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7389 7390 7391 7392 7393 7394 7395 7396 7397

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7398
    Args:
7399
        input (Variable): The input tensor of image resize layer,
7400 7401
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7402
        out_shape(list|tuple|Variable|None): Output shape of image resize
7403 7404
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7405
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7406
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7407
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7408
             Default: None.
7409 7410
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7411
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7412
                       currently.
7413
                       Default: 'BILINEAR'
7414 7415 7416
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7417
                                :attr:`out_shape` and :attr:`scale` specifying
7418 7419 7420 7421 7422 7423 7424
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7425 7426
                                constructing stage.
                                Default: None
7427 7428 7429 7430
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7431
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7432 7433
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7434 7435

    Returns:
Q
update  
qiaolongfei 已提交
7436 7437
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7438

7439 7440 7441
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7442
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7443 7444 7445
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7446
        ValueError: scale should be greater than zero.
7447 7448
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7449

7450 7451 7452
    Examples:
        .. code-block:: python

R
ruri 已提交
7453
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7454
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7455
    """
7456 7457 7458 7459
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7460 7461
    if resample not in resample_methods:
        raise ValueError(
7462
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7463
        )
7464
    resample_type = resample_methods[resample]
7465 7466 7467 7468 7469 7470

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7471
    if out_shape is None and scale is None:
7472
        raise ValueError("One of out_shape and scale must not be None.")
7473
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7474
    dtype = helper.input_dtype()
7475 7476 7477 7478

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7479
    inputs = {"X": input}
D
dengkaipeng 已提交
7480
    attrs = {
D
dengkaipeng 已提交
7481 7482
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7483 7484 7485 7486 7487
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7488
    if out_shape is not None:
7489 7490 7491 7492
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7493
            inputs['OutSize'] = out_shape
7494 7495
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7496 7497
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7498 7499 7500 7501 7502 7503 7504
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7505
    else:
D
dengkaipeng 已提交
7506 7507
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7508
        attrs['scale'] = float(scale)
7509

7510 7511 7512 7513 7514
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7515
    out = helper.create_variable_for_type_inference(dtype)
7516
    helper.append_op(
7517
        type='{}_interp'.format(resample_type),
7518
        inputs=inputs,
7519
        outputs={"Out": out},
D
dengkaipeng 已提交
7520
        attrs=attrs)
7521
    return out
F
stash  
fengjiayi 已提交
7522 7523


7524
@templatedoc(op_type="bilinear_interp")
7525 7526 7527 7528
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7529 7530
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7531
                    align_mode=1):
7532
    """
7533 7534
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7535 7536
    in priority order.

7537 7538 7539 7540
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7541 7542
    again in the other direction.

7543
    For details of bilinear interpolation, please refer to Wikipedia:
7544
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7545

T
tink2123 已提交
7546
    Align_corners and align_mode are optinal parameters,the calculation 
7547 7548 7549 7550
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7551
    .. code-block:: text
7552

T
Tink_Y 已提交
7553
        For scale:
7554
          
T
Tink_Y 已提交
7555
            if align_corners = True && out_size > 1 :
7556

T
Tink_Y 已提交
7557 7558 7559 7560 7561
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7562

T
Tink_Y 已提交
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7573 7574


T
Tink_Y 已提交
7575
          else:
T
tink2123 已提交
7576

T
Tink_Y 已提交
7577 7578
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7579

T
Tink_Y 已提交
7580 7581
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7582 7583 7584



Y
yuyang18 已提交
7585 7586 7587
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7588 7589 7590
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7591

Y
yuyang18 已提交
7592
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7593
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7594
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7595
             Default: None.
Y
yuyang18 已提交
7596 7597

        name(str|None): The output variable name.
7598 7599 7600
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7601
                                :attr:`out_shape` and :attr:`scale` specifying
7602 7603 7604 7605 7606 7607 7608
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7609 7610
                                constructing stage.
                                Default: None
7611 7612
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7613 7614 7615

    Returns:
        ${out_comment}.
7616 7617 7618 7619

    Examples:
        .. code-block:: python

R
ruri 已提交
7620
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7621
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7622 7623
    """

7624 7625
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7626 7627


7628
@templatedoc(op_type="nearest_interp")
7629 7630 7631 7632
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7633 7634
                   actual_shape=None,
                   align_corners=True):
7635
    """
7636
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7637 7638
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7639 7640
    out_shape and scale in priority order.

