pybind.cc 131.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/cost_model.h"
42
#include "paddle/fluid/framework/ir/generate_pass.h"
43
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
44 45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
54
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/selected_rows.h"
57
#include "paddle/fluid/framework/tensor_util.h"
58
#include "paddle/fluid/framework/trainer.h"
59
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
60
#include "paddle/fluid/framework/version.h"
H
hong 已提交
61
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
62
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
63
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
64
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
66
#include "paddle/fluid/operators/py_func_op.h"
67
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/platform/cpu_info.h"
69
#include "paddle/fluid/platform/device_context.h"
70
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/platform/enforce.h"
72
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
73
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
74 75
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
76
#include "paddle/fluid/pybind/cuda_streams_py.h"
77
#include "paddle/fluid/pybind/io.h"
78
#include "paddle/utils/none.h"
79 80 81
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
82
#include "paddle/fluid/pybind/bind_cost_model.h"
H
hutuxian 已提交
83
#include "paddle/fluid/pybind/box_helper_py.h"
84
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
85
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
86
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
89
#include "paddle/fluid/pybind/generator_py.h"
90
#include "paddle/fluid/pybind/global_value_getter_setter.h"
91
#include "paddle/fluid/pybind/gloo_context_py.h"
92
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
93
#include "paddle/fluid/pybind/heter_wrapper_py.h"
94
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
95
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
96
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
97
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
98
#include "paddle/fluid/pybind/pybind_boost_headers.h"
99

100
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
101
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
102
#endif
103
#include "paddle/fluid/framework/data_type.h"
104 105
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
106
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/tensor_py.h"
108
#include "paddle/fluid/string/to_string.h"
109 110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
111
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
112
#endif
113
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
114
#include "paddle/fluid/platform/cuda_profiler.h"
115
#endif
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
117 118
#endif

119 120
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
121
#include "paddle/fluid/platform/npu_profiler.h"
122 123
#endif

124
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
125
#include "paddle/fluid/platform/xpu/xpu_info.h"
126 127
#endif

Y
Yanghello 已提交
128 129 130 131
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
132
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
133 134 135
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
136 137
#include "pybind11/stl.h"

138
DECLARE_bool(use_mkldnn);
139

Q
Qiao Longfei 已提交
140 141
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
142 143 144
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
145

146
namespace paddle {
147
namespace pybind {
148
bool IsCompiledWithCUDA() {
149 150 151 152 153 154 155 156 157
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
158 159 160 161 162 163
  return false;
#else
  return true;
#endif
}

164 165 166 167 168 169 170 171
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

172 173 174 175 176 177 178 179
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

180 181 182 183 184 185 186 187
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

188 189 190 191 192 193 194 195
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

204 205 206 207 208 209 210 211 212 213 214
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

215 216 217 218 219 220 221 222 223 224 225
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
244 245 246
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
247
      {"NPU", &platform::is_npu_place},
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

287
bool IsCompiledWithBrpc() {
288
#ifndef PADDLE_WITH_DISTRIBUTE
289 290
  return false;
#endif
291
  return true;
292 293
}

Y
update  
Yancey1989 已提交
294
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
295
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
296 297 298 299 300 301
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
302 303 304 305 306 307 308 309 310 311
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
334 335 336
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
350 351
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
352 353
    }
    vec_res.emplace_back(
354
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
355 356 357 358 359 360 361 362 363 364 365 366
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
367 368
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
369 370 371 372 373 374 375 376 377 378 379 380
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
381 382 383
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
384 385 386 387
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
388 389
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
390 391 392 393
  }
  return vec_res;
}

394 395 396 397 398 399 400 401
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
402 403
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
404 405 406 407 408 409 410 411 412 413 414 415 416
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
417 418 419
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
420 421 422 423 424
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
425 426 427 428 429
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
430 431
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
432 433 434
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
435 436 437 438 439 440 441 442 443
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
444 445
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
446 447 448 449 450
  }

  return;
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

488 489 490 491 492 493
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

494 495
  BindCudaStream(&m);

