nn.py 413.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
493
    assert in_dygraph_mode(
494
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
538 539


P
phlrain 已提交
540 541 542 543 544 545
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
546
         dropout_prob=0.0,
P
phlrain 已提交
547 548 549 550 551
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
552
    """
P
phlrain 已提交
553
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
554 555

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
556
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
557 558
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
559
    .. math::
M
minqiyang 已提交
560 561 562 563 564 565 566

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
567
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
568 569 570 571

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
572 573

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
574 575 576 577 578 579
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
580 581 582
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
583
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
584

M
minqiyang 已提交
585
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
586 587 588 589 590
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
591
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
592 593 594 595 596
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
597
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
598 599
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
600 601
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
602 603 604 605 606 607
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
608
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
609

L
liuhongyu 已提交
610 611

    Returns:
M
minqiyang 已提交
612 613
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
614
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
615

H
haowang101779990 已提交
616 617 618 619
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
620
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
621 622
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
623
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
639
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
640 641 642 643 644 645
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
646 647 648
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
718
                  proj_activation='tanh',
719
                  dtype='float32',
X
xuezhong 已提交
720 721 722 723 724
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
725 726 727
    """
    **Dynamic LSTMP Layer**

728 729 730 731 732 733
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
734 735 736 737 738

    The formula is as follows:

    .. math::

739
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
740

741
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
742

743
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
744

745
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
746

747
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
748

749
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
750

751
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
752

Y
Yibing Liu 已提交
753 754 755 756 757 758
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
759
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
760
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
761
          bias vector).
Y
Yibing Liu 已提交
762 763 764
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
765
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
766
    * :math:`h`: The hidden state.
767
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
768 769
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
770
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
771
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
772
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
773 774
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
775 776 777 778

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
779

Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789 790 791
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
792
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
793 794
                               hidden-hidden weight and projection weight.

795 796
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
797 798
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
799 800
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
801
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
802 803 804 805 806

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
807
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
808 809 810 811 812 813
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
814
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
815 816 817
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
818
                                - The shape is (1 x 7D).
C
chengduo 已提交
819 820 821 822 823

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
833
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
834 835
                              default "tanh".
        proj_activation(str): The activation for projection output.
836
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
837
                              default "tanh".
Y
Yibing Liu 已提交
838
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
839 840
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
841 842 843 844 845 846 847 848 849 850 851
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
852 853

    Returns:
854 855 856 857
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
858 859

    Examples:
860

Y
Yibing Liu 已提交
861 862
        .. code-block:: python

863 864 865 866
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
867
            hidden_dim, proj_dim = 512, 256
868
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
869
                                     act=None, bias_attr=None)
870 871 872
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
873 874 875 876
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
877
    """
878

L
lujun 已提交
879
    assert in_dygraph_mode(
880 881
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
882
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
883
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
884
    size = size // 4
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
895 896 897 898 899 900
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
916

X
xuezhong 已提交
917 918 919 920 921
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
922 923
    helper.append_op(
        type='lstmp',
924
        inputs=inputs,
Y
Yibing Liu 已提交
925 926 927 928 929 930 931 932 933
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
934 935
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
945 946 947 948 949 950 951
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
952 953
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
954
    """
955
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
956

957 958 959
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
960

G
guosheng 已提交
961 962 963 964 965 966 967 968 969
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
970

G
guosheng 已提交
971
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
972

Q
Qiao Longfei 已提交
973 974 975

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
976 977 978 979 980 981 982 983 984 985 986 987
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
988
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
989 990
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
991 992 993 994
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
995
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
996 997

    Args:
998 999
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1000
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1001
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1002 1003
            is the hidden size.
        size(int): The dimension of the gru cell.
1004
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1005 1006
            hidden-hidden weight matrix. Note:

1007
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1008
              :math:`D` is the hidden size.
1009
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1010
              The first part are weights of the update gate and reset gate with
1011
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1012
              candidate hidden state with shape :math:`(D \\times D)`.
1013 1014 1015 1016 1017

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1026 1027 1028
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1029
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1030
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1031 1032 1033 1034
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1035 1036

    Returns:
G
guosheng 已提交
1037
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1038
            and sequence length is the same with the input.
1039

G
guosheng 已提交
1040
    Examples:
1041

G
guosheng 已提交
1042 1043
        .. code-block:: python

1044 1045
            import paddle.fluid as fluid

1046 1047 1048 1049
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1050
            hidden_dim = 512
1051
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1052
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1053 1054
    """

L
lujun 已提交
1055
    assert in_dygraph_mode(
1056 1057
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1058 1059 1060 1061 1062 1063 1064
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1065
    batch_size = input.shape[0]
G
guosheng 已提交
1066
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1067
    if h_0:
G
guosheng 已提交
1068
        assert h_0.shape == (
Y
Yancey 已提交
1069 1070 1071
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1072

X
Xin Pan 已提交
1073 1074 1075 1076
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1090 1091
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1092 1093 1094 1095
        })
    return hidden


Y
Yu Yang 已提交
1096 1097 1098
def gru_unit(input,
             hidden,
             size,
1099 1100
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1101
             activation='tanh',
Q
Qiao Longfei 已提交
1102 1103
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1104
    """
1105 1106 1107
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1108
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1109
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1110

1111 1112
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1113

1114
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1115

1116
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1133 1134

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1135 1136 1137
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1138 1139
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1140 1141
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1142 1143 1144
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1145 1146 1147

    Args:
        input (Variable): The fc transformed input value of current step.
1148
        hidden (Variable): The hidden value of gru unit from previous step.
1149
        size (integer): The input dimension value.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1164
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1165
            the bias in the update gate, reset gate and candidate calculations.
1166 1167 1168
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1169 1170
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1171 1172 1173 1174
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1175

1176 1177 1178 1179 1180 1181
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1206
    size = size // 3
Y
Yu Yang 已提交
1207 1208

    # create weight
1209 1210
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1211

X
Xin Pan 已提交
1212 1213 1214
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1215
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1216
    # create bias
1217
    if helper.bias_attr:
Y
Yu Yang 已提交
1218 1219 1220
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1221
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1222 1223 1224

    helper.append_op(
        type='gru_unit',
1225
        inputs=inputs,
Y
Yu Yang 已提交
1226 1227 1228 1229 1230 1231
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1232 1233
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1234 1235 1236 1237 1238
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1239
@templatedoc()
1240
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1241 1242 1243 1244 1245 1246 1247
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1248
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1249 1250 1251 1252
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1253 1254 1255
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1256

J
JesseyXujin 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1270
    """
Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1277 1278 1279 1280 1281 1282 1283 1284
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1300 1301 1302 1303
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1304

W
wopeizl 已提交
1305 1306
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1307

W
wopeizl 已提交
1308
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1309

W
wopeizl 已提交
1310
        label(${label_type}): ${label_comment}
1311

W
wopeizl 已提交
1312 1313
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1314

W
wopeizl 已提交
1315 1316
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1317

Y
Yibing Liu 已提交
1318 1319 1320 1321 1322 1323 1324
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1325 1326 1327 1328 1329 1330 1331 1332
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1333
                "Transition": transition,
W
wopeizl 已提交
1334 1335
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1336

W
wopeizl 已提交
1337
    return viterbi_path
Y
Yu Yang 已提交
1338 1339


Y
yi.wu 已提交
1340
@templatedoc()
F
fengjiayi 已提交
1341
def cos_sim(X, Y):
Y
Yu Yang 已提交
1342
    """
Y
yi.wu 已提交
1343 1344 1345
    ${comment}

    Args:
1346 1347
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1348

Y
yi.wu 已提交
1349
    Returns:
1350
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1351 1352 1353 1354 1355 1356 1357

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1358
    """
F
fengjiayi 已提交
1359
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1360 1361 1362
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1373 1374 1375 1376 1377
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1378
            dropout_implementation="downgrade_in_infer"):
1379 1380 1381 1382 1383
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1384
    training. The dropout operator randomly sets (according to the given dropout
1385 1386 1387
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1388 1389
    dropout op can be removed from the program to make the program more efficient.

1390
    Args:
1391 1392
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1393 1394 1395 1396 1397 1398 1399
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1400 1401
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1402
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1403 1404

                                           - train: out = input * mask
C
ceci3 已提交
1405
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1406 1407 1408

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1409
                                        2. upscale_in_train, upscale the outcome at training time
1410

H
haowang101779990 已提交
1411 1412
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1413

H
haowang101779990 已提交
1414 1415
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1416

M
minqiyang 已提交
1417

1418
    Returns:
1419
        Variable: A tensor variable is the shape with `x`.
1420 1421

    Examples:
1422

1423 1424
        .. code-block:: python

1425 1426
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1427 1428
    """

F
fengjiayi 已提交
1429
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1430 1431
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1432
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1433 1434 1435 1436

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1437 1438 1439 1440 1441
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1442 1443 1444 1445
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1446 1447
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1448
        })
1449 1450 1451
    return out


J
jerrywgz 已提交
1452
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1453
    """
Y
Yibing Liu 已提交
1454 1455
    **Cross Entropy Layer**

1456 1457 1458
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1459 1460

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1461
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1462

Y
Yibing Liu 已提交
1463
        .. math::
Y
yangyaming 已提交
1464

Y
Yibing Liu 已提交
1465 1466 1467
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1468 1469
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1470 1471 1472 1473 1474

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1475
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1476 1477 1478
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1479 1480
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1481
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1482

Y
Yibing Liu 已提交
1483
    Args:
Y
yangyaming 已提交
1484
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1485 1486 1487 1488
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1489
        label (Variable|list): the ground truth which is a 2-D tensor. When
1490 1491 1492 1493
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1494
        soft_label (bool): a flag indicating whether to
1495
                                           interpretate the given labels as soft
1496
                                           labels. Default: `False`.
M
minqiyang 已提交
1497 1498
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1499
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1500 1501 1502 1503 1504

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1505 1506 1507
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1508

H
haowang101779990 已提交
1509 1510
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1511

H
haowang101779990 已提交
1512 1513
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1514 1515 1516 1517

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1518 1519 1520 1521
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1522
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1523
    """
S
sneaxiy 已提交
1524 1525
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1526
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1527
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1528 1529 1530 1531 1532
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1533 1534
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1535 1536 1537
    return out


S
sneaxiy 已提交
1538 1539 1540 1541
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1542
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1543 1544 1545 1546 1547
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1548
                 'MatchX': [match_x],
S
sneaxiy 已提交
1549 1550 1551 1552 1553
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1554
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1555
    """
1556
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1557

1558
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1559
    The loss at a given point in one session is defined as:
1560 1561 1562

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1563 1564

    Learn more details by reading paper <session-based recommendations with recurrent
1565
    neural networks>.
F
frankwhzhang 已提交
1566

1567 1568 1569 1570 1571 1572
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1573 1574
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1575 1576 1577
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1578 1579 1580
    Examples:
        .. code-block:: python

1581 1582 1583 1584 1585 1586 1587
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1588
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1589
    """
1590 1591 1592 1593 1594
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1595
                'Label': [label]},
1596 1597 1598 1599
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1600
def square_error_cost(input, label):
Y
Yu Yang 已提交
1601
    """
1602 1603
    **Square error cost layer**

1604 1605
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1620 1621
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1622 1623

    Returns:
G
guosheng 已提交
1624
        Variable: The tensor variable storing the element-wise squared error \
1625
                  difference of input and label.
1626 1627 1628 1629

    Examples:
        .. code-block:: python

R
ruri 已提交
1630 1631 1632
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1633

Y
Yu Yang 已提交
1634
    """
F
fengjiayi 已提交
1635
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1636
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1637 1638 1639 1640 1641 1642
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1643
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1644
    helper.append_op(
F
fengjiayi 已提交
1645 1646
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1647 1648 1649
    return square_out


Y
yi.wu 已提交
1650
@templatedoc()
Y
Yu Yang 已提交
1651 1652 1653 1654
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1655
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1656
    """
Y
yi.wu 已提交
1657
    **Chunk Evaluator**
Y
yi.wu 已提交
1658

Y
yangyaming 已提交
1659
    This function computes and outputs the precision, recall and
1660
    F1-score of chunk detection.
Y
yi.wu 已提交
1661

M
minqiyang 已提交
1662
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1663
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1664 1665 1666 1667 1668 1669

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1670

Y
yi.wu 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1696

Y
yi.wu 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1721
    Args:
1722 1723 1724 1725 1726
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1727

Y
yi.wu 已提交
1728
    Returns:
Y
update  
yi.wu 已提交
1729 1730 1731
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1732

Y
yi.wu 已提交
1733 1734 1735
    Examples:
        .. code-block:: python

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1747
            crf = fluid.layers.linear_chain_crf(
1748
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1749
            crf_decode = fluid.layers.crf_decoding(
1750
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1751 1752 1753 1754 1755
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1756
    """
F
fengjiayi 已提交
1757
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1758 1759

    # prepare output
X
Xin Pan 已提交
1760 1761 1762 1763 1764 1765 1766
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1767 1768 1769 1770 1771 1772 1773 1774

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1775 1776 1777 1778
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1779 1780 1781
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1782 1783
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1784
        })
1785 1786
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1787 1788


1789
@templatedoc()
Y
Yu Yang 已提交
1790 1791 1792 1793 1794 1795 1796
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1797 1798
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1799 1800 1801 1802
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1803 1804 1805 1806 1807 1808 1809

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1823

1824 1825
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1826 1827
    """