7641 7642
    Example:

T
Tink_Y 已提交
7643 7644 7645 7646 7647
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7648

T
Tink_Y 已提交
7649 7650 7651 7652 7653 7654 7655 7656
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7657
          
T
Tink_Y 已提交
7658 7659
          if:
              align_corners = False
7660

T
Tink_Y 已提交
7661 7662
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7663

T
Tink_Y 已提交
7664 7665
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7666

T
Tink_Y 已提交
7667 7668
          else:
              align_corners = True
7669

T
Tink_Y 已提交
7670 7671
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7672

T
Tink_Y 已提交
7673 7674
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7675 7676


7677
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7678
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7679 7680 7681 7682

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7683 7684 7685
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7686

Y
yuyang18 已提交
7687
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7688
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7689
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7690
             Default: None.
Y
yuyang18 已提交
7691 7692

        name(str|None): The output variable name.
7693 7694 7695
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7696
                                :attr:`out_shape` and :attr:`scale` specifying
7697 7698 7699 7700 7701 7702 7703
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7704 7705
                                constructing stage.
                                Default: None
7706
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7707 7708 7709

    Returns:
        ${out_comment}.
7710 7711 7712 7713

    Examples:
        .. code-block:: python

R
ruri 已提交
7714
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7715
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7716 7717
    """

7718 7719
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7720 7721 7722 7723


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7724 7725 7726
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7727 7728 7729 7730 7731 7732 7733
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7734
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7735

7736
    Returns:
Q
update  
qiaolongfei 已提交
7737
        Variable: The output is a 4-D tensor of the shape
7738
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7739 7740 7741 7742 7743 7744

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7755 7756 7757
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7758 7759 7760
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7761 7762
def gather(input, index):
    """
Q
qiaolongfei 已提交
7763 7764
    **Gather Layer**

7765
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7766 7767 7768 7769
    of X indexed by `index` and concatenate them together.

    .. math::

7770
        Out = X[Index]
W
whs 已提交
7771 7772 7773 7774 7775 7776 7777


    .. code-block:: text


                Given:

7778 7779
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7790
        input (Variable): The source input with rank>=1.
W
whs 已提交
7791 7792 7793 7794 7795 7796
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7797

W
whs 已提交
7798 7799
        .. code-block:: python

Y
Yibing Liu 已提交
7800 7801
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7802 7803 7804 7805
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7806
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7807 7808 7809 7810 7811 7812 7813 7814
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7846
    out = helper.create_variable_for_type_inference(dtype)
7847 7848 7849 7850 7851 7852 7853 7854 7855
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7856 7857 7858 7859 7860 7861 7862 7863 7864
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7865

Q
Qingsheng Li 已提交
7866
    Given the following input:
H
haowang101779990 已提交
7867

Q
Qingsheng Li 已提交
7868
    .. code-block:: text
H
haowang101779990 已提交
7869

Q
Qingsheng Li 已提交
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7882

Q
Qingsheng Li 已提交
7883
    .. code-block:: text
H
haowang101779990 已提交
7884

Q
Qingsheng Li 已提交
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7900
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7901 7902 7903 7904

    Examples:

        .. code-block:: python
7905 7906
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
7907

7908 7909 7910
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
7911 7912 7913
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7914
    assert not in_dygraph_mode(), (
7915
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7916 7917
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7918
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7919 7920 7921 7922 7923 7924 7925 7926 7927
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7941

7942 7943 7944
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7945
    """
F
stash  
fengjiayi 已提交
7946
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7947
    dtype = x.dtype
X
Xin Pan 已提交
7948
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7949
    if seed is None:
7950
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7951
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7952
    if isinstance(seed, int):
F
fengjiayi 已提交
7953 7954 7955 7956 7957
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7958 7959 7960 7961
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7962
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7963 7964
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7965 7966
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7967
    return out
W
whs 已提交
7968 7969


7970
def log(x, name=None):
W
wanghaoshuang 已提交
7971 7972 7973 7974 7975
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7976
        Out = \\ln(x)
W
wanghaoshuang 已提交
7977 7978

    Args:
7979
        x (Variable): Input tensor.
7980 7981
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7982 7983 7984 7985 7986 7987 7988 7989

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7990
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7991 7992
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7993
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7994
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7995
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7996 7997 7998
    return out


7999
def relu(x, name=None):
W
wanghaoshuang 已提交
8000 8001
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8002
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8003 8004 8005 8006
    the tensor elementwise.

    .. math::

8007
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8008 8009

    Args:
8010
        x (Variable): The input tensor.
8011 8012
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8013 8014 8015 8016 8017 8018 8019 8020

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8021
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8022
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8023 8024
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8025
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8026
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8027 8028
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8029
    return out
8030 8031


C
chengduo 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8073 8074 8075
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8076 8077 8078 8079
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8080
    .. math::
8081

H
haowang101779990 已提交
8082
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8083

8084
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8085 8086 8087 8088 8089
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8090
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8091
                           Its shape should be the same as input.
8092
        num_classes (int): The possible number of labels.
W
whs 已提交
8093 8094

    Returns:
M
minqiyang 已提交
8095 8096
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8097
                     Three variables:
M
minqiyang 已提交
8098

H
haowang101779990 已提交
8099 8100 8101
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8102 8103 8104 8105

    Examples:

        .. code-block:: python
8106

W
whs 已提交
8107 8108 8109 8110
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8111 8112 8113
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8114 8115
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8116 8117
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8118
        outputs={
W
whs 已提交
8119 8120 8121
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8122 8123 8124
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8167
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8168
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8169
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8187
            import paddle.fluid as fluid
8188 8189 8190 8191 8192 8193
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8194
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8195 8196 8197 8198 8199

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8200
            isinstance(shape, Variable)):
8201 8202 8203 8204 8205
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8206
    out = helper.create_variable_for_type_inference(x.dtype)
8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8224 8225


W
whs 已提交
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8243

W
whs 已提交
8244
              out_shape = [2, 3, 5, 5]
8245

W
whs 已提交
8246
          Step 1:
8247

W
whs 已提交
8248 8249 8250
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8251

W
whs 已提交
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8297
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8298
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8311

S
SunGaofeng 已提交
8312
            import paddle.fluid as fluid
W
whs 已提交
8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8324
            isinstance(out_shape, Variable)):
W
whs 已提交
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8346 8347
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8348

8349 8350
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8351
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8352 8353 8354
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8355

8356 8357
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8358

H
haowang101779990 已提交
8359 8360
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8361 8362
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8363

H
haowang101779990 已提交
8364 8365 8366 8367 8368 8369 8370 8371
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8372 8373 8374

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8392 8393 8394
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8409
    out = helper.create_variable_for_type_inference("float32")
8410 8411 8412 8413 8414 8415 8416 8417

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8418 8419


M
minqiyang 已提交
8420 8421
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8422
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8423
    which compares left score and right score passed in.
M
minqiyang 已提交
8424
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8425 8426 8427

    .. math::

H
haowang101779990 已提交
8428
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8429 8430

    Args:
M
minqiyang 已提交
8431
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8432 8433
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8434
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8435 8436
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8437

M
minqiyang 已提交
8438
    Returns:
M
minqiyang 已提交
8439
       Variable: The ranking loss.
H
haowang101779990 已提交
8440

M
minqiyang 已提交
8441
    Raises:
M
minqiyang 已提交
8442
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8443

M
minqiyang 已提交
8444
    Examples:
H
haowang101779990 已提交
8445

M
minqiyang 已提交
8446
        .. code-block:: python
H
haowang101779990 已提交
8447

Y
Yibing Liu 已提交
8448 8449 8450
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8451 8452
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8453
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8454 8455 8456 8457 8458 8459
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8460 8461
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8485
        .. code-block:: text
W
whs 已提交
8486

T
Tink_Y 已提交
8487
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8488

T
Tink_Y 已提交
8489 8490
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8491

T
Tink_Y 已提交
8492
	      Case 0:
M
minqiyang 已提交
8493

T
Tink_Y 已提交
8494 8495 8496
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8497

T
Tink_Y 已提交
8498 8499 8500
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8501

T
Tink_Y 已提交
8502
	      Case 1:
M
minqiyang 已提交
8503

T
Tink_Y 已提交
8504 8505
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8506

T
Tink_Y 已提交
8507 8508 8509
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8510

T
Tink_Y 已提交
8511
	      Case 2:
M
minqiyang 已提交
8512

T
Tink_Y 已提交
8513 8514
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8515

T
Tink_Y 已提交
8516 8517 8518
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8519 8520


W
whs 已提交
8521 8522
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8523
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8547
    out = helper.create_variable_for_type_inference(dtype)
8548 8549 8550 8551 8552 8553 8554 8555 8556
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8557
    helper.append_op(
8558
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8559 8560 8561 8562

    return out


8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8575 8576 8577 8578 8579

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8580 8581
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8582 8583
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8584
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8605 8606 8607 8608 8609

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8610 8611
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8612 8613
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8614
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8635 8636 8637 8638 8639

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8640 8641
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8642 8643
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8644
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8666 8667 8668 8669 8670

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8671
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8672
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8673 8674
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8675
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8698 8699 8700 8701 8702

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8703 8704
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8705 8706
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8707
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8729 8730 8731 8732 8733

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8734 8735
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8736 8737
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8738
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8739 8740 8741 8742 8743 8744 8745 8746
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8747 8748 8749 8750
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8751 8752
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8753 8754 8755

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8756
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8757
          weight (alpha).
J
jerrywgz 已提交
8758
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8759 8760 8761
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8762
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8763
          will be named automatically.
J
jerrywgz 已提交
8764 8765 8766 8767 8768 8769 8770 8771

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8772
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8786
        attr=helper.param_attr,
J
jerrywgz 已提交
8787 8788 8789 8790
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8791
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8792 8793 8794 8795 8796 8797 8798 8799 8800
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8801 8802 8803 8804 8805 8806 8807 8808 8809 8810
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8811
    Returns:
8812
        output(${out_type}): ${out_comment}
8813 8814 8815

    Examples:

8816
    .. code-block:: python
8817

H
haowang101779990 已提交
8818 8819
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8820 8821
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8822
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8841
    Returns:
8842
        output(${out_type}): ${out_comment}
8843 8844 8845 8846 8847

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8848 8849
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8850 8851
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8852
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8870
    Returns:
8871
        output(${out_type}): ${out_comment}
8872 8873 8874 8875 8876

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8877 8878
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8879 8880
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8881
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8882 8883 8884 8885 8886 8887 8888 8889
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8890 8891 8892 8893
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8894

H
haowang101779990 已提交
8895
    For Example:
M
minqiyang 已提交
8896

H
haowang101779990 已提交
8897
    .. code-block:: text
8898

H
haowang101779990 已提交
8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8920 8921 8922

    Args:
        x (Variable): A tensor of rank >= axis.
8923 8924
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8925 8926 8927 8928 8929 8930 8931 8932
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8933 8934 8935
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8936 8937 8938 8939
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8940
        ValueError: If axis is not in range [0, rank(x)].
8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8957 8958
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8959
    helper.append_op(
8960
        type='flatten2',
8961
        inputs={"X": x},
8962 8963
        outputs={'Out': out,
                 'XShape': x_shape},
8964 8965
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8966 8967


C
chenweihang 已提交
8968
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8969
    """
C
chenweihang 已提交
8970
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8971
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8972 8973
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8974

H
haowang101779990 已提交
8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8992 8993

    Args:
C
chenweihang 已提交
8994 8995 8996
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8997 8998 8999 9000 9001 9002 9003

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9004
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9005 9006
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9007
    assert not in_dygraph_mode(), (
9008
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9009
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9010 9011
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9012 9013 9014 9015 9016 9017
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9018
    return out
9019

9020

S
sneaxiy 已提交
9021 9022 9023 9024 9025 9026 9027 9028 9029
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9030

S
sneaxiy 已提交
9031
    .. math::
9032

S
sneaxiy 已提交
9033 9034 9035
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9036
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9037 9038 9039 9040
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9041 9042 9043
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9044 9045
    Returns:
        Variable: The output sequence mask.
9046

9047 9048 9049 9050 9051 9052 9053 9054
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9055
    """
L
lujun 已提交
9056
    assert not in_dygraph_mode(), (
9057
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9058

Q
qingqing01 已提交
9059
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9060
    if name is None:
X
Xin Pan 已提交
9061
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9062
    else:
X
Xin Pan 已提交
9063
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9064

Q
qingqing01 已提交
9065 9066 9067
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9068 9069
        outputs={'Y': out},
        attrs={
9070
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9071 9072 9073
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9074 9075


X
Xin Pan 已提交
9076
def stack(x, axis=0):
S
sneaxiy 已提交
9077 9078 9079 9080
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9081 9082 9083 9084 9085 9086 9087

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9088
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9089
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9090

C
chengduozh 已提交
9091 9092
    For Example:

C
chengduozh 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9131
    Args:
9132
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9133
        axis (int|None): The axis along which all inputs are stacked.
9134

S
sneaxiy 已提交
9135 9136
    Returns:
        Variable: The stacked variable.
9137

9138 9139 9140 9141 9142 9143 9144 9145
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9146 9147
    """

X
Xin Pan 已提交
9148 9149 9150 9151 9152 9153
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9154
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9155
    helper.append_op(
S
sneaxiy 已提交
9156 9157
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9158

X
Xin Pan 已提交
9159
    return out
D
dzhwinter 已提交
9160 9161 9162 9163 9164 9165 9166


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9167

D
dzhwinter 已提交
9168 9169 9170
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9171
    raised.
D
dzhwinter 已提交
9172 9173

    Args:
M
minqiyang 已提交
9174
        x (Variable): Input variable.
D
dzhwinter 已提交
9175 9176
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9177

D
dzhwinter 已提交
9178 9179
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9180

D
dzhwinter 已提交
9181 9182 9183 9184 9185 9186 9187 9188 9189 9190
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9191
    for _ in range(num):
X
Xin Pan 已提交
9192
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9193 9194 9195 9196 9197 9198 9199 9200

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9213

W
whs 已提交
9214 9215 9216 9217
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9218

W
whs 已提交
9219
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9220

W
whs 已提交
9221
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9222

W
whs 已提交
9223 9224 9225 9226
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9227

W
whs 已提交
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9244
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9245 9246 9247 9248 9249 9250
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9251 9252


G
fix  
gongweibao 已提交
9253 9254 9255
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9256
@templatedoc()
G
fix  
gongweibao 已提交
9257 9258 9259 9260 9261 9262 9263 9264 9265
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9266
    ${comment}
G
fix  
gongweibao 已提交
9267 9268

    Args:
G
gongweibao 已提交
9269 9270 9271
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9272
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9273 9274 9275
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9276 9277
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9278
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9279

