nn.py 554.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
17 18
from __future__ import print_function

P
peizhilin 已提交
19
import os
S
sneaxiy 已提交
20
import inspect
21 22 23 24 25 26
import warnings

import numpy as np
import six

import paddle
Y
Yu Yang 已提交
27
from ..layer_helper import LayerHelper
28
from ..initializer import Normal, Constant, NumpyArrayInitializer
29
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
30
from .. import dygraph_utils
Y
yangyaming 已提交
31
from ..param_attr import ParamAttr
S
sneaxiy 已提交
32
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
33
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
34
from . import utils
F
fengjiayi 已提交
35
from .. import unique_name
36
from functools import reduce
37
from .. import core
38
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
39
import paddle
Y
Yu Yang 已提交
40 41

__all__ = [
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
53 54
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
55
    'batch_norm',
K
Kaipeng Deng 已提交
56
    'inplace_abn',
L
lvmengsi 已提交
57
    'instance_norm',
H
heqiaozhi 已提交
58
    'data_norm',
X
Xin Pan 已提交
59 60 61 62 63 64 65
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
66 67
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
79
    'group_norm',
D
dengkaipeng 已提交
80
    'spectral_norm',
X
Xin Pan 已提交
81 82 83 84 85 86 87
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
88
    'lod_append',
X
Xin Pan 已提交
89 90 91 92 93
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
94
    'roi_align',
X
Xin Pan 已提交
95 96 97 98
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
99
    'resize_trilinear',
100
    'resize_nearest',
X
Xin Pan 已提交
101
    'gather',
102
    'gather_nd',
X
Xin Pan 已提交
103
    'scatter',
104 105
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
106 107 108
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
109
    'selu',
X
Xin Pan 已提交
110 111
    'log',
    'crop',
112
    'crop_tensor',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
127
    'unique',
128
    'unique_with_counts',
X
Xin Pan 已提交
129
    'expand',
130
    'expand_as',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
139 140
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
141 142 143 144 145 146
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
147
    'strided_slice',
X
Xin Pan 已提交
148
    'shape',
Z
zhoukunsheng 已提交
149
    'rank',
Z
zhoukunsheng 已提交
150
    'size',
X
Xin Pan 已提交
151 152 153 154 155 156 157 158 159
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
160
    'space_to_depth',
W
whs 已提交
161
    'affine_grid',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166 167
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
168
    'bilinear_tensor_product',
C
chengduo 已提交
169 170
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
171
    'shuffle_channel',
172
    'temporal_shift',
S
sneaxiy 已提交
173
    'py_func',
174
    'psroi_pool',
175
    'prroi_pool',
R
ruri 已提交
176
    'pixel_shuffle',
177
    'fsp_matrix',
H
heqiaozhi 已提交
178
    'continuous_value_model',
Z
zhoukunsheng 已提交
179
    'where',
Z
zhoukunsheng 已提交
180
    'sign',
181
    'deformable_conv',
182
    'unfold',
C
cjt222 已提交
183
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
184
    'filter_by_instag',
185
    'shard_index',
H
huangjun12 已提交
186
    'hard_swish',
G
Guo Sheng 已提交
187
    'gather_tree',
188
    'uniform_random',
Y
Yu Yang 已提交
189 190 191
]


192 193 194 195 196 197 198 199
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
200
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
201

202 203
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
204 205


Y
Yu Yang 已提交
206 207 208 209 210 211
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
212
       name=None):
Y
Yu Yang 已提交
213
    """
214
    **Fully Connected Layer**
Y
Yu Yang 已提交
215

216 217 218
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
219
    which represents a fully connected weight matrix from each input unit to
220 221 222 223
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
224
    is not None, a bias variable will be created and added to the output.
225
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
226

227
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
228

229 230 231 232
    .. math::

        Out = Act({XW + b})

233
    When the input is a list of Tensor(or LoDTensor):
234 235 236

    .. math::

237
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
238 239 240

    In the above equation:

241 242 243
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
244
    * :math:`b`: The bias parameter created by this layer (if needed).
245
    * :math:`Act`: The activation function.
246
    * :math:`Out`: The output Tensor.
247 248 249