Y
Yu Yang 已提交
496 497 498
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
499
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
500

501 502
  AssertStaticGraphAndDygraphGradMakerNoDiff();

503
  m.doc() = "C++ core of PaddlePaddle";
504

505 506 507 508
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

509
  BindException(&m);
Y
Yu Yang 已提交
510

511 512
  m.def("set_num_threads", &platform::SetNumThreads);

513 514
  m.def("disable_signal_handler", &DisableSignalHandler);

515
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
516 517 518
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
519 520 521 522 523 524 525 526
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
527 528 529
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
530 531 532 533 534 535

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
536 537
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
538
    framework::Tensor tensor;
6
633WHU 已提交
539

S
Siming Dai 已提交
540
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
541 542
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
543
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
544
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
545 546 547 548 549
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
550

551 552 553 554 555 556
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

557 558 559 560 561 562
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
563 564
  });

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
590 591 592 593 594 595
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
596
  m.def(
S
sneaxiy 已提交
597
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
598 599 600 601
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
602 603 604
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
621 622 623
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
624
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
625

626
  m.def("_set_fuse_parameter_group_size",
627
        &paddle::framework::ir::SetFuseParameterGroupsSize);
628
  m.def("_set_fuse_parameter_memory_size",
629
        &paddle::framework::ir::SetFuseParameterMemorySize);
630

S
sneaxiy 已提交
631 632 633
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

634 635
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

636 637 638
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

639
  BindImperative(&m);
640

641 642 643
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
644
      .def("_is_initialized",
645
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
646
      .def("_get_dims",
647
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
648
      .def("_set_dims",
649
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
650
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
651
           })
Y
yuyang18 已提交
652
      .def("_set_layout",
653
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
654 655
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
656
      .def("_alloc_float",
657
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
658
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
659
           })
660
      .def("_alloc_float",
661
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
662 663
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
664
      .def("_alloc_float",
665
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
666
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
667
           })
668 669 670 671
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
672
      .def("_alloc_double",
673
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
674 675
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
676
      .def("_alloc_int",
677
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
678
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
679
           })
680
      .def("_alloc_int",
681
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
682 683
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
684
      .def("_alloc_int",
685
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
686
             self.mutable_data<int>(place);
Q
qijun 已提交
687
           })
Y
yuyang18 已提交
688
      .def("_alloc_int",
689 690
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
691 692
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
693
      .def("_alloc_float",
694 695
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
696 697
             self.mutable_data<float>(place);
           })
698
      .def("_mutable_data",
699
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
700 701 702
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
703
      .def("_mutable_data",
704
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
705 706 707
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
708
      .def("_mutable_data",
709
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
710 711 712 713
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
714
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
715 716 717
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
718
      .def("_clear", &framework::Tensor::clear)
719 720 721 722 723
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
724
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
725
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
726 727
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
728
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
729
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
730 731
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
732
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
733 734
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
735 736 737 738
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
739
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
740
          LoDTensor is to be set.
741 742
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
756

757 758 759
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
776
      .def("_to_dlpack",
777
           [](framework::Tensor &self) {
6
633WHU 已提交
778
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
779
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
797 798 799 800
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
801 802
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
803
      .def("_layout",
804 805 806 807
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
808
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
809
      .def("__str__", [](const framework::Tensor &self) {
810 811 812 813
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
814

L
Leo Chen 已提交
815
  // TODO(cql): add reference: en_user_guide_lod_tensor
816
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
891 892 893 894 895 896 897

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
898 899

        )DOC")
900 901
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
902 903 904 905 906 907 908 909 910
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
911 912
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
913 914 915 916
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
917 918
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
919
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
920
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
921 922
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
923 924 925
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
926
      .def("set_lod",
927
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
928
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
929
             LoD new_lod;
930 931
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
932 933
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
934 935
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
936
             self.set_lod(new_lod);
S
sneaxiy 已提交
937 938 939 940 941
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
942 943 944 945
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
946 947 948 949 950 951 952 953 954 955