9280 9281 9282
    Examples:
        .. code-block:: python

9283 9284
            import paddle.fluid.layers as layers 

9285 9286
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9287 9288 9289
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9290
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9307 9308


G
gongweibao 已提交
9309
@templatedoc()
X
Xin Pan 已提交
9310
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9311
    """
G
gongweibao 已提交
9312
    ${comment}
G
fix  
gongweibao 已提交
9313 9314

    Args:
G
gongweibao 已提交
9315 9316 9317 9318
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9319 9320 9321
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9322
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9323

9324 9325 9326
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9327
            import paddle.fluid.layers as layers
9328
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9329 9330 9331
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9332
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9343
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9344 9345 9346 9347 9348
        })

    return out


G
gongweibao 已提交
9349
@templatedoc()
G
fix  
gongweibao 已提交
9350
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9351
    """
G
gongweibao 已提交
9352
    ${comment}
G
fix  
gongweibao 已提交
9353 9354

    Args:
G
gongweibao 已提交
9355 9356 9357 9358
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9359
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9360 9361

    Returns:
G
gongweibao 已提交
9362
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9363

9364 9365 9366
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9367
            x = fluid.layers.data(
9368 9369 9370 9371 9372
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9373
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9374 9375 9376
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9377
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9389
@templatedoc()
G
fix  
gongweibao 已提交
9390 9391 9392 9393 9394 9395 9396 9397 9398
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9399
    ${comment}
G
fix  
gongweibao 已提交
9400 9401

    Args:
G
gongweibao 已提交
9402 9403
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9404
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9405 9406 9407 9408
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9409
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9410 9411

    Returns:
G
gongweibao 已提交
9412
        out (Variable): ${out_comment}
9413 9414 9415 9416

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9417
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9418

Y
Yibing Liu 已提交
9419
            out = fluid.layers.gaussian_random_batch_size_like(
9420
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9421 9422 9423
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9424
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9443
@templatedoc()
X
Xin Pan 已提交
9444
def sum(x):
G
fix  
gongweibao 已提交
9445
    """
G
gongweibao 已提交
9446
    ${comment}
G
fix  
gongweibao 已提交
9447 9448

    Args:
G
gongweibao 已提交
9449
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9450 9451

    Returns:
G
gongweibao 已提交
9452
        out (Variable): ${out_comment}
9453 9454 9455 9456 9457 9458

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9459 9460 9461
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9462 9463
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9464 9465 9466 9467
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9468
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9469 9470 9471 9472

    return out


G
gongweibao 已提交
9473
@templatedoc()
G
fix  
gongweibao 已提交
9474 9475
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9476
    ${comment}
G
fix  
gongweibao 已提交
9477 9478

    Args:
G
gongweibao 已提交
9479 9480 9481 9482
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9483 9484

    Returns:
G
gongweibao 已提交
9485
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9486

9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9498 9499 9500
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9501 9502
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9516 9517
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9518
    Get the shape of the input.
G
fix  
gongweibao 已提交
9519 9520

    Args:
C
chengduozh 已提交
9521
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9522 9523

    Returns:
C
fix doc  
chengduozh 已提交
9524
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9525

9526 9527 9528 9529 9530 9531
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9532 9533 9534
    """

    helper = LayerHelper('shape', **locals())
9535
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9536
    helper.append_op(
G
fix  
gongweibao 已提交
9537
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9538 9539

    return out
G
merge  
gongweibao 已提交
9540 9541


Z
zhoukunsheng 已提交
9542 9543 9544 9545
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9546
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9568 9569 9570 9571
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9572
    if in_dygraph_mode():
X
Xin Pan 已提交
9573 9574 9575
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9576 9577 9578 9579
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9580 9581
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9582
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9583 9584 9585
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9586

S
sneaxiy 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9598
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9599 9600 9601 9602 9603 9604 9605 9606
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9607
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9608
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9609 9610 9611 9612 9613 9614

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9615
    if name is None:
X
Xin Pan 已提交
9616
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9617 9618 9619
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9620 9621 9622 9623 9624 9625 9626 9627 9628 9629

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9630
    return helper.append_activation(out)
S
sneaxiy 已提交
9631 9632


X
Xin Pan 已提交
9633
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9634 9635 9636
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9637
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9638 9639 9640
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9641
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9642 9643 9644
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9645
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9646 9647 9648
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9649
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9650 9651 9652
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9653
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9654 9655 9656
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9657
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9658 9659 9660
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9661 9662 9663 9664 9665 9666 9667 9668
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9669
for func in [
9670 9671 9672 9673 9674 9675 9676 9677 9678
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9679 9680 9681 9682 9683
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9684 9685
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9686
        ])
M
minqiyang 已提交
9687 9688


9689
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9690 9691
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9692 9693
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9694 9695 9696

    if out is None:
        if name is None:
X
Xin Pan 已提交
9697
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9713
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9725 9726 9727 9728 9729 9730 9731 9732 9733