L
lujun 已提交
1828
    assert not in_dygraph_mode(), (
1829
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1830 1831 1832 1833 1834
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1835
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1846
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1847 1848 1849 1850 1851 1852
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1853
def sequence_softmax(input, use_cudnn=False, name=None):
1854 1855 1856
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1857
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1874 1875 1876
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1889
    assert not in_dygraph_mode(), (
1890
        "sequence layer is not supported in dygraph mode yet.")
1891 1892
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1893
    softmax_out = helper.create_variable_for_type_inference(dtype)
1894 1895 1896 1897 1898 1899 1900 1901
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1902
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1903
    """
1904
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1905
    has the same shape as the input.
Q
qiaolongfei 已提交
1906

D
dengkaipeng 已提交
1907
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1908
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1909
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1910 1911 1912
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1913
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1914
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1915 1916 1917 1918 1919 1920 1921

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1922
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1923 1924 1925 1926 1927 1928 1929 1930

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1931 1932
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1933 1934
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1935 1936 1937
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1938 1939 1940 1941 1942 1943 1944 1945

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1946 1947
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1948
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1949
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1950
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1951 1952
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1953 1954

    """
1955 1956
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1957
    softmax_out = helper.create_variable_for_type_inference(dtype)
1958 1959 1960 1961
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1962 1963
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1964 1965 1966
    return softmax_out


Y
Yu Yang 已提交
1967 1968 1969
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1970 1971
           stride=1,
           padding=0,
1972
           dilation=1,
Y
Yu Yang 已提交
1973 1974 1975
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1976
           use_cudnn=True,
1977 1978
           act=None,
           name=None):
Y
Yu Yang 已提交
1979
    """
C
chengduoZH 已提交
1980
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1981 1982
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1983
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1984 1985 1986 1987 1988 1989 1990
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1991 1992 1993
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1994

1995
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1996

C
chengduoZH 已提交
1997 1998
    .. math::

C
refine  
chengduoZH 已提交
1999
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2000

T
tensor-tang 已提交
2001
    Where:
C
chengduoZH 已提交
2002

2003 2004 2005 2006 2007
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2008
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2009 2010 2011

    Example:

2012 2013
        - Input:

W
weixing02 已提交
2014
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2015

W
weixing02 已提交
2016
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2017

2018
        - Output:
T
tensor-tang 已提交
2019

W
weixing02 已提交
2020
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2021

C
chengduoZH 已提交
2022
        Where
2023 2024

        .. math::
C
chengduoZH 已提交
2025

W
weixing02 已提交
2026 2027
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2028 2029

    Args:
2030
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2031
        num_filters(int): The number of filter. It is as same as the output
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2049 2050 2051 2052 2053
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2054
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2055 2056 2057 2058 2059
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2060 2061
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2062 2063
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2064
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2065
            will be named automatically. Default: None
C
chengduoZH 已提交
2066 2067

    Returns:
G
guosheng 已提交
2068
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2069 2070
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2071
    Raises:
2072 2073
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2074

C
chengduoZH 已提交
2075 2076 2077
    Examples:
        .. code-block:: python

2078 2079
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2080 2081 2082
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2083
    assert param_attr is not False, "param_attr should not be False here."
2084
    l_type = 'conv2d'
X
xzl 已提交
2085 2086
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2087
        l_type = 'depthwise_conv2d'
2088 2089 2090 2091

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2092 2093 2094 2095 2096
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2097
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2098

C
chengduoZH 已提交
2099 2100 2101
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2102
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2103

C
chengduoZH 已提交
2104 2105
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2106 2107

    input_shape = input.shape
M
minqiyang 已提交
2108
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2109 2110

    def _get_default_param_initializer():
C
chengduo 已提交
2111 2112
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2113 2114 2115 2116 2117 2118 2119 2120
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2121
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2137
    helper.append_op(
2138
        type=l_type,
Y
Yu Yang 已提交
2139 2140 2141 2142 2143
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2144 2145 2146
        attrs={
            'strides': stride,
            'paddings': padding,
2147
            'dilations': dilation,
C
chengduoZH 已提交
2148
            'groups': groups,
2149
            'use_cudnn': use_cudnn,
2150
            'use_mkldnn': False,
2151
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2152
        })
Y
Yu Yang 已提交
2153 2154 2155 2156 2157 2158

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2176 2177 2178 2179 2180 2181
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2191 2192
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2193 2194 2195
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2196
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2222
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2223 2224
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2225
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2226 2227
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2228
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2229 2230
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2231
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2232 2233 2234 2235 2236 2237
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2248 2249
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2250 2251
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2252
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2253
            will be named automatically. Default: None.
C
chengduoZH 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2266 2267
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2268 2269 2270
    """

    l_type = 'conv3d'
C
chengduo 已提交
2271
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2282
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2296 2297 2298
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2299 2300 2301 2302 2303 2304 2305 2306
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2307
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2322
            'use_mkldnn': False
C
chengduoZH 已提交
2323 2324
        })

2325
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2326 2327 2328 2329

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2330
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2331
    """
Y
yangyaming 已提交
2332 2333 2334
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2346
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2347 2348 2349 2350 2351
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2352
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2353 2354 2355 2356 2357 2358 2359

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2360 2361
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2362

L
Luo Tao 已提交
2363 2364
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2365
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2366
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2367
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2368 2369 2370 2371 2372 2373 2374

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2375

Y
yangyaming 已提交
2376
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2377 2378 2379 2380 2381
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2382 2383
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2384
    """
L
lujun 已提交
2385
    assert not in_dygraph_mode(), (
2386
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2387
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2388
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2389 2390
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2391 2392 2393 2394 2395 2396

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2397 2398
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2399

Y
yangyaming 已提交
2400 2401 2402 2403 2404
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2405 2406 2407
    return pool_out


C
add doc  
chengduoZH 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2426
    assert not in_dygraph_mode(), (
2427
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2428
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2429
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2430 2431 2432 2433 2434
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2435
def sequence_first_step(input):
L
Luo Tao 已提交
2436
    """
L
Luo Tao 已提交
2437
    This function gets the first step of sequence.
L
Luo Tao 已提交
2438 2439 2440 2441

    .. code-block:: text

       x is a 1-level LoDTensor:
2442
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2443 2444 2445 2446 2447
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2448
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2449
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2450

L
Luo Tao 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2460

Y
yangyaming 已提交
2461
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2462 2463 2464
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2465 2466 2467
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2468
def sequence_last_step(input):
L
Luo Tao 已提交
2469
    """
L
Luo Tao 已提交
2470
    This function gets the last step of sequence.
L
Luo Tao 已提交
2471 2472 2473 2474

    .. code-block:: text

       x is a 1-level LoDTensor:
2475
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2476 2477 2478 2479 2480
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2481
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2482
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2483

L
Luo Tao 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2493

Y
yangyaming 已提交
2494
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2495 2496 2497
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2498 2499 2500
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2501 2502 2503 2504
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2505
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2506 2507 2508 2509 2510
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2511

H
haowang101779990 已提交
2512
              - Case:
Y
Yibing Liu 已提交
2513

2514
            Given the input Variable **input**:
2515

2516 2517 2518
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2519

2520
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2521

2522
            the output Variable will be
2523

2524 2525 2526
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2527

M
minqiyang 已提交
2528
    Note:
H
haowang101779990 已提交
2529
          The first dimension size of **input**, **offset** and **length**
2530
          should be equal. The **offset** should start from 0.
2531

Y
Yibing Liu 已提交
2532
    Args:
2533
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2534
                         sequences.
Y
Yibing Liu 已提交
2535 2536 2537 2538 2539 2540
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2541
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2552
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2553 2554
                                                   length=length)
    """
L
lujun 已提交
2555
    assert not in_dygraph_mode(), (
2556
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2557 2558
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2559
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2574
@templatedoc()
Y
Yu Yang 已提交
2575
def pool2d(input,
C
chengduoZH 已提交
2576 2577
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2578 2579
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2580
           global_pooling=False,
C
chengduoZH 已提交
2581
           use_cudnn=True,
2582
           ceil_mode=False,
2583 2584
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2585
    """
F
fengjiayi 已提交
2586
    ${comment}
2587 2588

    Args:
2589 2590 2591
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2592
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2593
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2594 2595
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2596
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2597 2598 2599 2600 2601 2602
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2603 2604 2605
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2606
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2607
                        layer will be named automatically.
2608
        exclusive (bool): Whether to exclude padding points in average pooling
2609
                          mode, default is true
F
fengjiayi 已提交
2610

2611
    Returns:
F
fengjiayi 已提交
2612
        Variable: The pooling result.
F
fengjiayi 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2625
          pool2d = fluid.layers.pool2d(
2626 2627 2628 2629
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2630
                            global_pooling=False)
Y
Yu Yang 已提交
2631 2632 2633 2634 2635
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2636

C
chengduoZH 已提交
2637 2638 2639 2640 2641
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2642 2643 2644 2645
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2646 2647
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2648

C
Add doc  
chengduoZH 已提交
2649
    l_type = 'pool2d'
2650 2651

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2652
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2653
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2654 2655

    helper.append_op(
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2667 2668
            "use_mkldnn": False,
            "exclusive": exclusive,
2669 2670 2671 2672 2673
        })

    return pool_out


D
dengkaipeng 已提交
2674
@templatedoc()
2675 2676 2677 2678 2679 2680 2681 2682
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2683 2684
           name=None,
           exclusive=True):
2685
    """
2686
    ${comment}
2687 2688

    Args:
D
dengkaipeng 已提交
2689 2690 2691 2692 2693
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2694 2695 2696 2697 2698
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2699 2700 2701 2702 2703 2704 2705
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2706
        exclusive (bool): Whether to exclude padding points in average pooling
2707
                          mode, default is true
2708

2709
    Returns:
2710
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2724 2725 2726 2727 2728
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2729

C
chengduoZH 已提交
2730 2731 2732 2733 2734
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2735 2736 2737
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2738

C
chengduoZH 已提交
2739 2740
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2741

2742 2743
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2744
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2745
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2746 2747

    helper.append_op(
2748
        type=l_type,
Y
Yu Yang 已提交
2749 2750 2751 2752 2753 2754 2755
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2756
            "paddings": pool_padding,
2757
            "use_cudnn": use_cudnn,
2758
            "ceil_mode": ceil_mode,
2759 2760
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2761 2762 2763 2764 2765
        })

    return pool_out


2766 2767 2768 2769 2770 2771 2772
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2773 2774 2775 2776 2777 2778 2779
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2794 2795 2796 2797 2798 2799 2800 2801 2802

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2803 2804
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2819
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2820
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2821
          # of input data into m * n grids averagely and performs poolings in each
2822 2823
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2824
          #
2825 2826 2827 2828 2829 2830 2831 2832
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2833 2834
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2835
          pool_out = fluid.layers.adaptive_pool2d(
2836 2837
                            input=data,
                            pool_size=[3, 3],
2838
                            pool_type='avg')
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2849
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2875
    return (pool_out, mask) if require_index else pool_out
2876 2877 2878 2879 2880 2881 2882 2883 2884


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2885 2886 2887 2888 2889 2890 2891
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2910 2911 2912

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2913 2914 2915
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2916
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2917
            it must contain three integers, (Depth, Height, Width).
2918
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2919 2920
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2935 2936
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2937
          # of input data into l * m * n grids averagely and performs poolings in each
2938 2939
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2940
          #
2941 2942 2943 2944 2945 2946 2947 2948 2949
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2950
          #                 output[:, :, i, j, k] =
2951 2952
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2953 2954 2955

          import paddle.fluid as fluid

2956
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2957 2958
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2959
                            input=data,
D
dengkaipeng 已提交
2960
                            pool_size=[3, 3, 3],
2961
                            pool_type='avg')
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2972
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2998
    return (pool_out, mask) if require_index else pool_out
2999 3000


Y
Yu Yang 已提交
3001 3002 3003 3004 3005 3006 3007
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3008
               data_layout='NCHW',
Y
Yang Yang 已提交
3009
               in_place=False,
3010 3011
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3012
               moving_variance_name=None,
3013
               do_model_average_for_mean_and_var=False,
3014 3015
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3016
    """
Q
qiaolongfei 已提交
3017 3018 3019 3020
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3021

Q
qiaolongfei 已提交
3022
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3023

Q
qiaolongfei 已提交
3024 3025
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3026 3027 3028
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3055
    Args:
Q
qingqing01 已提交
3056
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3057
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3067 3068 3069 3070 3071 3072 3073 3074
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3075
        data_layout(string, default NCHW): NCHW|NHWC
3076
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3077 3078 3079 3080
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3081
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3082
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3083 3084 3085 3086 3087
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3088 3089

    Returns:
Q
qiaolongfei 已提交
3090
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3091 3092 3093 3094 3095

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3096
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3097 3098
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3099
    """
C
chengduo 已提交
3100
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3101 3102 3103
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3104 3105 3106 3107
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3126
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3127

3128 3129
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3130 3131 3132
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3133
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3134
        shape=param_shape,
W
Wu Yi 已提交
3135
        dtype=dtype)
3136 3137 3138 3139 3140 3141
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3142
            trainable=False,
W
wanghaoshuang 已提交
3143
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3144
        shape=param_shape,
W
Wu Yi 已提交
3145
        dtype=dtype)
3146
    variance.stop_gradient = True
Y
Yu Yang 已提交
3147 3148 3149 3150 3151 3152

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3153 3154 3155 3156
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3157

X
Xin Pan 已提交
3158 3159
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3177 3178 3179 3180
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3181
            "data_layout": data_layout,
X
Xin Pan 已提交
3182
            "use_mkldnn": False,
3183 3184
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3185
        })
Y
Yu Yang 已提交
3186 3187 3188 3189