    .. code-block:: text

250 251 252 253 254 255 256 257 258 259 260 261 262 263
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
264 265 266 267 268 269 270 271 272 273 274 275 276
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
277
    Args:
278 279 280
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
281
        size(int): The number of output units in this layer, which also means the feature size of output
282 283
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
284
            two dimensions. If this happens, the multidimensional tensor will first be flattened
285 286
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
287
            dimensions will be flatten to form the first dimension of the final matrix (height of
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
303 304

    Raises:
305
        ValueError: If dimensions of the input Tensor is less than 2.
306 307 308 309

    Examples:
        .. code-block:: python

310
          import paddle.fluid as fluid
311
          # when input is single tensor
312
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
313
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
314 315

          # when input are multiple tensors
316 317
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
318
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
319
    """
C
caoying03 已提交
320
    helper = LayerHelper("fc", **locals())
321
    check_type(input, 'input', (list, tuple, Variable), 'fc')
322 323
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
324
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
325
    dtype = helper.input_dtype()
326
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
327
    mul_results = []
328 329
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
330 331
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
332 333 334
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
335

Y
Yu Yang 已提交
336
        w = helper.create_parameter(
337
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
        tmp = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
343
            outputs={"Out": tmp},
M
mozga-intel 已提交
344 345
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
346 347 348 349
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
350
    else:
X
Xin Pan 已提交
351
        pre_bias = helper.create_variable_for_type_inference(dtype)
352
        helper.append_op(
353 354 355
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
356
            attrs={"use_mkldnn": False})
357 358 359 360
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
361 362


363 364 365
def embedding(input,
              size,
              is_sparse=False,
366
              is_distributed=False,
367 368 369
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
370
    """
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
424 425

    Args:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
449
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
450 451 452
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
453

454
    Returns:
455
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
456

457 458
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
459

B
bdzhuxiaoning 已提交
460
          import paddle.fluid as fluid
461 462 463
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
464
          # example 1
465 466 467 468 469 470 471 472 473 474
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
475 476 477
    """

    helper = LayerHelper('embedding', **locals())
478 479
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
480 481
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
482
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
483 484
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
485 486
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
487
    tmp = helper.create_variable_for_type_inference(dtype)
488 489
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
490 491 492 493 494
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
495 496 497
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
498
            'remote_prefetch': remote_prefetch,
499 500
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
501 502 503
    return tmp


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
def _pull_sparse(input,
                 size,
                 table_id,
                 accessor_class,
                 name="embedding",
                 ctr_label_name="",
                 padding_id=0,
                 dtype='float32',
                 scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


def _pull_sparse_v2(input,
                    size,
                    table_id,
                    accessor_class,
                    name="embedding",
                    ctr_label_name="",
                    padding_id=0,
                    dtype='float32',
                    scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


H
hutuxian 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
694
@templatedoc()
695
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
696 697 698 699 700 701
    """
    Linear Chain CRF.

    ${comment}

    Args:
702
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
703
        label(${label_type}): ${label_comment}
704
        Length(${length_type}): ${length_comment}
705
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
706 707

    Returns:
D
dzhwinter 已提交
708 709
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
710
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
711

J
JesseyXujin 已提交
712 713 714
    Examples:
        .. code-block:: python

715 716 717 718 719 720 721
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
722 723
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
746 747 748
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
749 750 751 752 753 754
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
755
                     name='crfw',
756 757 758 759 760 761
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
762

763 764 765
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
766
            ll=np.array([[3],[3],[4],[2]])
767 768 769
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
770 771 772 773 774
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

775 776 777
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
778
            
Y
yuyang18 已提交
779
    """
Y
Yu Yang 已提交
780
    helper = LayerHelper('linear_chain_crf', **locals())
781
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
782 783 784 785
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
786 787 788 789 790 791 792 793
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
794 795 796 797 798 799
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
800
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
801 802
    helper.append_op(
        type='linear_chain_crf',
803
        inputs=this_inputs,
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
814
@templatedoc()
815
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
816 817
    """
    ${comment}
Y
yi.wu 已提交
818