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9734 9735 9736 9737 9738 9739 9740
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9741
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9753 9754 9755 9756 9757 9758 9759 9760 9761

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9762 9763 9764 9765 9766 9767 9768
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9769
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9781 9782 9783 9784 9785 9786 9787 9788 9789

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9790 9791 9792 9793 9794 9795 9796
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9797
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9808 9809 9810 9811 9812 9813 9814

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9815 9816 9817 9818
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9834 9835 9836 9837

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9838
            import paddle.fluid as fluid
9839 9840 9841
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9842 9843 9844 9845 9846
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
9847 9848
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
9849 9850 9851

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9875 9876 9877 9878 9879 9880 9881

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9882 9883 9884 9885 9886
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
9887 9888
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
9889 9890 9891

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9892 9893 9894 9895 9896 9897 9898 9899

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9918
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9919 9920 9921 9922 9923 9924 9925 9926 9927 9928
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
9978 9979 9980 9981 9982
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9983
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9984 9985 9986 9987 9988 9989 9990 9991 9992
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9993 9994
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9995 9996 9997 9998 9999 10000
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10001 10002 10003
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10004 10005
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10006 10007 10008 10009 10010 10011
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10012
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10013
        name(basestring|None): Name of the output.
10014 10015
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10016 10017 10018

    Returns:
        out(${out_type}): ${out_comment}
10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10033 10034 10035 10036 10037
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10038
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10039 10040 10041 10042 10043 10044 10045 10046
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10047 10048
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10065 10066 10067 10068 10069 10070 10071 10072 10073

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10074 10075 10076 10077
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10078
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10089 10090


J
JiabinYang 已提交
10091
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10092
    """
J
JiabinYang 已提交
10093
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10094 10095 10096

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10097
    The attr blocksize indicates the input block size.
10098 10099

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10100
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10101 10102

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10103
    (but keeping all data)
J
JiabinYang 已提交
10104

J
JiabinYang 已提交
10105
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10106
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10107 10108 10109 10110 10111
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10112
    Args:
J
JiabinYang 已提交
10113
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10114
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10115 10116

    Returns:
J
JiabinYang 已提交
10117
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10118 10119

    Raises:
J
JiabinYang 已提交
10120
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10121 10122 10123

    Examples:
        .. code-block:: python
10124 10125 10126
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10127 10128

            data = fluid.layers.data(
10129
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10130
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10131
                x=data, blocksize=2)
10132 10133 10134 10135 10136 10137

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10138

J
JiabinYang 已提交
10139 10140
    """

J
JiabinYang 已提交
10141
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10142

J
JiabinYang 已提交
10143 10144
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10145 10146

    if name is None:
J
JiabinYang 已提交
10147 10148
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10149 10150 10151 10152 10153
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10154
        type="space_to_depth",
J
JiabinYang 已提交
10155
        inputs={"X": x},
J
JiabinYang 已提交
10156
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10157
        outputs={"Out": out})
J
JiabinYang 已提交
10158 10159
    return out

J
JiabinYang 已提交
10160

S
sneaxiy 已提交
10161 10162
@templatedoc()
def sequence_reverse(x, name=None):
10163
    """
S
sneaxiy 已提交
10164 10165 10166 10167 10168 10169 10170 10171 10172
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10173
    assert not in_dygraph_mode(), (
10174
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10175 10176
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10177
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10178 10179 10180 10181 10182 10183 10184 10185 10186 10187
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10188 10189


10190 10191 10192 10193 10194 10195
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10196 10197 10198 10199 10200
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10201

10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10214
        act (str, default None): Activation to be applied to the output of this layer.
10215 10216 10217 10218 10219 10220 10221

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10222
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10234
    return helper.append_activation(out)
10235 10236


B
barrierye 已提交
10237
def similarity_focus(input, axis, indexes, name=None):
10238
    """
B
barrierye 已提交
10239
    SimilarityFocus Operator
B
barrierye 已提交
10240 10241

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10242

10243 10244 10245
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10246
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10247 10248 10249 10250 10251 10252 10253
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10254
       each index.
B
barrierye 已提交
10255 10256 10257 10258
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10308
    Args:
10309
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10310
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10311
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10312
            1, 2 or 3.
B
barrierye 已提交
10313
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10314 10315

    Returns:
H
haowang101779990 已提交
10316 10317
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10318

B
barrierye 已提交
10319 10320
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10321

B
barrierye 已提交
10322
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10323 10324
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10337 10338 10339 10340 10341
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10342 10343 10344 10345 10346 10347 10348
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10349 10350


M
minqiyang 已提交
10351 10352
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10353 10354
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10355 10356
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10395
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10396
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10397 10398 10399 10400 10401 10402

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10403

10404
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10405
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10406 10407
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10408 10409
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10410 10411 10412 10413 10414 10415 10416
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10417 10418