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3241 3242
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3243

3244 3245
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3311
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3312 3313 3314 3315

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3316
@templatedoc()
G
guosheng 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3327
    ${comment}
G
guosheng 已提交
3328 3329 3330

    The formula is as follows:

Y
yuyang18 已提交
3331
    ..  math::
G
guosheng 已提交
3332 3333 3334 3335 3336 3337 3338

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3339 3340 3341 3342 3343 3344 3345 3346
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3347

G
guosheng 已提交
3348 3349
    Args:
        input(Variable): The input tensor variable.
3350
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3351
            normalization. Default True.
3352
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3353 3354
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3355
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3356
            Default 1.
3357
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3358
            division by zero. Default 1e-05.
G
guosheng 已提交
3359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3360 3361
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3362 3363
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3364
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3365 3366
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3367
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3368
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3369
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3370 3371 3372
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3373 3374

    Returns:
Y
yuyang18 已提交
3375
        ${y_comment}
G
guosheng 已提交
3376 3377 3378

    Examples:

Y
yuyang18 已提交
3379 3380 3381
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3382
    """
L
lujun 已提交
3383
    assert in_dygraph_mode(
L
lujun 已提交
3384
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3399
    if shift:
G
guosheng 已提交
3400 3401 3402 3403 3404 3405
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3406 3407 3408 3409 3410
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3438
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3486 3487
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3505
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3506 3507 3508
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3509
    This layer calculates the spectral normalization value of weight parameters of
3510
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3511
    Parameters. Calculations are showed as follows.
3512

D
dengkaipeng 已提交
3513 3514 3515
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3516
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3529
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3530 3531 3532 3533

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3534

D
dengkaipeng 已提交
3535
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3536 3537
                

D
dengkaipeng 已提交
3538 3539 3540 3541
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3542 3543 3544
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3545 3546 3547
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3548
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3549 3550

    Examples:
K
Kaipeng Deng 已提交
3551
       .. code-block:: python
D
dengkaipeng 已提交
3552

K
Kaipeng Deng 已提交
3553 3554 3555 3556 3557
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3558 3559
    """
    helper = LayerHelper('spectral_norm', **locals())
3560
    dtype = weight.dtype
D
dengkaipeng 已提交
3561 3562 3563

    # create intput and parameters
    inputs = {'Weight': weight}
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3582 3583

    # create output
3584
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3585 3586

    helper.append_op(
3587
        type="spectral_norm",
D
Dun 已提交
3588
        inputs=inputs,
3589 3590 3591 3592 3593 3594
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3595

3596
    return out
D
Dun 已提交
3597 3598


Y
Yu Yang 已提交
3599 3600 3601 3602
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3603 3604 3605
                     padding=0,
                     stride=1,
                     dilation=1,
3606
                     groups=None,
C
caoying03 已提交
3607
                     param_attr=None,
3608
                     bias_attr=None,
C
chengduoZH 已提交
3609
                     use_cudnn=True,
3610
                     act=None,
C
caoying03 已提交
3611
                     name=None):
Y
Yu Yang 已提交
3612
    """
3613 3614 3615 3616 3617 3618 3619 3620
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3621 3622
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3623 3624 3625
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3626 3627 3628 3629 3630

    For each input :math:`X`, the equation is:

    .. math::

3631
        Out = \sigma (W \\ast X + b)
3632

3633
    Where:
3634 3635 3636

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3637 3638 3639 3640
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3641

3642 3643 3644 3645
    Example:

        - Input:

3646
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3647

3648
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3649 3650 3651

        - Output:

3652
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3653 3654

        Where
Y
Yu Yang 已提交
3655

3656 3657
        .. math::

3658 3659
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3660 3661
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3662 3663

    Args:
3664 3665 3666 3667
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3668 3669 3670 3671
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3700
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3701 3702 3703
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3704
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3705
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3706 3707

    Returns:
3708
        Variable: The tensor variable storing the convolution transpose result.
3709 3710

    Raises:
3711 3712
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3713 3714 3715 3716

    Examples:
       .. code-block:: python

3717 3718
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3719
    """
C
chengduo 已提交
3720
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3721 3722 3723 3724 3725 3726 3727 3728
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3729 3730 3731
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3732 3733 3734
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3735

C
chengduoZH 已提交
3736 3737
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3738

Y
Yu Yang 已提交
3739 3740 3741 3742 3743
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3744

Y
Yu Yang 已提交
3745 3746
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3747

C
chengduoZH 已提交
3748
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3749
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3750
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3751
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3752
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3753 3754 3755
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3756

3757 3758 3759 3760 3761 3762 3763
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3764
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3765
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3766

Y
Yu Yang 已提交
3767 3768 3769
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3770
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3771
    helper.append_op(
3772
        type=op_type,
Y
Yu Yang 已提交
3773 3774
        inputs={'Input': [input],
                'Filter': [img_filter]},
3775
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3776
        attrs={
3777
            'output_size': output_size,
3778 3779 3780 3781 3782
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3783 3784
        })

3785 3786 3787
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3788 3789


3790
def conv3d_transpose(input,
Y
Yu Yang 已提交
3791 3792 3793
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3794 3795 3796
                     padding=0,
                     stride=1,
                     dilation=1,
3797
                     groups=None,
C
caoying03 已提交
3798
                     param_attr=None,
3799
                     bias_attr=None,
C
chengduoZH 已提交
3800
                     use_cudnn=True,
3801
                     act=None,
C
caoying03 已提交
3802
                     name=None):
Y
Yu Yang 已提交
3803
    """
3804
    **Convlution3D transpose layer**
3805

3806
    The convolution3D transpose layer calculates the output based on the input,
3807
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3808 3809 3810 3811 3812 3813
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3814 3815 3816
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3817 3818 3819 3820 3821

    For each input :math:`X`, the equation is:

    .. math::

3822
        Out = \sigma (W \\ast X + b)
3823 3824 3825

    In the above equation:

3826 3827
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3828 3829 3830 3831
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3832

3833 3834 3835 3836
    Example:

        - Input:

3837
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3838

3839
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3840 3841 3842

        - Output:

3843
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3844 3845

        Where
Y
Yu Yang 已提交
3846

3847 3848
        .. math::

3849 3850 3851
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3852 3853

    Args:
3854
        input(Variable): The input image with [N, C, D, H, W] format.
3855 3856 3857
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3858
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3859 3860
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3861
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3862 3863 3864
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3865 3866
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3867
        stride(int|tuple): The stride size. If stride is a tuple, it must
3868 3869
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3870
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3871 3872 3873
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3874 3875 3876 3877 3878
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3888 3889
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3890 3891
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3892 3893
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3894 3895

    Returns:
3896
        Variable: The tensor variable storing the convolution transpose result.
3897 3898

    Raises:
3899 3900
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3901 3902 3903 3904

    Examples:
       .. code-block:: python

3905 3906
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3907
    """
C
chengduo 已提交
3908
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3909 3910
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3911
    if not isinstance(input, Variable):
3912
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3913 3914
    input_channel = input.shape[1]

3915 3916 3917
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3918

C
chengduoZH 已提交
3919 3920 3921
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3922 3923 3924 3925 3926 3927
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3928 3929 3930
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3931

3932
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3933
                         padding[0] - 1) // dilation[0] + 1
3934
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3935
                         padding[1] - 1) // dilation[1] + 1
3936
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3937
                         padding[2] - 1) // dilation[2] + 1
3938
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3939
    else:
3940 3941
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3942

3943
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3944
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3945 3946 3947
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3948
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3949
    helper.append_op(
3950
        type=l_type,
Y
Yu Yang 已提交
3951 3952
        inputs={'Input': [input],
                'Filter': [img_filter]},
3953
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3954 3955 3956 3957
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3958
            'groups': groups,
C
chengduoZH 已提交
3959 3960
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3961

3962 3963
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3964
    return out
Y
yangyaming 已提交
3965 3966


Y
yangyaming 已提交
3967
def sequence_expand(x, y, ref_level=-1, name=None):
3968
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3969 3970 3971 3972
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3973 3974 3975 3976 3977

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3978
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3979
                x.data = [[a], [b], [c], [d]]
3980 3981 3982
                x.dims = [4, 1]

            y is a LoDTensor:
3983 3984
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3985

Y
yangyaming 已提交
3986
            ref_level: 0
3987

Y
yangyaming 已提交
3988
            then output is a 1-level LoDTensor:
3989
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3990
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3991 3992 3993 3994
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3995
                x.data = [[a], [b], [c]]
3996 3997 3998
                x.dims = [3, 1]

            y is a LoDTensor:
3999
                y.lod = [[2, 0, 3]]
4000

Y
yangyaming 已提交
4001
            ref_level: -1
4002

Y
yangyaming 已提交
4003 4004 4005
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4006 4007 4008
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4009 4010
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4011
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4012
                        will be named automatically.
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4023
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4024
    """
L
lujun 已提交
4025
    assert not in_dygraph_mode(), (
4026
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4027
    helper = LayerHelper('sequence_expand', input=x, **locals())
4028
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4029
    tmp = helper.create_variable_for_type_inference(dtype)
4030
    helper.append_op(
Y
yangyaming 已提交
4031 4032 4033 4034 4035
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4036
    return tmp
4037 4038


C
chengduo 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4093
    assert not in_dygraph_mode(), (
4094
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4095 4096
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4097
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4098 4099 4100 4101 4102 4103 4104 4105
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4106
@templatedoc()
4107
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4108 4109 4110 4111 4112
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4113 4114 4115
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4116
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4117 4118 4119 4120
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4121 4122 4123
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4124

F
fengjiayi 已提交
4125
    Returns:
M
minqiyang 已提交
4126
        Variable: The padded sequence batch and the original lengths before
4127
                  padding. All sequences has the same length.
M
minqiyang 已提交
4128

F
fengjiayi 已提交
4129 4130 4131 4132 4133 4134 4135
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4136
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4137
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4138 4139 4140
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4141
    assert not in_dygraph_mode(), (
4142
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4143 4144
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4145 4146
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4147 4148 4149 4150

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4151 4152 4153 4154 4155 4156
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4157 4158
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4159
        attrs={'padded_length': maxlen})
4160
    return out, length
F
fengjiayi 已提交
4161 4162


4163
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4164
    """
4165
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4166

4167 4168
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4178 4179 4180
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4181
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4182 4183 4184 4185 4186 4187

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4188
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4189 4190 4191 4192 4193 4194

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4195 4196
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4209
    assert not in_dygraph_mode(), (
4210
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4211 4212
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4213
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4225 4226 4227 4228 4229 4230 4231
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4232
                is_accumulated=True,
4233 4234
                name=None,
                return_parent_idx=False):
4235
    """
4236 4237
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4238 4239 4240

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4241 4242

    This layer does the search in beams for one time step. Specifically, it
4243 4244 4245
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4257 4258 4259 4260

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4261

4262
    Args:
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4286 4287
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4288 4289
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4290 4291 4292 4293
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4294

4295
    Returns:
4296 4297 4298 4299
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4300 4301 4302 4303

    Examples:
        .. code-block:: python

4304 4305
            import paddle.fluid as fluid

4306 4307 4308
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4321
                axis=0)
4322
            selected_ids, selected_scores = fluid.layers.beam_search(
4323 4324 4325 4326 4327 4328 4329
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4330
    helper = LayerHelper('beam_search', **locals())
4331 4332 4333 4334 4335 4336
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4337

X
Xin Pan 已提交
4338 4339 4340
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4341 4342 4343 4344 4345
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4346 4347 4348

    helper.append_op(
        type='beam_search',
4349
        inputs=inputs,
Q
Qiao Longfei 已提交
4350 4351 4352
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4353
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4354 4355 4356 4357 4358 4359
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4360
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4361
        })
4362 4363 4364 4365
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4366 4367


4368 4369 4370 4371 4372 4373 4374
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4385

4386 4387 4388 4389 4390 4391
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4392

4393 4394
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4395

4396 4397
            import paddle.fluid as fluid

4398 4399
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4400 4401 4402
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4403 4404 4405
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4406 4407
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4423 4424 4425 4426
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4427
              param_attr=None,
C
caoying03 已提交
4428 4429
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4430 4431 4432 4433
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4434
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4435

4436
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4437

4438
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4439

4440
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4441 4442 4443

            h_t & = o_t tanh(c_t)

4444 4445 4446 4447 4448 4449
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4450 4451 4452

        .. math::

4453
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4454 4455 4456 4457 4458 4459 4460 4461

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4462
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4463 4464

    Args:
Y
yangyaming 已提交
4465 4466 4467 4468 4469 4470
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4471
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4484 4485
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4486 4487

    Returns:
Y
yangyaming 已提交
4488
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4489 4490

    Raises:
4491 4492 4493 4494
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4495 4496 4497 4498 4499

    Examples:

        .. code-block:: python

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4527
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4528 4529 4530 4531
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4532 4533
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4534 4535 4536
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4537
    size = cell_t_prev.shape[1]
4538
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4539 4540
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4541
                param_attr=param_attr,
4542
                bias_attr=bias_attr)
Y
yangyaming 已提交
4543
    dtype = x_t.dtype
X
Xin Pan 已提交
4544 4545
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4555
    return h, c
G
guosheng 已提交
4556 4557


C
caoying03 已提交
4558
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4559
    """
Y
yangyaming 已提交
4560
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4561 4562 4563

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4564
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4565 4566
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4567 4568
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4569
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4570
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4571
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4572 4573
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4574 4575 4576