W
wopeizl 已提交
819 820
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
821

Y
Yibing Liu 已提交
822 823 824
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
825

Y
Yibing Liu 已提交
826
        label(${label_type}, optional): ${label_comment}
827
        
Y
Yibing Liu 已提交
828
        length(${length_type}, optional): ${length_comment}
829

W
wopeizl 已提交
830 831
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
832

W
wopeizl 已提交
833 834
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
835

836
           import paddle.fluid as fluid
837 838 839

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
840 841
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
842 843 844
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
845
                     param_attr=fluid.ParamAttr(name="crfw"))
846
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
847
                     param_attr=fluid.ParamAttr(name="crfw"))
848 849 850

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
851 852 853
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
854 855 856 857 858 859 860
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
861 862 863 864 865
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
866 867 868
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
869 870
    helper.append_op(
        type='crf_decoding',
871
        inputs=inputs,
W
wopeizl 已提交
872
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
873

W
wopeizl 已提交
874
    return viterbi_path
Y
Yu Yang 已提交
875 876


Y
yi.wu 已提交
877
@templatedoc()
F
fengjiayi 已提交
878
def cos_sim(X, Y):
Y
Yu Yang 已提交
879
    """
Y
yi.wu 已提交
880 881 882
    ${comment}

    Args:
883 884
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
885

Y
yi.wu 已提交
886
    Returns:
L
lvmengsi 已提交
887
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
888 889 890 891

    Examples:
        .. code-block:: python

892
            import paddle.fluid as fluid
L
lvmengsi 已提交
893 894
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
895
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
896
    """
F
fengjiayi 已提交
897
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
898 899 900
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
901 902 903 904 905 906 907 908 909 910
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
911 912 913 914 915
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
916
            dropout_implementation="downgrade_in_infer"):
917 918 919 920 921
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
922
    training. The dropout operator randomly sets (according to the given dropout
923 924 925
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
926 927
    dropout op can be removed from the program to make the program more efficient.

928
    Args:
L
lvmengsi 已提交
929
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
930
        dropout_prob (float): Probability of setting units to zero.
931 932 933 934
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
935
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
936 937
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
938 939
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
940
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
941 942

                                           - train: out = input * mask
C
ceci3 已提交
943
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
944 945 946

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
947
                                        2. upscale_in_train, upscale the outcome at training time
948

H
haowang101779990 已提交
949 950
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
951

H
haowang101779990 已提交
952 953
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
954

M
minqiyang 已提交
955

956
    Returns:
L
lvmengsi 已提交
957
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
958 959

    Examples:
960

961 962
        .. code-block:: python

963
            import paddle.fluid as fluid
L
lvmengsi 已提交
964
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
965
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
966 967
    """

968 969 970 971 972 973 974 975 976 977 978 979 980
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
981 982 983 984 985 986 987 988 989 990
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
991

F
fengjiayi 已提交
992
    helper = LayerHelper('dropout', **locals())
993 994
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
995

X
Xin Pan 已提交
996 997
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
998
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
999

1000
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1001

1002 1003 1004 1005 1006
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1007
        attrs=attrs)
1008 1009 1010
    return out


Y
yi.wu 已提交
1011
@templatedoc()
Y
Yu Yang 已提交
1012 1013 1014 1015
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1016 1017
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1018
    """
G
Guo Sheng 已提交
1019 1020
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
1021

M
minqiyang 已提交
1022
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1023
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1024

G
Guo Sheng 已提交
1025 1026
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
1027 1028

    .. code-block:: python
1029

Y
yi.wu 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
1040
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
1041

G
Guo Sheng 已提交
1042 1043 1044
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1055

Y
yi.wu 已提交
1056 1057 1058 1059 1060 1061
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
1062 1063
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
1075 1076
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
1077

Y
yi.wu 已提交
1078
    Args:
G
Guo Sheng 已提交
1079 1080 1081 1082 1083 1084
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
1085
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
1095

Y
yi.wu 已提交
1096
    Returns:
G
Guo Sheng 已提交
1097 1098 1099 1100
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
1101