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
956
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
957
           )DOC")
958 959 960 961 962 963 964 965 966 967 968
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
969 970
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
971 972 973 974 975
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
976
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
977 978
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
979
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
980

L
Leo Chen 已提交
981
           For example, if recursive_sequence_lengths=[[2, 3]], which means
982
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
983
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
984 985

           Args:
L
Leo Chen 已提交
986 987 988 989
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
990 991 992 993 994 995 996 997 998 999

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1000 1001
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1002
           )DOC")
1003 1004 1005 1006 1007 1008 1009 1010
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1011 1012 1013 1014 1015
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1016 1017
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1028
           )DOC")
G
gongweibao 已提交
1029
      // Set above comments of set_lod.
1030 1031 1032 1033 1034 1035 1036 1037
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1038 1039
           },
           R"DOC(
L
Leo Chen 已提交
1040 1041
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1042 1043

           Returns:
L
Leo Chen 已提交
1044
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1056 1057 1058 1059 1060 1061 1062 1063
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1064
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1065 1066

           Returns:
L
Leo Chen 已提交
1067
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1079 1080 1081 1082 1083 1084 1085
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1086
           )DOC")
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1105
#ifdef _WIN32
1106
      });
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1157

Q
qijun 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1169 1170
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1171 1172
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1173 1174
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1175
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1176 1177 1178 1179 1180 1181
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1182
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1183
      .def("rows", [](SelectedRows &self) {
1184 1185 1186 1187 1188
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1189
      });
Q
qijun 已提交
1190

1191
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1192 1193 1194

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1195
      .def(py::init<>())
1196
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1197
      .def("set_int",
1198 1199
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1200 1201 1202 1203 1204 1205 1206
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1207
      .def("get_tensor",
1208 1209
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1210 1211
           },
           py::return_value_policy::reference)
1212 1213 1214 1215
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1216 1217 1218
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1219 1220 1221 1222 1223
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1224 1225 1226
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1227 1228 1229
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1230
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1231 1232 1233 1234 1235
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1236
#endif
Y
Refine  
Yu Yang 已提交
1237 1238
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1239 1240 1241 1242
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1243 1244
             return self.GetMutable<framework::ReaderHolder>();
           },
1245
           py::return_value_policy::reference)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1257 1258 1259 1260
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1261

S
sneaxiy 已提交
1262
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1263

S
sneaxiy 已提交
1264
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1278
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1279 1280 1281 1282 1283 1284
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1285 1286
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1287
      .def("var",
1288
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1289
             return self.Var(name);
Y
Yu Yang 已提交
1290
           },
S
sneaxiy 已提交
1291 1292
           py::arg("name"),
           R"DOC(
1293
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1294

1295
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1296
           current scope, the variable would be created. Otherwise,
1297
           return the existing variable.
S
sneaxiy 已提交
1298 1299

           Args:
1300 1301
               name (str): the variable name.

S
sneaxiy 已提交
1302
           Returns:
1303
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1304 1305 1306 1307
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1308
           Find variable named :code:`name` in the current scope or
1309
           its parent scope. Return None if not found. 
1310

S
sneaxiy 已提交
1311 1312
           Args:
               name (str): the variable name.
1313

S
sneaxiy 已提交
1314
           Returns:
1315
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1316
           )DOC",
1317
           py::return_value_policy::reference)
1318
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1319 1320 1321 1322 1323 1324
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1325
           py::return_value_policy::reference)
S
sneaxiy 已提交
1326 1327 1328
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1329 1330
           )DOC")
      .def("_kids", &Scope::kids);
1331

S
sneaxiy 已提交
1332 1333 1334 1335 1336 1337
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1338 1339
        R"DOC(
        Create a new scope.
1340