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4577

G
guosheng 已提交
4578 4579 4580 4581 4582 4583
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4584
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4585 4586 4587 4588
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4589 4590 4591 4592

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4593
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4594 4595 4596
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4597 4598
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4599
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4600 4601
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4602 4603 4604 4605 4606
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4607
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4608 4609 4610 4611
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4612 4613


C
caoying03 已提交
4614
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4615
    """
Y
Yibing Liu 已提交
4616
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4617 4618 4619

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4620 4621 4622
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4623
            must be in the range :math:`[-rank(input), rank(input))`. If
4624
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4625
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4626 4627
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4628
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4629
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4630
                       will be named automatically.
G
guosheng 已提交
4631 4632

    Returns:
Y
Yibing Liu 已提交
4633
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4634

G
guosheng 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4645 4646
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4647 4648 4649 4650 4651 4652 4653

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4654 4655
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4656
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4657 4658
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4659 4660 4661 4662 4663
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4664
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4665 4666 4667 4668
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4669 4670


C
caoying03 已提交
4671
def reduce_max(input, dim=None, keep_dim=False, name=None):
4672
    """
Y
yangyaming 已提交
4673
    Computes the maximum of tensor elements over the given dimension.
4674 4675 4676

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4677
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4678 4679 4680
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4681
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4682 4683
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4684
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4685 4686
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4687 4688 4689

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4690

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4702 4703 4704 4705 4706 4707 4708

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4709 4710
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4711
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4712 4713
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4714 4715 4716 4717 4718
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4719
            'dim': dim if dim != None else [0],
4720 4721 4722 4723 4724 4725
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4726
def reduce_min(input, dim=None, keep_dim=False, name=None):
4727
    """
Y
yangyaming 已提交
4728
    Computes the minimum of tensor elements over the given dimension.
4729 4730 4731

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4732
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4733 4734 4735
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4736
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4737 4738
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4739
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4740 4741
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4742 4743 4744

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4745

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4757 4758 4759 4760 4761 4762 4763

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4764 4765
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4766
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4767 4768
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4769 4770 4771 4772 4773
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4774
            'dim': dim if dim != None else [0],
4775 4776 4777 4778
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4779 4780


4781 4782 4783 4784 4785 4786
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4787
        dim (list|int|None): The dimensions along which the product is performed. If
4788 4789
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4790 4791
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4792 4793 4794
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4795
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4796
            layer will be named automatically.
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4811
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4812
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4813 4814 4815 4816 4817 4818 4819

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4820 4821
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4822
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4823 4824
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4825 4826 4827 4828 4829
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4830
            'dim': dim if dim != None else [0],
4831 4832 4833 4834 4835 4836
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4837 4838
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4839
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4859
        
Z
zhoukunsheng 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4889
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4909

Z
zhoukunsheng 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4932 4933 4934 4935 4936
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4937
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4938
    """
C
caoying03 已提交
4939
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4940 4941 4942

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4943 4944 4945 4946 4947
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4948
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4949
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4950
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4951 4952
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4953 4954

    Returns:
D
dzhwinter 已提交
4955
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4965 4966
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4978
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4979 4980 4981
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4982
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5005
    .. math::
5006 5007

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5008 5009 5010 5011 5012

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5013
        x(Variable|list): The input tensor to l2_normalize layer.
5014
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5015 5016
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5017
        epsilon(float): The epsilon value is used to avoid division by zero, \
5018
            the defalut value is 1e-12.
5019
        name(str|None): A name for this layer(optional). If set None, the layer \
5020
            will be named automatically.
C
caoying03 已提交
5021 5022

    Returns:
5023
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5024 5025

    Examples:
5026

C
caoying03 已提交
5027 5028
        .. code-block:: python

5029 5030 5031 5032
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5033 5034
    """

F
fengjiayi 已提交
5035 5036
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5037 5038
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5039 5040
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5041
    helper.append_op(
5042 5043 5044 5045
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5046
        attrs={
5047 5048
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5049 5050
        })
    return out
5051 5052


S
sneaxiy 已提交
5053
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5054
    """
Y
ying 已提交
5055 5056 5057 5058
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5059

C
chengduoZH 已提交
5060
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5061
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5062

5063 5064 5065 5066 5067
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5068
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5069

C
chengduoZH 已提交
5070
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5071
      performs in the following way.
G
guosheng 已提交
5072

5073
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5074
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5075
        last two dimensions and a batched matrix multiply supporting broadcast
5076
        applies on the two tensors.
G
guosheng 已提交
5077

Y
ying 已提交
5078 5079
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5080
    removed after matrix multiplication.
G
guosheng 已提交
5081 5082 5083

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5084 5085 5086
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5087
        alpha (float): The scale of output. Default 1.0.
5088
        name(str|None): A name for this layer(optional). If set None, the layer
5089
            will be named automatically.
G
guosheng 已提交
5090 5091

    Returns:
5092
        Variable: The product Tensor variable.
G
guosheng 已提交
5093

G
guosheng 已提交
5094 5095 5096
    Examples:
        .. code-block:: python

5097
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5098 5099
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5100

5101 5102
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5103

5104 5105
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5106

5107 5108
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5109 5110 5111 5112

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5113 5114
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5115

Y
ying 已提交
5116
            # x: [M], y: [N]
5117
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5118
    """
Y
ying 已提交
5119 5120 5121 5122 5123 5124 5125

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5126
            y_shape = y_shape + [1]
Y
ying 已提交
5127 5128 5129 5130 5131 5132 5133

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5134 5135
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5136

C
chengduo 已提交
5137
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5138
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5139 5140 5141
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5142
                if dim_x != y_shape[i]:
C
chengduo 已提交
5143 5144
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5145 5146 5147

    __check_input(x, y)

5148
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5150
    helper.append_op(
5151 5152 5153 5154
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5155 5156 5157
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5158
            'alpha': float(alpha),
S
sneaxiy 已提交
5159
        })
5160
    return out
5161 5162


5163
def topk(input, k, name=None):
Q
qingqing01 已提交
5164 5165 5166 5167
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5168
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5169 5170 5171 5172 5173 5174
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5196 5197 5198
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5199
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5200
                 of input.
5201
        name(str|None): A name for this layer(optional). If set None, the layer
5202
                       will be named automatically.
F
fengjiayi 已提交
5203
                       Default: None
Q
qingqing01 已提交
5204 5205

    Returns:
5206 5207 5208
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5209
        within the last dimension of input.
Q
qingqing01 已提交
5210

F
fengjiayi 已提交
5211 5212
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5213 5214 5215 5216

    Examples:
        .. code-block:: python

5217 5218
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5219 5220 5221
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5222 5223
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5224 5225 5226 5227 5228 5229
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5230 5231
    helper.append_op(
        type="top_k",
W
whs 已提交
5232
        inputs=inputs,
Q
qingqing01 已提交
5233 5234
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5235
        attrs=attrs)
Q
qingqing01 已提交
5236 5237 5238 5239 5240
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5241
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5242
    """
Y
ying 已提交
5243 5244 5245 5246 5247 5248 5249 5250 5251
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5252

Y
ying 已提交
5253
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5254

5255
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5256 5257
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5258
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5259

5260
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5261 5262
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5263

5264 5265 5266
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5267
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5268
                          the length of reference string.
5269
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5270
                                     calculating edit distance.
5271
        name (str): The name of this layer. It is optional.
5272

W
wanghaoshuang 已提交
5273
    Returns:
W
wanghaoshuang 已提交
5274
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5275 5276 5277 5278

    Examples:
        .. code-block:: python

T
tink2123 已提交
5279 5280
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5281
            cost = fluid.layers.edit_distance(input=x,label=y)
5282
    """
5283
    helper = LayerHelper("edit_distance", **locals())
5284

5285
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5286
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5287 5288
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5289 5290 5291 5292 5293

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5294
            attrs={"tokens": ignored_tokens})
5295 5296 5297 5298 5299
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5300
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5301
            attrs={"tokens": ignored_tokens})
5302 5303
        label = erased_label

5304
    # edit distance op
X
Xin Pan 已提交
5305 5306
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5307 5308 5309 5310
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5311 5312
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5313 5314
        attrs={"normalized": normalized})

5315
    return edit_distance_out, sequence_num
5316 5317 5318 5319 5320


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5321

Y
ying 已提交
5322 5323 5324 5325
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5343
        input.lod = [[4, 4]]
M
minqiyang 已提交
5344

W
whs 已提交
5345
        Computation:
5346

W
whs 已提交
5347 5348 5349 5350 5351 5352
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5353 5354 5355 5356 5357

        output.data = [[2],
                       [1],
                       [3]]

5358
        output.lod = [[2, 1]]
5359

W
whs 已提交
5360

5361 5362
    Args:

Y
ying 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5372
        name (str): The name of this layer. It is optional.
5373 5374

    Returns:
H
haowang101779990 已提交
5375 5376 5377
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5378
                  LoD [[]] and dims [1, 1].
5379 5380 5381 5382

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5383
            import paddle.fluid as fluid
5384 5385
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5386
    """
5387
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5388
    _, topk_indices = topk(input, k=1)
5389 5390

    # ctc align op
X
Xin Pan 已提交
5391
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5392 5393 5394
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5395
        outputs={"Output": [ctc_out]},
5396 5397
        attrs={"merge_repeated": True,
               "blank": blank})
5398
    return ctc_out
5399 5400


W
Wu Yi 已提交
5401
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5402
    """
5403 5404
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5405
    to compute Connectionist Temporal Classification (CTC) loss.
5406 5407
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5408 5409 5410
    input tensor.

    Args:
5411
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5412 5413 5414 5415
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5416
       label (Variable): The ground truth of variable-length sequence,
5417 5418 5419
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5420 5421
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5422 5423 5424
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5425
         follewed by a mean_op.
W
Wu Yi 已提交
5426
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5427 5428

    Returns:
5429 5430
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5431 5432

    Examples:
5433

W
wanghaoshuang 已提交
5434
        .. code-block:: python
5435

5436 5437 5438
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5439 5440

    """
F
fengjiayi 已提交
5441
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5442 5443
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5444 5445 5446 5447 5448 5449
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5450 5451 5452 5453 5454
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5455
    return loss_out
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5471 5472 5473
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5474 5475 5476 5477 5478
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5479

5480
            out.lod  = [[0, 1, 3]]
5481 5482 5483 5484

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5485 5486 5487 5488 5489 5490 5491
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5492 5493 5494

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5495 5496

    Returns:
5497

5498 5499 5500 5501 5502
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5503
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5504
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5505
    """
L
lujun 已提交
5506
    assert not in_dygraph_mode(), (
5507
        "sequence layer is not supported in dygraph mode yet.")
5508
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5509
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5510 5511 5512 5513 5514 5515
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5516 5517


5518 5519 5520 5521
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5522 5523 5524 5525 5526 5527
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5528
        num_neg_samples=None,
5529 5530 5531
        name=None,
        sampler="uniform",
        custom_dist=None,
5532 5533
        seed=0,
        is_sparse=False):
5534 5535 5536 5537 5538 5539 5540
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5541 5542
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5543
            sample is 1.0.
C
chengduo 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5553
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5554 5555
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5556 5557 5558
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5559
        custom_dist (float[]): A float[] with size=num_total_classes.
5560 5561 5562 5563
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5564
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5565

5566
    Returns:
Y
Yibing Liu 已提交
5567 5568 5569 5570 5571 5572
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5573
	    import numpy as np
Y
Yibing Liu 已提交
5574

Y
Yibing Liu 已提交
5575 5576 5577 5578 5579 5580 5581 5582
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5583

Y
Yibing Liu 已提交
5584 5585 5586 5587
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5588

Y
Yibing Liu 已提交
5589 5590 5591
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5592

Y
Yibing Liu 已提交
5593 5594 5595 5596
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5597

Y
Yibing Liu 已提交
5598 5599 5600 5601 5602 5603 5604 5605
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5606
    """
Y
Yang Yu 已提交
5607 5608 5609
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5610 5611

    dim = input.shape[1]
Y
Yang Yu 已提交
5612 5613 5614 5615 5616 5617
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5618
    inputs = {}
C
chengduo 已提交
5619 5620 5621 5622 5623 5624 5625
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5626 5627 5628
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5629

5630 5631 5632 5633
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5634 5635 5636 5637 5638 5639 5640

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5641 5642
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5643
        custom_dist_len = num_total_classes
5644 5645 5646 5647 5648 5649
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5650
            if normal_prob - 1.0 > 0:
5651
                bigs.append((i, normal_prob))
5652
            elif 1.0 - normal_prob > 0:
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5668
            if big_left - 1.0 > 0:
5669
                bigs.append((big_idx, big_left))
5670
            elif 1.0 - big_left > 0:
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5700 5701 5702 5703
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5704 5705 5706 5707 5708
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5709 5710 5711 5712
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5713

Y
Yang Yu 已提交
5714 5715
    attrs = {
        'num_total_classes': int(num_total_classes),
5716 5717
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5718
        'sampler': sampler,
5719 5720
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5721
    }
Y
Yang Yu 已提交
5722 5723 5724

    helper.append_op(
        type='nce',
C
chengduo 已提交
5725
        inputs=inputs,
Y
Yang Yu 已提交
5726 5727 5728 5729 5730 5731
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5732
    return cost / (num_neg_samples + 1)
5733 5734