Y
yi.wu 已提交
1102 1103 1104
    Examples:
        .. code-block:: python

1105 1106 1107 1108
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
1109 1110 1111
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
1112 1113 1114 1115
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1116
            crf = fluid.layers.linear_chain_crf(
1117
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1118
            crf_decode = fluid.layers.crf_decoding(
1119
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1120 1121 1122 1123 1124
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1125
    """
F
fengjiayi 已提交
1126
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1127 1128

    # prepare output
X
Xin Pan 已提交
1129 1130 1131 1132 1133 1134 1135
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1136

1137 1138 1139 1140 1141
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1142 1143
    helper.append_op(
        type="chunk_eval",
1144
        inputs=this_input,
Y
Yu Yang 已提交
1145 1146 1147
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1148 1149 1150 1151
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1152 1153 1154
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1155 1156
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1157
        })
1158 1159
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1160 1161


1162
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1163
    """
1164
    This operator implements the softmax layer. The calculation process is as follows:
1165

1166
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1167
    
1168 1169 1170 1171 1172 1173 1174
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1175

1176 1177
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1178

1179 1180 1181 1182 1183
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1184

1185
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1186

1187
    .. math::
1188

1189
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1190

1191
    Example:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1238
    Args:
1239 1240
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1241
            library is installed. To improve numerical stability, set use_cudnn to \
1242 1243
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1244
            will be named automatically. Default: None.
1245
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1246
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1247
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1248 1249

    Returns:
1250
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1251 1252 1253 1254 1255

    Examples:

        .. code-block:: python

1256 1257
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1268
    """
1269 1270

    if in_dygraph_mode():
1271 1272 1273 1274
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1275

1276
    helper = LayerHelper('softmax', **locals())
1277 1278
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1279

1280
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1281
    softmax_out = helper.create_variable_for_type_inference(dtype)
1282 1283 1284 1285
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1286
        attrs=attrs)
1287 1288 1289
    return softmax_out


Y
Yu Yang 已提交
1290 1291 1292
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1293 1294
           stride=1,
           padding=0,
1295
           dilation=1,
Y
Yu Yang 已提交
1296 1297 1298
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1299
           use_cudnn=True,
1300
           act=None,
L
liym27 已提交
1301 1302
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1303
    """
C
chengduoZH 已提交
1304
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1305
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1306
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1307
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1308 1309 1310 1311 1312 1313
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1314
    for more details.
1315 1316 1317
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1318

1319
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1320

C
chengduoZH 已提交
1321 1322
    .. math::

C
refine  
chengduoZH 已提交
1323
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1324

T
tensor-tang 已提交
1325
    Where:
C
chengduoZH 已提交
1326

L
liym27 已提交
1327
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1328 1329 1330 1331
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1332
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1333 1334 1335

    Example:

1336 1337
        - Input:

W
weixing02 已提交
1338
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1339

W
weixing02 已提交
1340
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1341

1342
        - Output:
T
tensor-tang 已提交
1343

W
weixing02 已提交
1344
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1345

C
chengduoZH 已提交
1346
        Where
1347 1348

        .. math::
C
chengduoZH 已提交
1349

W
weixing02 已提交
1350 1351
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1352 1353

    Args:
L
lvmengsi 已提交
1354 1355
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1356
        num_filters(int): The number of filter. It is as same as the output
1357
            image channel.
1358 1359
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1360 1361 1362 1363 1364 1365
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1366
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1367 1368
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1369 1370 1371
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1372 1373 1374
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1375 1376 1377 1378
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1379 1380 1381 1382
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1383 1384 1385 1386 1387
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1388
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1389 1390 1391 1392 1393
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1394 1395
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1396 1397
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1398 1399 1400
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1401 1402
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1403 1404
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1405 1406

    Returns:
L
lvmengsi 已提交
1407 1408 1409 1410
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1425 1426 1427
    Examples:
        .. code-block:: python

1428
          import paddle.fluid as fluid
L
lvmengsi 已提交
1429
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1430
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1431 1432
    """

1433 1434
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1435
    num_channels = input.shape[1]
L
liym27 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1451
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1452