S
sneaxiy 已提交
1341 1342 1343
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1344 1345
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1346 1347
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1348 1349
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1350 1351 1352 1353
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1354 1355
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1356 1357
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1358 1359 1360
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1361 1362
    return ret_values;
  });
1363 1364 1365 1366 1367 1368 1369 1370
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1371
              res = op_checker->GetDefaultAttrsMap();
1372 1373 1374 1375
            }
          }
          return res;
        });
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1392 1393 1394
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1395 1396 1397 1398 1399
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1400 1401 1402
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1417
  m.def("prune", [](const ProgramDesc &origin,
1418
                    const std::set<std::string> &feeded_var_names,
1419
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1420
    ProgramDesc prog_with_targets(origin);
1421

1422
    for (const auto &t : targets) {
1423
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1424
    }
1425
    proto::ProgramDesc pruned_desc;
1426 1427 1428 1429
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1430
  });
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1448 1449 1450 1451
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1452 1453 1454
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1455 1456
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1457

Q
qijun 已提交
1458
  // clang-format off
Y
Yu Yang 已提交
1459
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1460 1461
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1462
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1463 1464
                    return new paddle::platform::CPUDeviceContext();
                  })
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1489
      .def_static("create",
D
dzhwinter 已提交
1490
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1491
                      -> paddle::platform::DeviceContext* {
1492
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1493 1494 1495 1496
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1497
#else
Q
qijun 已提交
1498
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1499
#endif
C
chengduoZH 已提交
1500 1501 1502 1503
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1504
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1505 1506 1507 1508
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1509 1510 1511 1512
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1513
// clang-format on
1514
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1515 1516
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1517
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1518 1519 1520 1521 1522

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1523
    The memory of CUDAPlace with different dev_id is not accessible.
1524 1525 1526 1527 1528 1529 1530 1531
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1532 1533 1534 1535

    Examples:
        .. code-block:: python

1536 1537 1538
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1539

1540
        )DOC")
S
sneaxiy 已提交
1541 1542
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1543
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1568 1569
             new (&self) platform::CUDAPlace(dev_id);
#else
1570 1571 1572 1573 1574 1575 1576 1577 1578
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1579 1580
#endif
           })
1581
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1582 1583
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1584 1585 1586 1587
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1588
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1589
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1590 1591
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1592 1593 1594
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1595
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1596
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1643
#ifdef PADDLE_WITH_XPU
1644 1645 1646 1647 1648 1649 1650
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1651 1652 1653
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1654
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1655
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1656
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1657 1658 1659 1660
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1661
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1662 1663
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1664
#endif
1665

1666
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1667
    CPUPlace is a descriptor of a device.
1668
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1669 1670 1671 1672

    Examples:
        .. code-block:: python

1673 1674
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1675

1676
        )DOC")
1677
      .def(py::init<>())
S
sneaxiy 已提交
1678 1679
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1680
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1681
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1682 1683 1684 1685
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1686
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1687
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1688

1689
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1690 1691 1692 1693 1694 1695
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1696 1697 1698 1699

    Examples:
        .. code-block:: python

1700 1701
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1702

1703
        )DOC")
S
sneaxiy 已提交
1704
      .def("__init__",
S
sneaxiy 已提交
1705
           [](platform::CUDAPinnedPlace &self) {
1706
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1707 1708 1709
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1710
#endif
S
sneaxiy 已提交
1711
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1712
           })
S
sneaxiy 已提交
1713 1714 1715 1716
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1717 1718
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1719 1720
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1721 1722 1723 1724
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1725
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1726 1727
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1770
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1785 1786
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1787 1788
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1789 1790
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1791 1792 1793 1794
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1795
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1796
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1797
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1798 1799
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1800 1801
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1802 1803
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1804 1805
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1806 1807 1808 1809
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1810 1811
      .def("gpu_device_id",
           [](platform::Place &self) {
1812
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1813
           })
1814 1815 1816 1817
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1818 1819 1820 1821
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1822 1823
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1824 1825 1826 1827
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1828 1829 1830 1831
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1832
      .def("set_place",
D
dzhwinter 已提交
1833
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1834
             self = gpu_place;
C
chengduoZH 已提交
1835
           })
1836 1837 1838 1839 1840
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1841 1842 1843 1844
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1845 1846
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1847