C
chengduo 已提交
5735 5736
def hsigmoid(input,
             label,
5737
             num_classes,
C
chengduo 已提交
5738 5739
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5740
             name=None,
5741 5742 5743
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5744
             is_sparse=False):
W
weixing02 已提交
5745 5746
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5747
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5748
    complete binary tree, or you can use is_custom to pass your own tree to
5749
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5750 5751 5752 5753 5754 5755
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5756
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5757
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5758

5759 5760
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5761 5762 5763 5764
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5765
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5766
       related to the same batch of inputs.
5767

W
weixing02 已提交
5768
    Args:
M
minqiyang 已提交
5769
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5770 5771 5772 5773
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5774 5775
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5776
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5788
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5789
            it should be in leaf -> root order
M
minqiyang 已提交
5790 5791 5792
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5793
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5794
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5795
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5796
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5797
             of W and input will be sparse.
W
weixing02 已提交
5798 5799

    Returns:
J
JiabinYang 已提交
5800
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5801 5802 5803 5804 5805

    Examples:

        .. code-block:: python

G
guosheng 已提交
5806 5807 5808
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5809 5810 5811 5812
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5813 5814
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5815
    dim = input.shape[1]
5816
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5817 5818 5819
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5820 5821 5822 5823 5824 5825 5826 5827 5828
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5829
    if (is_custom) and (path_code is None):
5830
        raise ValueError("path_code should not be None with custom tree")
5831
    elif (is_custom) and (path_table is None):
5832
        raise ValueError("path_table should not be None with custom tree")
5833
    elif (is_custom) and (num_classes is None):
5834
        raise ValueError("num_classes should not be None with custom tree")
5835 5836 5837
    else:
        pass

J
JiabinYang 已提交
5838
    weights = None
5839 5840 5841 5842
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5843
    if not is_custom:
J
JiabinYang 已提交
5844 5845 5846 5847 5848 5849 5850 5851
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5852
            shape=[num_classes, dim],
J
JiabinYang 已提交
5853 5854
            is_bias=False,
            dtype=input.dtype)
5855 5856 5857
    inputs = {
        "X": input,
        "W": weights,
5858
        "PathTable": path_table,
5859
        "PathCode": path_code,
5860 5861
        "Label": label
    }
W
weixing02 已提交
5862
    if helper.bias_attr:
5863
        if not is_custom:
J
JiabinYang 已提交
5864 5865
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5866
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5867 5868 5869 5870 5871 5872
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5873
                shape=[num_classes, 1],
J
JiabinYang 已提交
5874 5875 5876
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5877 5878
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5879
        inputs=inputs,
W
weixing02 已提交
5880
        outputs={"Out": out,
5881 5882 5883 5884 5885 5886 5887
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5888 5889 5890
    return out


Y
fix ci.  
ying 已提交
5891
def transpose(x, perm, name=None):
Y
ying 已提交
5892 5893 5894 5895 5896 5897 5898
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5899 5900 5901
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5902 5903 5904 5905 5906 5907 5908

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5909
            # use append_batch_size=False to avoid prepending extra
5910
            # batch size in shape
5911
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5912
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5913
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5914 5915
    """

Y
fix ci.  
ying 已提交
5916
    if len(perm) != len(x.shape):
Y
ying 已提交
5917 5918 5919
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5920 5921 5922 5923 5924 5925
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5926 5927

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5928 5929
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5930
    helper.append_op(
5931
        type='transpose2',
Y
fix ci.  
ying 已提交
5932
        inputs={'X': [x]},
5933 5934
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5935 5936
        attrs={'axis': perm})
    return out
5937 5938


5939 5940 5941 5942 5943 5944 5945
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5946
    """
5947 5948 5949 5950 5951 5952 5953
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5982 5983 5984 5985 5986 5987 5988 5989 5990
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5991 5992 5993
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5994 5995 5996 5997 5998
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6026 6027 6028
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6041
            output.dims = {8, 8}
6042

6043
            output.lod = [[4, 4]]
6044

T
Tink_Y 已提交
6045
    Examples:
6046 6047 6048

        .. code-block:: python

6049 6050
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
6051 6052

    """
L
lujun 已提交
6053
    assert not in_dygraph_mode(), (
6054
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6065 6066 6067 6068 6069 6070 6071
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6072
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6073
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6074
    helper.append_op(
6075
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6076
    return out
6077 6078


Y
yuyang18 已提交
6079
@templatedoc()
6080
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6081 6082
    """
    ${comment}
6083 6084

    Args:
Y
yuyang18 已提交
6085
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6086 6087
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6088 6089 6090 6091 6092
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6093
        ${out_comment}.
6094 6095

    Examples:
Y
yuyang18 已提交
6096 6097 6098 6099
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6100 6101 6102 6103 6104 6105
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6106
    out = helper.create_variable_for_type_inference(dtype)
6107 6108 6109 6110 6111
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6112
    return helper.append_activation(out)
6113 6114


Y
yuyang18 已提交
6115
@templatedoc()
6116 6117
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6118 6119
    ${comment}

L
lujun 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6163 6164

    Args:
Y
yuyang18 已提交
6165 6166
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6167 6168

    Returns:
Y
yuyang18 已提交
6169
        ${out_comment}.
6170 6171
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6172 6173 6174 6175 6176

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6177
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6178 6179 6180 6181 6182 6183
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6184 6185


6186 6187 6188
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6189
                               ignore_index=kIgnoreIndex,
6190
                               numeric_stable_mode=True,
6191 6192
                               return_softmax=False,
                               axis=-1):
6193 6194
    """
    **Softmax With Cross Entropy Operator.**
6195

6196
    Cross entropy loss with softmax is used as the output layer extensively. This
6197 6198 6199
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6200

6201 6202 6203
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6204

6205 6206 6207 6208
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6209

6210
    The equation is as follows:
6211

6212
    1) Hard label (one-hot label, so every sample has exactly one class)
6213

6214 6215 6216 6217
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6218

6219 6220 6221
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6222

6223 6224 6225 6226
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6227 6228
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6229 6230

    .. math::
6231

H
haowang101779990 已提交
6232
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6233

H
haowang101779990 已提交
6234
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6235

H
haowang101779990 已提交
6236
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6237 6238 6239

    and then cross entropy loss is calculated by softmax and label.

6240
    Args:
6241 6242 6243 6244 6245 6246
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6247
        soft_label (bool): A flag to indicate whether to interpretate the given
6248
            labels as soft labels. Default False.
M
minqiyang 已提交
6249 6250
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6251 6252
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6253 6254
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6255 6256 6257 6258
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6259
                                    Note that the speed may be slower when use
6260
                                    stable algorithm. Default: True
6261
        return_softmax (bool): A flag indicating whether to return the softmax
6262
                               along with the cross entropy loss. Default: False
6263 6264 6265
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6266

6267
    Returns:
H
haowang101779990 已提交
6268 6269
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6270 6271 6272 6273
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6274 6275 6276 6277 6278 6279 6280

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6281 6282
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6283 6284
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6285 6286
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6287 6288 6289 6290 6291 6292
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6293 6294 6295
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6296 6297
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6298
        })
6299 6300 6301 6302

    if return_softmax:
        return loss, softmax

6303 6304 6305
    return loss


6306 6307 6308
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6309
                                       num_true=1,
6310
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6311 6312 6313
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6314
                                       seed=0):
X
xuezhong 已提交
6315 6316 6317 6318 6319
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6320
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6321 6322 6323 6324 6325 6326 6327 6328
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6329
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6330 6331 6332 6333 6334 6335 6336 6337
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6338
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6350
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6351 6352 6353 6354 6355
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6356
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6357
            logits.
X
xuezhong 已提交
6358 6359 6360 6361 6362
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6363 6364 6365
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6386 6387
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6388 6389
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6390 6391 6392 6393 6394

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6395
            'Labels': label,
X
xuezhong 已提交
6396 6397
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6398 6399 6400 6401
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6402
            'SampledLabels': sampled_label,
6403 6404 6405
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6406 6407
        },
        attrs={
X
xuezhong 已提交
6408
            'use_customized_samples': use_customized_samples,
6409
            'uniq': True,
X
xuezhong 已提交
6410 6411 6412 6413
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6414 6415
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6416 6417 6418 6419 6420 6421
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6422 6423
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6424
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6425
                'Label': sampled_softlabel},
X
xuezhong 已提交
6426 6427 6428
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6429
            'soft_label': True,
X
xuezhong 已提交
6430 6431 6432
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6433
    return loss / num_true
X
xuezhong 已提交
6434 6435


6436 6437
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6438 6439
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6440
    For each instance, it computes the smooth L1 loss element by element first
6441
    and then sums all the losses. So the shape of ouput Variable is
6442
    [batch_size, 1].
6443

6444 6445
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6446
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6447
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6448
            L1 loss op with same shape as :attr:`x`.
6449
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6450 6451
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6452
            by this tensor element by element.
6453
        outside_weight (Variable|None): A tensor with rank at least 2. This
6454 6455
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6456
            element by element.
6457
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6458 6459
           scalar with default value 1.0.

6460
    Returns:
6461
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6462 6463 6464 6465 6466

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6467 6468
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6469
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6470
            out = fluid.layers.smooth_l1(x=fc, y=label)
6471
    """
6472

6473
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6474 6475
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6486
        attrs={'sigma': sigma if sigma is not None else 1.0})
6487
    return loss
6488 6489 6490 6491


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6492
    This layer creates the one-hot representations for input indices.
6493 6494

    Args:
Y
Yibing Liu 已提交
6495 6496
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6497 6498

    Returns:
Y
Yibing Liu 已提交
6499
        Variable: The one-hot representations of input.
6500 6501

    Examples:
C
caoying03 已提交
6502
        .. code-block:: python
6503

Y
Yibing Liu 已提交
6504 6505
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6506 6507
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6508
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6509 6510 6511 6512
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6513 6514
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6515
    return one_hot_out
Y
Yu Yang 已提交
6516 6517


Y
Yu Yang 已提交
6518
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6519
    """
Y
yi.wu 已提交
6520 6521 6522
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6523 6524 6525 6526 6527 6528

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6529 6530
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6531 6532 6533 6534 6535

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6536
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6537 6538
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6539 6540
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6541 6542 6543 6544 6545
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6546
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6547
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6548 6549
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6550
            outputs={'Out': [counter]},
M
minqiyang 已提交
6551 6552
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6553 6554 6555
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6556 6557


6558
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6559
    """
C
caoying03 已提交
6560 6561
    Gives a new shape to the input Tensor without changing its data.

6562 6563 6564 6565 6566
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6567

6568
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6569

6570 6571 6572 6573
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6574
    2. 0 means the actual dimension value is going to be copied from the
6575 6576 6577 6578
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6579 6580

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6581
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6582
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6583

6584
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6585 6586
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6587 6588
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6589
    dimensions.
C
caoying03 已提交
6590

6591
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6592 6593 6594 6595
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6596 6597

    Args:
6598
        x(variable): The input tensor.
C
caoying03 已提交
6599 6600
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6601 6602 6603 6604 6605
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6606 6607
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6608 6609 6610
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6611
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6612
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6613

6614
    Returns:
G
guosheng 已提交
6615 6616 6617 6618
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6619

X
Xin Pan 已提交
6620 6621 6622
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6623 6624
    Examples:
        .. code-block:: python
G
guosheng 已提交
6625

6626
            data = fluid.layers.data(
6627
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6628
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6629
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6630 6631 6632
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6633
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6634 6635 6636 6637 6638
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6639

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6655
    helper = LayerHelper("reshape2", **locals())
6656 6657
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6658
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6659
    helper.append_op(
6660
        type="reshape2",
X
Xin Pan 已提交
6661
        inputs=inputs,
D
dzhwinter 已提交
6662
        attrs={"shape": shape},
6663 6664
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6665

D
dzhwinter 已提交
6666
    return helper.append_activation(out)
6667

6668

6669
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6670
    """
M
minqiyang 已提交
6671 6672 6673
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6674
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6675

H
haowang101779990 已提交
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6697

Y
Yibing Liu 已提交
6698
    Args:
6699
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6700
        axes (list): List of integers, indicating the dimensions to be squeezed.
6701
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6702 6703 6704 6705 6706 6707 6708

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6709
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6710
            x = layers.data(name='x', shape=[5, 1, 10])
6711
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6712
    """
L
lujun 已提交
6713
    assert not in_dygraph_mode(), (
L
lujun 已提交
6714
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6715
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6716 6717
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6718
    helper.append_op(
6719
        type="squeeze2",
6720
        inputs={"X": input},
Y
Yibing Liu 已提交
6721
        attrs={"axes": axes},
6722 6723
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6724

6725 6726 6727
    return out


6728
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6729
    """
M
minqiyang 已提交
6730 6731 6732
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6733

M
minqiyang 已提交
6734
    For example:
H
haowang101779990 已提交
6735 6736 6737

    .. code-block:: text

M
minqiyang 已提交
6738
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6739
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6740

Y
Yibing Liu 已提交
6741
    Args:
6742
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6743
        axes (list): List of integers, indicating the dimensions to be inserted.
6744
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6745 6746 6747 6748 6749 6750 6751 6752

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6753
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6754 6755
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6756 6757
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6758
    helper.append_op(
6759
        type="unsqueeze2",
6760
        inputs={"X": input},
Y
Yibing Liu 已提交
6761
        attrs={"axes": axes},
6762 6763
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6764

6765 6766
    return out

6767

Y
yangyaming 已提交
6768
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6769
    """
Y
Yibing Liu 已提交
6770
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6771 6772 6773 6774
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6775
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6776 6777 6778 6779 6780 6781

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6782
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6783 6784 6785
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6786
            target_lod: [4, 2]
Y
yangyaming 已提交
6787 6788

            then we get a 1-level LoDTensor:
6789
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6790 6791 6792 6793 6794 6795
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6796
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6797 6798 6799 6800
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6801
                y.data = [[2, 4]]
Y
yangyaming 已提交
6802 6803 6804
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6805
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6806 6807 6808 6809 6810 6811
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6812
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6813 6814 6815 6816
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6817
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6818 6819 6820 6821
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6822
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6823 6824 6825 6826 6827
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6828
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6829
                           from :attr:`y`.
Y
yangyaming 已提交
6830
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6831
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6832 6833

    Returns:
Y
Yibing Liu 已提交
6834
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6835 6836

    Raises:
Y
Yibing Liu 已提交
6837
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6847
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6873
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6902 6903
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6916 6917 6918
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6932 6933 6934 6935


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6936
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6937
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6938

G
guosheng 已提交
6939 6940 6941 6942
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6965
                         The length of :attr:paddings must be
G
guosheng 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6976

G
guosheng 已提交
6977
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6978 6979
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6980 6981 6982 6983 6984
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6985
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6986 6987 6988 6989 6990 6991 6992
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6993 6994


C
chengduo 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7026 7027
		And
            pad_value = -1,
C
chengduo 已提交
7028

T
Tink_Y 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7059 7060 7061
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7062 7063 7064 7065 7066
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7067
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7077 7078 7079 7080 7081 7082 7083
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7084 7085
    called label-smoothing regularization (LSR).