1453
    l_type = 'conv2d'
X
xzl 已提交
1454 1455
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1456
        l_type = 'depthwise_conv2d'
1457 1458 1459 1460

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1461 1462 1463 1464
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1465
            raise ValueError(
1466 1467 1468
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1469
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1470

C
chengduoZH 已提交
1471 1472
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1473
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1474

L
liym27 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1498 1499 1500
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1515
            padding = [0, 0]
L
liym27 已提交
1516 1517
        elif padding == "SAME":
            padding_algorithm = "SAME"
1518
            padding = [0, 0]
L
liym27 已提交
1519 1520

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1521

M
minqiyang 已提交
1522
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1523 1524

    def _get_default_param_initializer():
C
chengduo 已提交
1525 1526
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1527 1528 1529 1530 1531 1532 1533 1534
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1535
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1536 1537

    helper.append_op(
1538
        type=l_type,
Y
Yu Yang 已提交
1539 1540 1541 1542 1543
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1544 1545 1546
        attrs={
            'strides': stride,
            'paddings': padding,
1547
            'dilations': dilation,
C
chengduoZH 已提交
1548
            'groups': groups,
1549
            'use_cudnn': use_cudnn,
1550
            'use_mkldnn': False,
L
liym27 已提交
1551 1552 1553
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1554
        })
Y
Yu Yang 已提交
1555

1556 1557 1558 1559
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1560 1561 1562 1563

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1575 1576
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1577 1578 1579
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1580
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1581 1582 1583 1584 1585
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1595
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1596
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1597 1598 1599
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1600
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1622 1623
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1624
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1625
            image channel.
1626 1627 1628 1629
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1630 1631 1632 1633
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1634
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1635 1636 1637 1638 1639 1640 1641 1642
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1643 1644 1645 1646
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1647 1648 1649 1650 1651
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1662 1663
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1664 1665
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1666 1667 1668
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1669 1670 1671 1672
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1673 1674

    Returns:
L
lvmengsi 已提交
1675 1676 1677 1678
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1693 1694 1695
    Examples:
        .. code-block:: python

1696
          import paddle.fluid as fluid
L
lvmengsi 已提交
1697
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1698
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1699 1700 1701
    """

    l_type = 'conv3d'
C
chengduo 已提交
1702
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1703 1704 1705
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1721 1722 1723 1724 1725

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1726 1727 1728 1729
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1730
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1731 1732 1733 1734 1735

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1758 1759
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1760 1761
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1762 1763
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1778
            padding = [0, 0, 0]
L
liym27 已提交
1779 1780
        elif padding == "SAME":
            padding_algorithm = "SAME"
1781
            padding = [0, 0, 0]
L
liym27 已提交
1782 1783

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1784 1785 1786 1787 1788

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1789 1790 1791
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1792 1793 1794 1795 1796 1797 1798 1799
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1800
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1815 1816 1817
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1818 1819
        })

1820 1821 1822 1823
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1824 1825 1826 1827

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1828
@templatedoc()
Y
Yu Yang 已提交
1829
def pool2d(input,
C
chengduoZH 已提交
1830 1831
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1832 1833
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1834
           global_pooling=False,
C
chengduoZH 已提交
1835
           use_cudnn=True,
1836
           ceil_mode=False,
1837
           name=None,
1838 1839
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1840
    """
F
fengjiayi 已提交
1841
    ${comment}
1842 1843

    Args:
K
Kaipeng Deng 已提交
1844 1845 1846 1847 1848
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1849
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1850 1851
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1852
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1853 1854 1855
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1856 1857 1858 1859 1860 1861 1862
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1863
            Otherwise, the pool padding size will be a square of an int.
1864 1865 1866
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1867 1868 1869
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1870
        exclusive (bool): Whether to exclude padding points in average pooling
1871 1872 1873 1874
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1875

1876
    Returns:
K
Kaipeng Deng 已提交
1877
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1878 1879

    Raises:
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1892 1893 1894 1895 1896

    Examples:

        .. code-block:: python

1897
          import paddle.fluid as fluid
1898

K
Kaipeng Deng 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1942 1943 1944
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1945
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1946
            str(pool_type))
C
chengduoZH 已提交
1947