Y
Yu Yang 已提交
1848
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1863
      .def("run",
1864
           [](OperatorBase &self, const Scope &scope,
1865 1866 1867 1868
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1869 1870
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1871 1872 1873 1874
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1875 1876
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1877 1878 1879 1880
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1881 1882
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1883 1884 1885 1886
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1887 1888 1889
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1890
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1891 1892
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1893 1894 1895 1896 1897 1898 1899
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1900 1901
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1902
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1903
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1904 1905 1906 1907
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1908

1909 1910 1911
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1912 1913 1914 1915 1916 1917 1918 1919 1920
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1921 1922
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1923
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1924
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1925
      .def("close", &Executor::Close)
1926 1927
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1928 1929
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1930 1931 1932 1933
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1934
             pybind11::gil_scoped_release release;
1935 1936 1937 1938 1939 1940 1941
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1942 1943 1944
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1945
              std::map<std::string, FetchType *> *fetch_targets,
1946 1947 1948 1949 1950 1951 1952 1953
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1954
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1955 1956 1957 1958 1959 1960 1961
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1972
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1973 1974
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1975
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1976 1977
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1978
      });
S
sneaxiy 已提交
1979

1980 1981 1982 1983
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
1984
           [](CostInfo &self) { return self.device_memory_bytes; });
1985

1986
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
1987 1988 1989
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
1990
           [](StandaloneExecutor &self,
H
hong 已提交
1991
              const std::unordered_map<std::string, py::array> &input_dict,
1992 1993 1994
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
1995 1996 1997 1998 1999

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2000 2001
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2002 2003
             }

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2024 2025 2026 2027
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2028
             }
W
wanghuancoder 已提交
2029
             return py::cast(std::move(ret));
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2051 2052
           });

D
dzhwinter 已提交
2053
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2054
  m.def("init_glog", framework::InitGLOG);
2055 2056
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2057
  m.def("init_devices", []() { framework::InitDevices(); });
2058

2059
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2060
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2061
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2062
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2063
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2064
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2065
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2066
  m.def("supports_bfloat16", SupportsBfloat16);
2067
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2068
  m.def("op_supported_infos", OpSupportedInfos);
2069
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2070
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2071 2072 2073
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2093 2094 2095 2096 2097 2098 2099
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2110 2111 2112 2113 2114
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2115

2116
  m.def("set_feed_variable", framework::SetFeedVariable);
2117 2118 2119 2120 2121
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2122
            return py::cast(BOOST_GET(LoDTensor, var));
2123
          } else {
2124
            return py::cast(BOOST_GET(LoDTensorArray, var));
2125 2126
          }
        });
2127
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2128

X
Xin Pan 已提交
2129 2130
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2131 2132 2133 2134
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
2135
  BindCostModel(&m);
2136
  BindConstValue(&m);
2137
  BindGlobalValueGetterSetter(&m);
2138
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2139

Y
Yu Yang 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2149
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2150
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2151 2152 2153

    Examples:
        .. code-block:: python
2154

Z
Zeng Jinle 已提交
2155 2156 2157 2158
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2159 2160
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2161 2162 2163 2164 2165 2166
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2167 2168 2169 2170
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2171 2172 2173
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2174 2175 2176 2177 2178 2179
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2180 2181
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2182 2183 2184 2185 2186 2187
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2210