7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7109
                              be :math:`(1, class\_num)`.
7110 7111
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7112
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7132
    smooth_label = helper.create_variable_for_type_inference(dtype)
7133 7134 7135 7136 7137 7138 7139
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7140 7141


W
wopeizl 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7190 7191


J
jerrywgz 已提交
7192 7193 7194 7195 7196 7197
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7198 7199
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7216 7217 7218 7219
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7220 7221 7222
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7223 7224 7225 7226 7227 7228
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7229
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7270 7271
        .. code-block:: python

S
SunGaofeng 已提交
7272 7273 7274
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7275
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7276
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7277 7278
    """
    label = one_hot(label, depth=input.shape[-1])
7279
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7280 7281 7282 7283 7284 7285
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7286 7287


7288 7289 7290 7291
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7292
                 resample='BILINEAR',
7293 7294
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7295
                 align_mode=1):
7296
    """
Q
qiaolongfei 已提交
7297
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7298

7299
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7300 7301 7302
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7303

7304
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7305

7306
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7307

7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7318
    Align_corners and align_mode are optinal parameters,the calculation method 
7319 7320 7321 7322
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7323
    .. code-block:: text
7324

T
Tink_Y 已提交
7325
        For scale:
7326
          
T
Tink_Y 已提交
7327
            if align_corners = True && out_size > 1 :
7328

T
Tink_Y 已提交
7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7340

T
Tink_Y 已提交
7341 7342
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7343

T
Tink_Y 已提交
7344 7345
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7346

T
Tink_Y 已提交
7347 7348
          else:
              align_corners = True
7349

T
Tink_Y 已提交
7350 7351
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7352

T
Tink_Y 已提交
7353 7354
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7355

T
Tink_Y 已提交
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7366

T
Tink_Y 已提交
7367 7368 7369 7370
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7371

T
Tink_Y 已提交
7372 7373
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7374 7375 7376 7377 7378 7379 7380 7381 7382

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7383
    Args:
7384
        input (Variable): The input tensor of image resize layer,
7385 7386
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7387
        out_shape(list|tuple|Variable|None): Output shape of image resize
7388 7389
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7390
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7391
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7392
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7393
             Default: None.
7394 7395
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7396
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7397
                       currently.
7398
                       Default: 'BILINEAR'
7399 7400 7401
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7402
                                :attr:`out_shape` and :attr:`scale` specifying
7403 7404 7405 7406 7407 7408 7409
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7410 7411
                                constructing stage.
                                Default: None
7412 7413 7414 7415
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7416
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7417 7418
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7419 7420

    Returns:
Q
update  
qiaolongfei 已提交
7421 7422
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7423

7424 7425 7426
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7427
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7428 7429 7430
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7431
        ValueError: scale should be greater than zero.
7432 7433
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7434

7435 7436 7437
    Examples:
        .. code-block:: python

R
ruri 已提交
7438
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7439
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7440
    """
7441 7442 7443 7444
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7445 7446
    if resample not in resample_methods:
        raise ValueError(
7447
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7448
        )
7449
    resample_type = resample_methods[resample]
7450 7451 7452 7453 7454 7455

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7456
    if out_shape is None and scale is None:
7457
        raise ValueError("One of out_shape and scale must not be None.")
7458
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7459
    dtype = helper.input_dtype()
7460 7461 7462 7463

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7464
    inputs = {"X": input}
D
dengkaipeng 已提交
7465
    attrs = {
D
dengkaipeng 已提交
7466 7467
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7468 7469 7470 7471 7472
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7473
    if out_shape is not None:
7474 7475 7476 7477
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7478
            inputs['OutSize'] = out_shape
7479 7480
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7481 7482
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7483 7484 7485 7486 7487 7488 7489
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7490
    else:
D
dengkaipeng 已提交
7491 7492
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7493
        attrs['scale'] = float(scale)
7494

7495 7496 7497 7498 7499
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7500
    out = helper.create_variable_for_type_inference(dtype)
7501
    helper.append_op(
7502
        type='{}_interp'.format(resample_type),
7503
        inputs=inputs,
7504
        outputs={"Out": out},
D
dengkaipeng 已提交
7505
        attrs=attrs)
7506
    return out
F
stash  
fengjiayi 已提交
7507 7508


7509
@templatedoc(op_type="bilinear_interp")
7510 7511 7512 7513
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7514 7515
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7516
                    align_mode=1):
7517
    """
7518 7519
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7520 7521
    in priority order.

7522 7523 7524 7525
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7526 7527
    again in the other direction.

7528
    For details of bilinear interpolation, please refer to Wikipedia:
7529
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7530

T
tink2123 已提交
7531
    Align_corners and align_mode are optinal parameters,the calculation 
7532 7533 7534 7535
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7536
    .. code-block:: text
7537

T
Tink_Y 已提交
7538
        For scale:
7539
          
T
Tink_Y 已提交
7540
            if align_corners = True && out_size > 1 :
7541

T
Tink_Y 已提交
7542 7543 7544 7545 7546
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7547

T
Tink_Y 已提交
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7558 7559


T
Tink_Y 已提交
7560
          else:
T
tink2123 已提交
7561

T
Tink_Y 已提交
7562 7563
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7564

T
Tink_Y 已提交
7565 7566
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7567 7568 7569



Y
yuyang18 已提交
7570 7571 7572
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7573 7574 7575
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7576

Y
yuyang18 已提交
7577
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7578
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7579
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7580
             Default: None.
Y
yuyang18 已提交
7581 7582

        name(str|None): The output variable name.
7583 7584 7585
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7586
                                :attr:`out_shape` and :attr:`scale` specifying
7587 7588 7589 7590 7591 7592 7593
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7594 7595
                                constructing stage.
                                Default: None
7596 7597
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7598 7599 7600

    Returns:
        ${out_comment}.
7601 7602 7603 7604

    Examples:
        .. code-block:: python

R
ruri 已提交
7605
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7606
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7607 7608
    """

7609 7610
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7611 7612


7613
@templatedoc(op_type="nearest_interp")
7614 7615 7616 7617
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7618 7619
                   actual_shape=None,
                   align_corners=True):
7620
    """
7621
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7622 7623
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7624 7625
    out_shape and scale in priority order.

7626 7627
    Example:

T
Tink_Y 已提交
7628 7629 7630 7631 7632
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7633

T
Tink_Y 已提交
7634 7635 7636 7637 7638 7639 7640 7641
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7642
          
T
Tink_Y 已提交
7643 7644
          if:
              align_corners = False
7645

T
Tink_Y 已提交
7646 7647
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7648

T
Tink_Y 已提交
7649 7650
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7651

T
Tink_Y 已提交
7652 7653
          else:
              align_corners = True
7654

T
Tink_Y 已提交
7655 7656
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7657

T
Tink_Y 已提交
7658 7659
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7660 7661


7662
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7663
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7664 7665 7666 7667

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7668 7669 7670
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7671

Y
yuyang18 已提交
7672
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7673
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7674
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7675
             Default: None.
Y
yuyang18 已提交
7676 7677

        name(str|None): The output variable name.
7678 7679 7680
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7681
                                :attr:`out_shape` and :attr:`scale` specifying
7682 7683 7684 7685 7686 7687 7688
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7689 7690
                                constructing stage.
                                Default: None
7691
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7692 7693 7694

    Returns:
        ${out_comment}.
7695 7696 7697 7698

    Examples:
        .. code-block:: python

R
ruri 已提交
7699
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7700
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7701 7702
    """

7703 7704
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7705 7706 7707 7708


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7709 7710 7711
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7712 7713 7714 7715 7716 7717 7718
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7719
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7720

7721
    Returns:
Q
update  
qiaolongfei 已提交
7722
        Variable: The output is a 4-D tensor of the shape
7723
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7724 7725 7726 7727 7728 7729

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7740 7741 7742
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7743 7744 7745
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7746 7747
def gather(input, index):
    """
Q
qiaolongfei 已提交
7748 7749
    **Gather Layer**

7750
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7751 7752 7753 7754
    of X indexed by `index` and concatenate them together.

    .. math::

7755
        Out = X[Index]
W
whs 已提交
7756 7757 7758 7759 7760 7761 7762


    .. code-block:: text


                Given:

7763 7764
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7775
        input (Variable): The source input with rank>=1.
W
whs 已提交
7776 7777 7778 7779 7780 7781
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7782

W
whs 已提交
7783 7784
        .. code-block:: python

Y
Yibing Liu 已提交
7785 7786
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7787 7788 7789 7790
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7791
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7792 7793 7794 7795 7796 7797 7798 7799
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7831
    out = helper.create_variable_for_type_inference(dtype)
7832 7833 7834 7835 7836 7837 7838 7839 7840
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7850

Q
Qingsheng Li 已提交
7851
    Given the following input:
H
haowang101779990 已提交
7852

Q
Qingsheng Li 已提交
7853
    .. code-block:: text
H
haowang101779990 已提交
7854

Q
Qingsheng Li 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7867

Q
Qingsheng Li 已提交
7868
    .. code-block:: text
H
haowang101779990 已提交
7869

Q
Qingsheng Li 已提交
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7885
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7886 7887 7888 7889 7890 7891 7892 7893

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7894
    assert not in_dygraph_mode(), (
7895
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7896 7897
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7898
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7899 7900 7901 7902 7903 7904 7905 7906 7907
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7921

7922 7923 7924
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7925
    """
F
stash  
fengjiayi 已提交
7926
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7927
    dtype = x.dtype
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7929
    if seed is None:
7930
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7931
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7932
    if isinstance(seed, int):
F
fengjiayi 已提交
7933 7934 7935 7936 7937
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7938 7939 7940 7941
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7942
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7943 7944
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7945 7946
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7947
    return out
W
whs 已提交
7948 7949


7950
def log(x, name=None):
W
wanghaoshuang 已提交
7951 7952 7953 7954 7955
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7956
        Out = \\ln(x)
W
wanghaoshuang 已提交
7957 7958

    Args:
7959
        x (Variable): Input tensor.
7960 7961
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7962 7963 7964 7965 7966 7967 7968 7969

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7970
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7971 7972
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7973
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7974
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7975
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7976 7977 7978
    return out


7979
def relu(x, name=None):
W
wanghaoshuang 已提交
7980 7981
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7982
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7983 7984 7985 7986
    the tensor elementwise.