D
dengkaipeng 已提交
10419
@templatedoc()
10420 10421
def grid_sampler(x, grid, name=None):
    """
10422
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10423
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10424 10425 10426 10427
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10428
    interpolation value of 4 nearest corner points.
10429

H
haowang101779990 已提交
10430
    .. code-block:: text
10431

H
haowang101779990 已提交
10432 10433
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10434

H
haowang101779990 已提交
10435 10436
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10437

H
haowang101779990 已提交
10438 10439 10440
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10441

H
haowang101779990 已提交
10442 10443 10444 10445 10446 10447 10448 10449 10450
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10451

H
haowang101779990 已提交
10452 10453 10454 10455
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10456

H
haowang101779990 已提交
10457 10458 10459 10460
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10461

H
haowang101779990 已提交
10462 10463 10464 10465
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10466

H
haowang101779990 已提交
10467 10468
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10469 10470

    Args:
10471 10472 10473
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10474 10475

    Returns:
H
haowang101779990 已提交
10476
        Variable: Output of shape [N, C, H, W] data samples input X
10477 10478
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10479 10480 10481 10482
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10483 10484 10485 10486 10487
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10488
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10489

D
dengkaipeng 已提交
10490 10491 10492 10493 10494 10495 10496 10497 10498
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10499
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10500 10501
    ipts = {'X': x, 'Grid': grid}

10502
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10503 10504 10505
    return out


G
gmcather 已提交
10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10533 10534
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10573
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10574 10575 10576 10577 10578 10579 10580
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10581 10582
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10583

10584 10585 10586 10587 10588
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10589
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10590

H
heqiaozhi 已提交
10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10604 10605 10606 10607
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10608
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10609 10610
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10611
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10612 10613

    .. math::
H
haowang101779990 已提交
10614 10615 10616
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10617 10618

    Where:
H
haowang101779990 已提交
10619 10620
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10634 10635 10636 10637 10638 10639 10640 10641 10642
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10643

G
gmcather 已提交
10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10660 10661 10662 10663 10664 10665 10666 10667 10668 10669


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10670
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10671

Q
Qiao Longfei 已提交
10672
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10673 10674 10675
    For example:

    .. math::
H
haowang101779990 已提交
10676
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10677

Q
Qiao Longfei 已提交
10678
    In this formula:
10679 10680
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10681
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10682
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10683 10684 10685
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10686 10687
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10688 10689 10690
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10691
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10692
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10693
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10694 10695 10696 10697
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10698
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10699 10700 10701 10702

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10703 10704 10705
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10706 10707
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10708
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10709 10710 10711 10712

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10713
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10754 10755


S
shippingwang 已提交
10756
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10757 10758
    """
    **Shuffle Channel Operator**
10759

S
shippingwang 已提交
10760 10761 10762 10763 10764 10765
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10766
    
S
shippingwang 已提交
10767
    .. code-block:: text
10768

S
shippingwang 已提交
10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10797
    Args: 
S
shippingwang 已提交
10798 10799
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10800 10801

    Returns:
S
shippingwang 已提交
10802 10803
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10804 10805

    Raises:
S
shippingwang 已提交
10806
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10807 10808 10809

    Examples:
        .. code-block:: python
10810 10811

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10812
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10813 10814 10815
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10816
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10817 10818 10819 10820 10821 10822 10823 10824 10825

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10826
    return out
S
Add  
shippingwang 已提交
10827 10828


10829
@templatedoc()
D
dengkaipeng 已提交
10830
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10831 10832 10833 10834 10835 10836 10837 10838
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10839
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10840
        name (str, default None): The name of this layer.
10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10853
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10866 10867
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10868 10869 10870
    return out


S
sneaxiy 已提交
10871
class PyFuncRegistry(object):
S
sneaxiy 已提交
10872 10873 10874
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10875
        if func is None or not callable(func):
S
sneaxiy 已提交
10876 10877 10878
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10879
        # find named args using reflection
S
sneaxiy 已提交
10880 10881 10882 10883 10884 10885 10886
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10887 10888 10889
        '''
        Why record self here?

M
minqiyang 已提交
10890 10891
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10892
           to find the registered function corresponding
M
minqiyang 已提交
10893
           to :code:`idx`.
S
sneaxiy 已提交
10894

M
minqiyang 已提交
10895 10896
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10897
           whose reference count is 1 would cause
M
minqiyang 已提交
10898
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10899 10900
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10901
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10916 10917 10918 10919 10920 10921 10922 10923 10924
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10925

S
sneaxiy 已提交
10926 10927
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10928 10929

        ret = []
S
sneaxiy 已提交
10930 10931 10932
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10933 10934
                continue

S
sneaxiy 已提交
10935 10936
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10937

S
sneaxiy 已提交
10938 10939 10940
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10941