2211 2212 2213 2214 2215 2216 2217 2218
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2219
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2220 2221
                 res[i] = py::cast(std::move(data));
               } else {
2222
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2238
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2239 2240 2241 2242 2243 2244 2245 2246
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2247
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2248 2249 2250 2251 2252 2253 2254 2255 2256
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2257 2258
        )DOC")
      .def("_move_to_list",
2259
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2260 2261 2262 2263
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2264
                 if (data_is_lod_tensor(self[i][j])) {
2265
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2266 2267
                   tmp[j] = py::cast(std::move(var));
                 } else {
2268
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2269 2270 2271 2272 2273 2274
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2284
  m.def("op_support_gpu", OpSupportGPU);
2285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2286
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2287
  m.def("cuda_empty_cache", platform::EmptyCache);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2313

2314
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2315 2316 2317
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2318 2319 2320 2321
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2322
#endif
P
peizhilin 已提交
2323
#endif
Y
Yu Yang 已提交
2324

2325 2326
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2327 2328 2329 2330
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2331
      platform::NPUDeviceGuard guard(devices[i]);
2332 2333 2334 2335
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2356 2357 2358 2359 2360 2361
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2362 2363 2364 2365
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2366
      .value("kAll", platform::ProfilerState::kAll)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2378
  m.def("set_tracer_option", platform::SetTracerOption);
2379 2380
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2381
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2382
  m.def("reset_profiler", platform::ResetProfiler);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2398
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2399 2400 2401
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2402

2403 2404
  m.def("size_of_dtype", framework::SizeOfType);

2405
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2406 2407
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2408 2409
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2410
#endif  // PADDLE_WITH_CUDA
2411 2412
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2413

2414 2415 2416
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2417 2418
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2419
      .def("has", &ir::Pass::Has)
2420 2421 2422
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2423
           })
2424
      .def(
2425
          "set",
2426 2427 2428
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2429 2430
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2431 2432
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2447 2448
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2449
        self.Apply(graph.get());
F
flame 已提交
2450
      });
2451

X
fix  
Xin Pan 已提交
2452 2453
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2468
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2469
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2470 2471 2472 2473
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2474 2475 2476
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2477 2478 2479
    Examples:
        .. code-block:: python

2480 2481 2482 2483 2484 2485 2486 2487 2488
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2489

2490 2491
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2492

2493
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2494 2495
          sgd_optimizer.minimize(avg_loss)

2496
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2497 2498
          exec_strategy.num_threads = 4

2499 2500 2501
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2502 2503
        )DOC");

2504 2505 2506 2507
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2508

Y
yuyang18 已提交
2509
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2510 2511 2512 2513 2514
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2515
          },
2516 2517
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2518 2519 2520 2521 2522 2523 2524
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2538
      .def_property(
2539 2540
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2541
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2542 2543 2544
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2545 2546 2547 2548 2549
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2550 2551 2552
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2553 2554
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2555 2556 2557 2558 2559 2560 2561
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2562 2563 2564 2565
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2566
                because the temp variable's shape maybe the same between two iterations.
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2577

2578 2579 2580 2581 2582 2583 2584
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2585
              )DOC")
Q
Qiao Longfei 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2607
              )DOC")
2608 2609 2610 2611 2612 2613 2614 2615
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2616 2617 2618 2619 2620
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2621

Y
yuyang18 已提交
2622
  exec_strategy.def_property(
Y
yuyang18 已提交
2623 2624 2625 2626 2627 2628 2629
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2630 2631
      });

C
chengduo 已提交
2632 2633 2634 2635
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2636 2637 2638
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2639 2640 2641
    Examples:
        .. code-block:: python

2642
            import os
2643 2644 2645 2646
            import paddle
            import paddle.static as static

            paddle.enable_static()
2647

2648 2649
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2650

2651 2652 2653 2654
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2655

2656
            build_strategy = static.BuildStrategy()
2657 2658
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2659 2660
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2661
            program = program.with_data_parallel(loss_name=loss.name,
2662 2663
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2664
)DOC");
Y
yuyang18 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2677
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2678 2679 2680 2681
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2682 2683 2684 2685
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2686
            self.reduce_ = strategy;
C
chengduo 已提交
2687
          },
2688
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2689 2690
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2691
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2692 2693
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2694
                Default is 'AllReduce'.
F
flame 已提交
2695 2696 2697 2698