    .. math::

7987
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7988 7989

    Args:
7990
        x (Variable): The input tensor.
7991 7992
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7993 7994 7995 7996 7997 7998 7999 8000

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8001
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8002
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8003 8004
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8005
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8006
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8007 8008
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8009
    return out
8010 8011


C
chengduo 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8053 8054 8055
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8056 8057 8058 8059
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8060
    .. math::
8061

H
haowang101779990 已提交
8062
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8063

8064
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8065 8066 8067 8068 8069
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8070
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8071
                           Its shape should be the same as input.
8072
        num_classes (int): The possible number of labels.
W
whs 已提交
8073 8074

    Returns:
M
minqiyang 已提交
8075 8076
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8077
                     Three variables:
M
minqiyang 已提交
8078

H
haowang101779990 已提交
8079 8080 8081
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8082 8083 8084 8085

    Examples:

        .. code-block:: python
8086

W
whs 已提交
8087 8088 8089 8090
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8091 8092 8093
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8094 8095
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8096 8097
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8098
        outputs={
W
whs 已提交
8099 8100 8101
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8102 8103 8104
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8147
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8148
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8149
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8167
            import paddle.fluid as fluid
8168 8169 8170 8171 8172 8173
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8174
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8175 8176 8177 8178 8179

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8180
            isinstance(shape, Variable)):
8181 8182 8183 8184 8185
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8186
    out = helper.create_variable_for_type_inference(x.dtype)
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8204 8205


W
whs 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8223

W
whs 已提交
8224
              out_shape = [2, 3, 5, 5]
8225

W
whs 已提交
8226
          Step 1:
8227

W
whs 已提交
8228 8229 8230
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8231

W
whs 已提交
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8277
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8278
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8291

S
SunGaofeng 已提交
8292
            import paddle.fluid as fluid
W
whs 已提交
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8304
            isinstance(out_shape, Variable)):
W
whs 已提交
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8326 8327
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8328

8329 8330
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8331
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8332 8333 8334
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8335

8336 8337
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8338

H
haowang101779990 已提交
8339 8340
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8341 8342
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8343

H
haowang101779990 已提交
8344 8345 8346 8347 8348 8349 8350 8351
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8352 8353 8354

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8389
    out = helper.create_variable_for_type_inference("float32")
8390 8391 8392 8393 8394 8395 8396 8397

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8398 8399


M
minqiyang 已提交
8400 8401
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8402
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8403
    which compares left score and right score passed in.
M
minqiyang 已提交
8404
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8405 8406 8407

    .. math::

H
haowang101779990 已提交
8408
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8409 8410

    Args:
M
minqiyang 已提交
8411
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8412 8413
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8414
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8415 8416
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8417

M
minqiyang 已提交
8418
    Returns:
M
minqiyang 已提交
8419
       Variable: The ranking loss.
H
haowang101779990 已提交
8420

M
minqiyang 已提交
8421
    Raises:
M
minqiyang 已提交
8422
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8423

M
minqiyang 已提交
8424
    Examples:
H
haowang101779990 已提交
8425

M
minqiyang 已提交
8426
        .. code-block:: python
H
haowang101779990 已提交
8427

Y
Yibing Liu 已提交
8428 8429 8430
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8431 8432
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8433
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8434 8435 8436 8437 8438 8439
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8440 8441
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8465
        .. code-block:: text
W
whs 已提交
8466

T
Tink_Y 已提交
8467
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8468

T
Tink_Y 已提交
8469 8470
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8471

T
Tink_Y 已提交
8472
	      Case 0:
M
minqiyang 已提交
8473

T
Tink_Y 已提交
8474 8475 8476
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8477

T
Tink_Y 已提交
8478 8479 8480
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8481

T
Tink_Y 已提交
8482
	      Case 1:
M
minqiyang 已提交
8483

T
Tink_Y 已提交
8484 8485
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8486

T
Tink_Y 已提交
8487 8488 8489
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8490

T
Tink_Y 已提交
8491
	      Case 2:
M
minqiyang 已提交
8492

T
Tink_Y 已提交
8493 8494
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8495

T
Tink_Y 已提交
8496 8497 8498
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8499 8500


W
whs 已提交
8501 8502
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8503
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8527
    out = helper.create_variable_for_type_inference(dtype)
8528 8529 8530 8531 8532 8533 8534 8535 8536
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8537
    helper.append_op(
8538
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8539 8540 8541 8542

    return out


8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8555 8556 8557 8558 8559

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8560 8561
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8562 8563
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8564
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8585 8586 8587 8588 8589

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8590 8591
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8592 8593
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8594
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8615 8616 8617 8618 8619

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8620 8621
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8622 8623
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8624
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8646 8647 8648 8649 8650

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8651
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8652
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8653 8654
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8655
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8678 8679 8680 8681 8682

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8683 8684
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8685 8686
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8687
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8709 8710 8711 8712 8713

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8714 8715
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8716 8717
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8718
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8719 8720 8721 8722 8723 8724 8725 8726
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8727 8728 8729 8730
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8731 8732
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8733 8734 8735

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8736
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8737
          weight (alpha).
J
jerrywgz 已提交
8738
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8739 8740 8741
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8742
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8743
          will be named automatically.
J
jerrywgz 已提交
8744 8745 8746 8747 8748 8749 8750 8751

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8752
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8766
        attr=helper.param_attr,
J
jerrywgz 已提交
8767 8768 8769 8770
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8771
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8772 8773 8774 8775 8776 8777 8778 8779 8780
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8781 8782 8783 8784 8785 8786 8787 8788 8789 8790
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8791
    Returns:
8792
        output(${out_type}): ${out_comment}
8793 8794 8795

    Examples:

8796
    .. code-block:: python
8797

H
haowang101779990 已提交
8798 8799
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8800 8801
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8802
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8821
    Returns:
8822
        output(${out_type}): ${out_comment}
8823 8824 8825 8826 8827

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8828 8829
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8830 8831
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8832
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8850
    Returns:
8851
        output(${out_type}): ${out_comment}
8852 8853 8854 8855 8856

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8857 8858
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8859 8860
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8861
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8862 8863 8864 8865 8866 8867 8868 8869
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8870 8871 8872 8873
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8874

H
haowang101779990 已提交
8875
    For Example:
M
minqiyang 已提交
8876

H
haowang101779990 已提交
8877
    .. code-block:: text
8878

H
haowang101779990 已提交
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8900 8901 8902

    Args:
        x (Variable): A tensor of rank >= axis.
8903 8904
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8905 8906 8907 8908 8909 8910 8911 8912
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8913 8914 8915
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8916 8917 8918 8919
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8920
        ValueError: If axis is not in range [0, rank(x)].
8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8937 8938
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8939
    helper.append_op(
8940
        type='flatten2',
8941
        inputs={"X": x},
8942 8943
        outputs={'Out': out,
                 'XShape': x_shape},
8944 8945
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8946 8947


C
chenweihang 已提交
8948
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8949
    """
C
chenweihang 已提交
8950
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8951
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8952 8953
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8954

H
haowang101779990 已提交
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8972 8973

    Args:
C
chenweihang 已提交
8974 8975 8976
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8987
    assert not in_dygraph_mode(), (
8988
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8989
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8990 8991
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8992 8993 8994 8995 8996 8997
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8998
    return out
8999

9000

S
sneaxiy 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9010

S
sneaxiy 已提交
9011
    .. math::
9012

S
sneaxiy 已提交
9013 9014 9015
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9016
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9017 9018 9019 9020
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9021 9022 9023
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9024 9025
    Returns:
        Variable: The output sequence mask.
9026

S
sneaxiy 已提交
9027
    """
L
lujun 已提交
9028
    assert not in_dygraph_mode(), (
9029
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9030

Q
qingqing01 已提交
9031
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9032
    if name is None:
X
Xin Pan 已提交
9033
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9034
    else:
X
Xin Pan 已提交
9035
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9036

Q
qingqing01 已提交
9037 9038 9039
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9040 9041
        outputs={'Y': out},
        attrs={
9042
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9043 9044 9045
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9046 9047


X
Xin Pan 已提交
9048
def stack(x, axis=0):
S
sneaxiy 已提交
9049 9050 9051 9052
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9053 9054 9055 9056 9057 9058 9059

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9060
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9061
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9062

C
chengduozh 已提交
9063 9064
    For Example:

C
chengduozh 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9103
    Args:
9104
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9105
        axis (int|None): The axis along which all inputs are stacked.
9106

S
sneaxiy 已提交
9107 9108
    Returns:
        Variable: The stacked variable.
9109

9110 9111 9112 9113 9114 9115 9116 9117
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9118 9119
    """

X
Xin Pan 已提交
9120 9121 9122 9123 9124 9125
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9126
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9127
    helper.append_op(
S
sneaxiy 已提交
9128 9129
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9130

X
Xin Pan 已提交
9131
    return out
D
dzhwinter 已提交
9132 9133 9134 9135 9136 9137 9138


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9139

D
dzhwinter 已提交
9140 9141 9142
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9143
    raised.
D
dzhwinter 已提交
9144 9145

    Args:
M
minqiyang 已提交
9146
        x (Variable): Input variable.
D
dzhwinter 已提交
9147 9148
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9149

D
dzhwinter 已提交
9150 9151
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9152

D
dzhwinter 已提交
9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9163
    for _ in range(num):
X
Xin Pan 已提交
9164
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9165 9166 9167 9168 9169 9170 9171 9172

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9185

W
whs 已提交
9186 9187 9188 9189
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9190

W
whs 已提交
9191
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9192

W
whs 已提交
9193
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9194

W
whs 已提交
9195 9196 9197 9198
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9199

W
whs 已提交
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9216
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9217 9218 9219 9220 9221 9222
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9223 9224


G
fix  
gongweibao 已提交
9225 9226 9227
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9228
@templatedoc()
G
fix  
gongweibao 已提交
9229 9230 9231 9232 9233 9234 9235 9236 9237
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9238
    ${comment}
G
fix  
gongweibao 已提交
9239 9240

    Args:
G
gongweibao 已提交
9241 9242 9243
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9244
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9245 9246 9247
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9248 9249
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9250
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9251

9252 9253 9254 9255 9256
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9257 9258 9259
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9260
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9277 9278


G
gongweibao 已提交
9279
@templatedoc()
X
Xin Pan 已提交
9280
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9281
    """
G
gongweibao 已提交
9282
    ${comment}
G
fix  
gongweibao 已提交
9283 9284

    Args:
G
gongweibao 已提交
9285 9286 9287 9288
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9289 9290 9291
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9292
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9293

9294 9295 9296
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9297
            import paddle.fluid.layers as layers
9298
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9299 9300 9301
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9302
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9303 9304 9305 9306 9307 9308 9309 9310 9311 9312
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9313
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9314 9315 9316 9317 9318
        })

    return out


G
gongweibao 已提交
9319
@templatedoc()
G
fix  
gongweibao 已提交
9320
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9321
    """
G
gongweibao 已提交
9322
    ${comment}
G
fix  
gongweibao 已提交
9323 9324

    Args:
G
gongweibao 已提交
9325 9326 9327 9328
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9329
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9330 9331

    Returns:
G
gongweibao 已提交
9332
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9333

9334 9335 9336
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9337
            x = fluid.layers.data(
9338 9339 9340 9341 9342
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9343
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9344 9345 9346
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9347
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9359
@templatedoc()
G
fix  
gongweibao 已提交
9360 9361 9362 9363 9364 9365 9366 9367 9368
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9369
    ${comment}
G
fix  
gongweibao 已提交
9370 9371

    Args:
G
gongweibao 已提交
9372 9373
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9374
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9375 9376 9377 9378
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9380 9381

    Returns:
G
gongweibao 已提交
9382
        out (Variable): ${out_comment}
9383 9384 9385 9386

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9387
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9388

Y
Yibing Liu 已提交
9389
            out = fluid.layers.gaussian_random_batch_size_like(
9390
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9391 9392 9393
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9394
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9413
@templatedoc()
X
Xin Pan 已提交
9414
def sum(x):
G
fix  
gongweibao 已提交
9415
    """
G
gongweibao 已提交
9416
    ${comment}
G
fix  
gongweibao 已提交
9417 9418

    Args:
G
gongweibao 已提交
9419
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9420 9421

    Returns:
G
gongweibao 已提交
9422
        out (Variable): ${out_comment}
9423 9424 9425 9426 9427 9428

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9429 9430 9431
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9432 9433
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9434 9435 9436 9437
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9438
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9439 9440 9441 9442

    return out


G
gongweibao 已提交
9443
@templatedoc()
G
fix  
gongweibao 已提交
9444 9445
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9446
    ${comment}
G
fix  
gongweibao 已提交
9447 9448

    Args:
G
gongweibao 已提交
9449 9450 9451 9452
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9453 9454

    Returns:
G
gongweibao 已提交
9455
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9456

9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9468 9469 9470
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9471 9472
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9486 9487
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9488
    Get the shape of the input.
G
fix  
gongweibao 已提交
9489 9490

    Args:
C
chengduozh 已提交
9491
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9492 9493

    Returns:
C
fix doc  
chengduozh 已提交
9494
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9495

9496 9497 9498 9499 9500 9501
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9502 9503 9504
    """

    helper = LayerHelper('shape', **locals())
9505
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9506
    helper.append_op(
G
fix  
gongweibao 已提交
9507
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9508 9509

    return out
G
merge  
gongweibao 已提交
9510 9511


Z
zhoukunsheng 已提交
9512 9513 9514 9515
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9516
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9538 9539 9540 9541
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9542
    if in_dygraph_mode():
X
Xin Pan 已提交
9543 9544 9545
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9546 9547 9548 9549
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9550 9551
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9553 9554 9555
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9556

S
sneaxiy 已提交
9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9568
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9569 9570 9571 9572 9573 9574 9575 9576
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9577
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9578
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9579 9580 9581 9582 9583 9584

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9585
    if name is None:
X
Xin Pan 已提交
9586
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9587 9588 9589
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9600
    return helper.append_activation(out)
S
sneaxiy 已提交
9601 9602


X
Xin Pan 已提交
9603
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9604 9605 9606
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9607
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9608 9609 9610
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9611
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9612 9613 9614
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9615
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9616 9617 9618
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9619
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9620 9621 9622
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9623
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9624 9625 9626
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9627
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9628 9629 9630
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9631 9632 9633 9634 9635 9636 9637 9638
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9639
for func in [
9640 9641 9642 9643 9644 9645 9646 9647 9648
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9649 9650 9651 9652 9653
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9654 9655
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9656
        ])
M
minqiyang 已提交
9657 9658


9659
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9660 9661
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9662 9663
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9664 9665 9666

    if out is None:
        if name is None:
X
Xin Pan 已提交
9667
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9683
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9695 9696 9697 9698 9699 9700 9701 9702 9703

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9704 9705 9706 9707 9708 9709 9710
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9711
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9723 9724 9725 9726 9727 9728 9729 9730 9731

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9732 9733 9734 9735 9736 9737 9738
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9739
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9751 9752 9753 9754 9755 9756 9757 9758 9759

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9760 9761 9762 9763 9764 9765 9766
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9767
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9768 9769 9770 9771 9772 9773 9774 9775 9776 9777
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9778 9779 9780 9781 9782 9783 9784

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9785 9786 9787 9788
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9804 9805 9806 9807