S
sneaxiy 已提交
10942
        return tuple(ret)
S
sneaxiy 已提交
10943 10944


S
sneaxiy 已提交
10945 10946 10947 10948
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10949

S
sneaxiy 已提交
10950 10951 10952 10953 10954 10955 10956 10957
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10958
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10959

S
sneaxiy 已提交
10960 10961
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10962 10963 10964 10965
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10966
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10967
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10968 10969
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10970 10971 10972 10973 10974
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10975
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10976
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10977
                                       None means no backward. Default None.
S
sneaxiy 已提交
10978
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10979
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10980 10981
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10982
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10983 10984 10985

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10986 10987

    Examples:
M
minqiyang 已提交
10988

S
sneaxiy 已提交
10989 10990 10991 10992 10993
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10994
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10995 10996
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10997
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10998 10999 11000
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11001
        >>>
S
sneaxiy 已提交
11002 11003 11004 11005 11006
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11007
        >>>     print(x)
S
sneaxiy 已提交
11008 11009 11010 11011 11012 11013
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11014
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11015 11016
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11017 11018
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11019 11020 11021 11022 11023 11024 11025 11026
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11027
    """
S
sneaxiy 已提交
11028
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11029 11030 11031
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11032
        x = [x]
S
sneaxiy 已提交
11033 11034
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11035

S
sneaxiy 已提交
11036 11037 11038
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11039
        out_list = [out]
S
sneaxiy 已提交
11040
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11041
        out_list = out
S
sneaxiy 已提交
11042 11043 11044
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11045

S
sneaxiy 已提交
11046 11047
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11048
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11049 11050

    for each_out in out_list:
S
sneaxiy 已提交
11051 11052
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11053 11054
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11055

S
sneaxiy 已提交
11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11071 11072 11073 11074

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11075 11076
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11077 11078 11079
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11080
        })
S
sneaxiy 已提交
11081
    return out
S
sneaxiy 已提交
11082 11083 11084


# For debug usage
S
sneaxiy 已提交
11085 11086 11087 11088
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11102 11103 11104 11105 11106
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11119 11120 11121 11122
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11148

M
minqiyang 已提交
11149

M
minqiyang 已提交
11150
def huber_loss(input, label, delta):
11151
    """
M
minqiyang 已提交
11152 11153 11154
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11155 11156 11157 11158

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11159
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11160 11161 11162 11163

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11164
        huber\_loss = 0.5 * (label - input) * (label - input)
11165 11166 11167 11168 11169 11170 11171


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11172
        delta (float): The parameter of huber loss, which controls
11173 11174 11175
                       the range of outliers

    Returns:
M
minqiyang 已提交
11176
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11177 11178 11179 11180

    Examples:
        .. code-block:: python

11181 11182 11183 11184 11185 11186 11187 11188 11189
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11190
    """
M
minqiyang 已提交
11191
    helper = LayerHelper('huber_loss', **locals())
11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11203 11204


D
dengkaipeng 已提交
11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11267 11268 11269
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11270
          # edges must be directional
T
Tao Luo 已提交
11271 11272 11273 11274
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11275
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11276 11277
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11278
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11279
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11303 11304


C
ceci3 已提交
11305
from .ops import square
C
ceci3 已提交
11306
from .control_flow import equal
C
ceci3 已提交
11307 11308


C
ceci3 已提交
11309 11310 11311
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11312

C
ceci3 已提交
11313
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11314 11315

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11316
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11317 11318 11319 11320 11321
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11322 11323
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11324 11325 11326 11327 11328 11329 11330

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11331 11332 11333 11334 11335 11336 11337 11338
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11339 11340 11341 11342 11343 11344 11345
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11346
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11347 11348
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11349 11350
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11351 11352 11353 11354
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11355 11356 11357
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11358 11359 11360
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11361 11362


R
ruri 已提交
11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11392
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11393 11394 11395 11396 11397 11398 11399 11400 11401

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11402
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11463 11464 11465 11466


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11467

H
heqiaozhi 已提交
11468
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11469

H
fix doc  
heqiaozhi 已提交
11470
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11471 11472 11473
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11474
    
H
fix doc  
heqiaozhi 已提交
11475
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11476

H
heqiaozhi 已提交
11477
    Args:
H
fix doc  
heqiaozhi 已提交
11478 11479

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11480 11481
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11482
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11483
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11484

H
heqiaozhi 已提交
11485
    Returns:
H
fix doc  
heqiaozhi 已提交
11486 11487 11488

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11489
    Examples:
H
fix doc  
heqiaozhi 已提交
11490

H
heqiaozhi 已提交
11491
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11492

H
heqiaozhi 已提交
11493 11494 11495 11496 11497 11498 11499 11500 11501 11502
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11503

H
heqiaozhi 已提交
11504 11505 11506 11507 11508 11509 11510 11511 11512
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11513
    return out
Z
zhoukunsheng 已提交
11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out