                Examples:
                    .. code-block:: python

2699 2700 2701 2702 2703 2704 2705
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2706
                  )DOC")
Y
yuyang18 已提交
2707 2708 2709 2710 2711
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2712 2713 2714 2715
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2716
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2717
          },
2718
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2719
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2720 2721
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2722
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2723 2724 2725 2726

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2727 2728
                        import numpy
                        import os
2729 2730 2731 2732
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2733 2734

                        use_cuda = True
2735 2736
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2737 2738

                        # NOTE: If you use CPU to run the program, you need
2739
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2740 2741 2742 2743 2744 2745
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2746
                            places = static.cpu_places()
C
chengduo 已提交
2747
                        else:
2748
                            places = static.cuda_places()
C
chengduo 已提交
2749

2750 2751 2752 2753
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2754

2755
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2756

2757
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2758
                        build_strategy.gradient_scale_strategy = \
2759 2760 2761
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2762
                                          loss_name=loss.name, build_strategy=build_strategy,
2763
                                          places=places)
C
chengduo 已提交
2764 2765 2766 2767 2768 2769

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2770 2771
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2772
                   )DOC")
Y
yuyang18 已提交
2773 2774 2775 2776
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2777 2778 2779 2780
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2781
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2782
          },
2783
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2784
                writing the SSA Graph to file in the form of graphviz.
2785
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2786 2787 2788 2789

                Examples:
                    .. code-block:: python

2790 2791 2792 2793
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2794

2795 2796
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2797
                    )DOC")
S
sneaxiy 已提交
2798 2799 2800 2801 2802 2803
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2804 2805 2806 2807
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2808 2809
            self.enable_sequential_execution_ = b;
          },
2810 2811
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2812 2813 2814 2815

                Examples:
                    .. code-block:: python

2816 2817 2818 2819 2820 2821
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2822 2823
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2824 2825 2826 2827 2828 2829
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2830 2831 2832 2833
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2834 2835
            self.remove_unnecessary_lock_ = b;
          },
2836 2837
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2838 2839 2840 2841

                Examples:
                    .. code-block:: python

2842 2843 2844 2845 2846 2847
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2848 2849
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2850 2851 2852 2853
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2854
#ifdef WIN32
2855
            PADDLE_THROW(platform::errors::Unavailable(
2856
                "Distribution mode is not supported on Windows platform."));
2857
#endif
2858 2859
            self.num_trainers_ = num_trainers;
          })
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2872 2873 2874 2875 2876 2877
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2878 2879 2880 2881 2882 2883
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2884
      .def_property("use_hierarchical_allreduce",
2885 2886 2887 2888 2889 2890
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2891
      .def_property("hierarchical_allreduce_inter_nranks",
2892 2893 2894 2895 2896 2897 2898
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2899 2900 2901 2902 2903 2904
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2905 2906 2907 2908
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2909 2910
            self.fuse_elewise_add_act_ops_ = b;
          },
2911
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2912
                to fuse elementwise_add_op and activation_op,
2913
                it may make the execution faster. Default is False.
F
flame 已提交
2914 2915 2916 2917

                Examples:
                    .. code-block:: python

2918 2919 2920 2921 2922 2923
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2924 2925
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2926 2927 2928 2929
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2930
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2931
                              platform::errors::PreconditionNotMet(
2932 2933
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2943 2944 2945 2946 2947 2948
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2949 2950
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2976 2977 2978 2979
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2980
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2981
                              platform::errors::PreconditionNotMet(
2982 2983
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2994 2995 2996 2997 2998 2999
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3000 3001
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3002 3003 3004 3005 3006 3007
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3008 3009 3010 3011
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3012 3013
            self.fuse_relu_depthwise_conv_ = b;
          },
3014
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3015 3016 3017
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3018
                Default is False.
F
flame 已提交
3019 3020 3021 3022