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9808
            import paddle.fluid as fluid
9809 9810 9811
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9812 9813 9814 9815 9816
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9817 9818 9819 9820
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9844 9845 9846 9847 9848 9849 9850

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9851 9852 9853 9854 9855
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9856 9857 9858 9859
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9860 9861 9862 9863 9864 9865 9866 9867

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9886
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
9946 9947 9948 9949 9950
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9951
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9961 9962
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9963 9964 9965 9966 9967 9968
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9969 9970 9971
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9972 9973
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9974 9975 9976 9977 9978 9979
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9980
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9981
        name(basestring|None): Name of the output.
9982 9983
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9984 9985 9986

    Returns:
        out(${out_type}): ${out_comment}
9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10001 10002 10003 10004 10005
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10006
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10007 10008 10009 10010 10011 10012 10013 10014
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10015 10016
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10033 10034 10035 10036 10037 10038 10039 10040 10041

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10042 10043 10044 10045
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10046
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10047 10048 10049 10050 10051 10052 10053 10054 10055 10056
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10057 10058


J
JiabinYang 已提交
10059
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10060
    """
J
JiabinYang 已提交
10061
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10062 10063 10064

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10065
    The attr blocksize indicates the input block size.
10066 10067

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10068
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10069 10070

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10071
    (but keeping all data)
J
JiabinYang 已提交
10072

J
JiabinYang 已提交
10073
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10074
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10075 10076 10077 10078 10079
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10080
    Args:
J
JiabinYang 已提交
10081
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10082
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10083 10084

    Returns:
J
JiabinYang 已提交
10085
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10086 10087

    Raises:
J
JiabinYang 已提交
10088
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10089 10090 10091 10092 10093

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
10094
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10095
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10096
                x=data, blocksize=2)
10097 10098 10099 10100 10101 10102

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
10103 10104
    """

J
JiabinYang 已提交
10105
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10106

J
JiabinYang 已提交
10107 10108
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10109 10110

    if name is None:
J
JiabinYang 已提交
10111 10112
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10113 10114 10115 10116 10117
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10118
        type="space_to_depth",
J
JiabinYang 已提交
10119
        inputs={"X": x},
J
JiabinYang 已提交
10120
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10121
        outputs={"Out": out})
J
JiabinYang 已提交
10122 10123
    return out

J
JiabinYang 已提交
10124

S
sneaxiy 已提交
10125 10126
@templatedoc()
def sequence_reverse(x, name=None):
10127
    """
S
sneaxiy 已提交
10128 10129 10130 10131 10132 10133 10134 10135 10136
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10137
    assert not in_dygraph_mode(), (
10138
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10139 10140
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10141
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10142 10143 10144 10145 10146 10147 10148 10149 10150 10151
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10152 10153


10154 10155 10156 10157 10158 10159
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10160 10161 10162 10163 10164
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10165

10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10178
        act (str, default None): Activation to be applied to the output of this layer.
10179 10180 10181 10182 10183 10184 10185

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10186
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10198
    return helper.append_activation(out)
10199 10200


B
barrierye 已提交
10201
def similarity_focus(input, axis, indexes, name=None):
10202
    """
B
barrierye 已提交
10203
    SimilarityFocus Operator
B
barrierye 已提交
10204 10205

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10206

10207 10208 10209
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10210
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10211 10212 10213 10214 10215 10216 10217
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10218
       each index.
B
barrierye 已提交
10219 10220 10221 10222
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10272
    Args:
10273
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10274
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10275
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10276
            1, 2 or 3.
B
barrierye 已提交
10277
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10278 10279

    Returns:
H
haowang101779990 已提交
10280 10281
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10282

B
barrierye 已提交
10283 10284
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10285

B
barrierye 已提交
10286
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10287 10288
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10301 10302 10303 10304 10305
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10306 10307 10308 10309 10310 10311 10312
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10313 10314


M
minqiyang 已提交
10315 10316
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10317 10318
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10319 10320
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10359
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10360
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10361 10362 10363 10364 10365 10366

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10367

10368
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10369
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10370 10371
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10372 10373
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10374 10375 10376 10377 10378 10379 10380
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10381 10382


D
dengkaipeng 已提交
10383
@templatedoc()
10384 10385
def grid_sampler(x, grid, name=None):
    """
10386
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10387
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10388 10389 10390 10391
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10392
    interpolation value of 4 nearest corner points.
10393

H
haowang101779990 已提交
10394
    .. code-block:: text
10395

H
haowang101779990 已提交
10396 10397
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10398

H
haowang101779990 已提交
10399 10400
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10401

H
haowang101779990 已提交
10402 10403 10404
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10405

H
haowang101779990 已提交
10406 10407 10408 10409 10410 10411 10412 10413 10414
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10415

H
haowang101779990 已提交
10416 10417 10418 10419
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10420

H
haowang101779990 已提交
10421 10422 10423 10424
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10425

H
haowang101779990 已提交
10426 10427 10428 10429
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10430

H
haowang101779990 已提交
10431 10432
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10433 10434

    Args:
10435 10436 10437
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10438 10439

    Returns:
H
haowang101779990 已提交
10440
        Variable: Output of shape [N, C, H, W] data samples input X
10441 10442
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10443 10444 10445 10446
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10447 10448 10449 10450 10451
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10452
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10453

D
dengkaipeng 已提交
10454 10455 10456 10457 10458 10459 10460 10461 10462
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10463
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10464 10465
    ipts = {'X': x, 'Grid': grid}

10466
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10467 10468 10469
    return out


G
gmcather 已提交
10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10497 10498
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10537
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10538 10539 10540 10541 10542 10543 10544
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10545 10546
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10547

10548 10549 10550 10551 10552
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10553
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10554

H
heqiaozhi 已提交
10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10568 10569 10570 10571
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10572
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10573 10574
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10575
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10576 10577

    .. math::
H
haowang101779990 已提交
10578 10579 10580
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10581 10582

    Where:
H
haowang101779990 已提交
10583 10584
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10598 10599 10600 10601 10602 10603 10604 10605 10606
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10607

G
gmcather 已提交
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10624 10625 10626 10627 10628 10629 10630 10631 10632 10633


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10634
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10635

Q
Qiao Longfei 已提交
10636
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10637 10638 10639
    For example:

    .. math::
H
haowang101779990 已提交
10640
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10641

Q
Qiao Longfei 已提交
10642
    In this formula:
10643 10644
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10645
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10646
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10647 10648 10649
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10650 10651
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10652 10653 10654
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10655
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10656
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10657
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10658 10659 10660 10661
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10662
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10663 10664 10665 10666

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10667 10668 10669
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10670 10671
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10672
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10673 10674 10675 10676

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10677
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10718 10719


S
shippingwang 已提交
10720
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10721 10722
    """
    **Shuffle Channel Operator**
10723

S
shippingwang 已提交
10724 10725 10726 10727 10728 10729
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10730
    
S
shippingwang 已提交
10731
    .. code-block:: text
10732

S
shippingwang 已提交
10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10761
    Args: 
S
shippingwang 已提交
10762 10763
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10764 10765

    Returns:
S
shippingwang 已提交
10766 10767
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10768 10769

    Raises:
S
shippingwang 已提交
10770
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10771 10772 10773

    Examples:
        .. code-block:: python
10774 10775

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10776
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10777 10778 10779
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10780
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10781 10782 10783 10784 10785 10786 10787 10788 10789

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10790
    return out
S
Add  
shippingwang 已提交
10791 10792


10793
@templatedoc()
D
dengkaipeng 已提交
10794
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10795 10796 10797 10798 10799 10800 10801 10802
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10803
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10804
        name (str, default None): The name of this layer.
10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10817
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10830 10831
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10832 10833 10834
    return out


S
sneaxiy 已提交
10835
class PyFuncRegistry(object):
S
sneaxiy 已提交
10836 10837 10838
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10839
        if func is None or not callable(func):
S
sneaxiy 已提交
10840 10841 10842
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10843
        # find named args using reflection
S
sneaxiy 已提交
10844 10845 10846 10847 10848 10849 10850
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10851 10852 10853
        '''
        Why record self here?

M
minqiyang 已提交
10854 10855
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10856
           to find the registered function corresponding
M
minqiyang 已提交
10857
           to :code:`idx`.
S
sneaxiy 已提交
10858

M
minqiyang 已提交
10859 10860
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10861
           whose reference count is 1 would cause
M
minqiyang 已提交
10862
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10863 10864
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10865
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10880 10881 10882 10883 10884 10885 10886 10887 10888
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10889

S
sneaxiy 已提交
10890 10891
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10892 10893

        ret = []
S
sneaxiy 已提交
10894 10895 10896
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10897 10898
                continue

S
sneaxiy 已提交
10899 10900
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10901

S
sneaxiy 已提交
10902 10903 10904
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10905

S
sneaxiy 已提交
10906
        return tuple(ret)
S
sneaxiy 已提交
10907 10908


S
sneaxiy 已提交
10909 10910 10911 10912
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10913

S
sneaxiy 已提交
10914 10915 10916 10917 10918 10919 10920 10921
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10922
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10923

S
sneaxiy 已提交
10924 10925
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10926 10927 10928 10929
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10930
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10931
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10932 10933
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10934 10935 10936 10937 10938
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10939
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10940
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10941
                                       None means no backward. Default None.
S
sneaxiy 已提交
10942
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10943
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10944 10945
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10946
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10947 10948 10949

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10950 10951

    Examples:
M
minqiyang 已提交
10952

S
sneaxiy 已提交
10953 10954 10955 10956 10957
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10958
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10959 10960
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10961
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10962 10963 10964
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10965
        >>>
S
sneaxiy 已提交
10966 10967 10968 10969 10970
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10971
        >>>     print(x)
S
sneaxiy 已提交
10972 10973 10974 10975 10976 10977
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10978
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10979 10980
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10981 10982
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10983 10984 10985 10986 10987 10988 10989 10990
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10991
    """
S
sneaxiy 已提交
10992
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10993 10994 10995
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10996
        x = [x]
S
sneaxiy 已提交
10997 10998
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10999

S
sneaxiy 已提交
11000 11001 11002
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11003
        out_list = [out]
S
sneaxiy 已提交
11004
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11005
        out_list = out
S
sneaxiy 已提交
11006 11007 11008
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11009

S
sneaxiy 已提交
11010 11011
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11012
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11013 11014

    for each_out in out_list:
S
sneaxiy 已提交
11015 11016
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11017 11018
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11019

S
sneaxiy 已提交
11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11035 11036 11037 11038

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11039 11040
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11041 11042 11043
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11044
        })
S
sneaxiy 已提交
11045
    return out
S
sneaxiy 已提交
11046 11047 11048


# For debug usage
S
sneaxiy 已提交
11049 11050 11051 11052
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11066 11067 11068 11069 11070
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11083 11084 11085 11086
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11112

M
minqiyang 已提交
11113

M
minqiyang 已提交
11114
def huber_loss(input, label, delta):
11115
    """
M
minqiyang 已提交
11116 11117 11118
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11119 11120 11121 11122

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11123
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11124 11125 11126 11127

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11128
        huber\_loss = 0.5 * (label - input) * (label - input)
11129 11130 11131 11132 11133 11134 11135


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11136
        delta (float): The parameter of huber loss, which controls
11137 11138 11139
                       the range of outliers

    Returns:
M
minqiyang 已提交
11140
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11141 11142 11143 11144

    Examples:
        .. code-block:: python

11145 11146 11147 11148 11149 11150 11151 11152 11153
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11154
    """
M
minqiyang 已提交
11155
    helper = LayerHelper('huber_loss', **locals())
11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11167 11168


D
dengkaipeng 已提交
11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11231 11232 11233
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11234
          # edges must be directional
T
Tao Luo 已提交
11235 11236 11237 11238
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11239
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11240 11241
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11242
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11243
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11267 11268


C
ceci3 已提交
11269
from .ops import square
C
ceci3 已提交
11270
from .control_flow import equal
C
ceci3 已提交
11271 11272


C
ceci3 已提交
11273 11274 11275
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11276

C
ceci3 已提交
11277
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11278 11279

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11280
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11281 11282 11283 11284 11285
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11286 11287
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11288 11289 11290 11291 11292 11293 11294

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11295 11296 11297 11298 11299 11300 11301 11302
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11303 11304 11305 11306 11307 11308 11309
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11310
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11311 11312
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11313 11314
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11315 11316 11317 11318
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11319 11320 11321
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11322 11323 11324
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11325 11326


R
ruri 已提交
11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11356
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11357 11358 11359 11360 11361 11362 11363 11364 11365

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11366
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11427 11428 11429 11430


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11431

H
heqiaozhi 已提交
11432
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11433

H
fix doc  
heqiaozhi 已提交
11434
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11435 11436 11437
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11438
    
H
fix doc  
heqiaozhi 已提交
11439
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11440

H
heqiaozhi 已提交
11441
    Args:
H
fix doc  
heqiaozhi 已提交
11442 11443

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11444 11445
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11446
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11447
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11448

H
heqiaozhi 已提交
11449
    Returns:
H
fix doc  
heqiaozhi 已提交
11450 11451 11452

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11453
    Examples:
H
fix doc  
heqiaozhi 已提交
11454

H
heqiaozhi 已提交
11455
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11456

H
heqiaozhi 已提交
11457 11458 11459 11460 11461 11462 11463 11464 11465 11466
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11467

H
heqiaozhi 已提交
11468 11469 11470 11471 11472 11473 11474 11475 11476
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11477
    return out
Z
zhoukunsheng 已提交
11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out