                Examples:
                    .. code-block:: python

3023 3024 3025 3026 3027 3028
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3029 3030
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3031 3032 3033
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3034
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3035 3036
                    },
                    [](BuildStrategy &self, bool b) {
3037 3038 3039 3040
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3041 3042
                      self.fuse_broadcast_ops_ = b;
                    },
3043
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3044 3045 3046 3047
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3048 3049 3050 3051 3052
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3053 3054 3055 3056 3057 3058
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3059 3060
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3061 3062
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3063
                      return self.fuse_all_optimizer_ops_ == true ||
3064
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3065 3066
                    },
                    [](BuildStrategy &self, bool b) {
3067 3068 3069 3070
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3071 3072
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3073 3074 3075 3076
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3077 3078 3079 3080
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3081 3082
            self.sync_batch_norm_ = b;
          },
3083
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3084 3085 3086
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3087 3088
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3089 3090 3091 3092

                Examples:
                    .. code-block:: python

3093 3094 3095 3096 3097 3098
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3099 3100
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3101 3102
      .def_property(
          "memory_optimize",
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3113
              self.memory_optimize_ = paddle::none;
3114 3115 3116
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3117
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3118 3119
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3120 3121
            }
          },
3122
          R"DOC((bool, optional): memory opitimize aims to save total memory
3123
                consumption, set to True to enable it.
3124

3125 3126 3127
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3142 3143 3144
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3145 3146 3147
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3148
              PADDLE_THROW(platform::errors::Unavailable(
3149
                  "Distribution mode is not supported on Windows platform."));
3150 3151 3152 3153 3154
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3155 3156 3157
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3158
      .def_property(
D
dzhwinter 已提交
3159 3160 3161
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3162 3163 3164 3165
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3166 3167
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3168 3169
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3170
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3171
          },
C
chengduo 已提交
3172
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3173 3174 3175 3176 3177 3178 3179
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3180 3181 3182 3183
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3184 3185 3186 3187 3188 3189 3190 3191 3192
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3193 3194 3195 3196 3197 3198
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3199 3200 3201 3202 3203 3204
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3205
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3206
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3207 3208 3209 3210 3211
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3212

3213 3214 3215 3216 3217 3218
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3219
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3220
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3221
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3222
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3223 3224 3225 3226
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3227 3228 3229 3230 3231
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3232 3233 3234
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3235 3236 3237 3238
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3239 3240
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3241 3242 3243 3244 3245 3246 3247 3248
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3249
               return py::cast(
3250
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3251 3252
             } else {
               return py::cast(std::move(
3253
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3254
             }
3255 3256
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3257

D
dongdaxiang 已提交
3258
  BindFleetWrapper(&m);
3259
  BindIO(&m);
T
Thunderbrook 已提交
3260

T
Thunderbrook 已提交
3261 3262
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3263
#endif
T
Thunderbrook 已提交
3264
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3265
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3266
#endif
3267
  BindGlooWrapper(&m);
H
hutuxian 已提交
3268
  BindBoxHelper(&m);
H
hutuxian 已提交
3269 3270 3271
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3272
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3273
  BindNCCLWrapper(&m);
3274 3275 3276
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3277
#endif
F
flame 已提交
3278 3279
  BindGraph(&m);
  BindNode(&m);
3280
  BindPass(&m);
F
flame 已提交
3281
  BindInferenceApi(&m);
3282
  BindCompatible(&m);
3283
  BindDataset(&m);
Y
yaoxuefeng 已提交
3284
  BindGenerator(&m);
3285 3286 3287
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3288
  BindAscendDevice(&m);
3289
#endif
Y
Yanghello 已提交
3290 3291 3292
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3293

T
tangwei12 已提交
3294
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3295 3296
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3297
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3298 3299
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3300 3301 3302 3303 3304
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3305 3306 3307 3308
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3309
  BindSparseShardingTools(&m);
3310
#endif
L
Luo Tao 已提交
3311
}
3312
}  // namespace pybind
3313
}  // namespace paddle