C
chengduoZH 已提交
1948 1949
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1950 1951 1952 1953
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1954 1955
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1956 1957 1958 1959 1960

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1961

C
chengduoZH 已提交
1962 1963 1964
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1987

1988 1989
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2004
            pool_padding = [0, 0]
2005 2006 2007 2008 2009 2010
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2011
            pool_padding = [0, 0]
2012 2013 2014 2015 2016

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2017
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2018
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2019 2020

    helper.append_op(
2021
        type=op_type,
2022 2023 2024 2025 2026 2027 2028 2029
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
2030
            "padding_algorithm": padding_algorithm,
2031 2032
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2033 2034
            "use_mkldnn": False,
            "exclusive": exclusive,
2035
            "data_format": data_format,
2036 2037 2038 2039 2040
        })

    return pool_out


D
dengkaipeng 已提交
2041
@templatedoc()
2042 2043 2044 2045 2046 2047 2048 2049
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2050
           name=None,
2051 2052
           exclusive=True,
           data_format="NCDHW"):
2053
    """
2054
    ${comment}
2055 2056

    Args:
K
Kaipeng Deng 已提交
2057 2058
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
2059 2060 2061
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
2062
                          of the feature.
D
dengkaipeng 已提交
2063 2064 2065 2066 2067
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
2079 2080 2081
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
2082 2083 2084
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2085
        exclusive (bool): Whether to exclude padding points in average pooling
2086 2087 2088 2089
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
2090

2091
    Returns:
K
Kaipeng Deng 已提交
2092
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
2107 2108 2109 2110
    Examples:

        .. code-block:: python

2111
          import paddle.fluid as fluid
2112

K
Kaipeng Deng 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2161 2162 2163
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2164
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2165
            str(pool_type))
C
chengduoZH 已提交
2166

C
chengduoZH 已提交
2167 2168
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2169 2170 2171 2172 2173
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2174 2175
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2176 2177 2178 2179 2180

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2181

2182 2183
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2207 2208
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2209 2210 2211

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2212 2213
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2228
            pool_padding = [0, 0, 0]
2229 2230 2231 2232 2233 2234
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2235
            pool_padding = [0, 0, 0]
2236 2237 2238 2239 2240

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2241
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2242
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2243 2244

    helper.append_op(
2245
        type=op_type,
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2253
            "paddings": pool_padding,
2254
            "padding_algorithm": padding_algorithm,
2255
            "use_cudnn": use_cudnn,
2256
            "ceil_mode": ceil_mode,
2257 2258
            "use_mkldnn": False,
            "exclusive": exclusive,
2259
            "data_format": data_format,
Y
Yu Yang 已提交
2260 2261 2262 2263 2264
        })

    return pool_out


2265 2266 2267 2268 2269 2270 2271
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2272
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2273 2274 2275 2276
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2277
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2292 2293

    Args:
K
Kaipeng Deng 已提交
2294 2295 2296 2297 2298
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2299 2300 2301
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2302
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2303 2304 2305 2306
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2307 2308

    Returns:
K
Kaipeng Deng 已提交
2309 2310
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2311 2312 2313 2314 2315 2316 2317 2318 2319

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2320
          # average adaptive pool2d
M
minqiyang 已提交
2321
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2322
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2323
          # of input data into m * n grids averagely and performs poolings in each
2324 2325
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2326
          #
2327 2328 2329 2330 2331 2332 2333 2334
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2335
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2336
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2337
          pool_out = fluid.layers.adaptive_pool2d(
2338 2339
                            input=data,
                            pool_size=[3, 3],
2340
                            pool_type='avg')
K
Kaipeng Deng 已提交
2341 2342 2343

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2344
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2363
    """
2364 2365 2366 2367 2368 2369
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'adaptive_pool2d')
    check_type(pool_type, 'pool_type', str, 'adaptive_pool2d')
    check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool2d')
    check_type(require_index, 'require_index', bool, 'adaptive_pool2d')
2370 2371 2372 2373 2374 2375 2376 2377 2378
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2379
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2405
    return (pool_out, mask) if require_index else pool_out
2406 2407 2408 2409 2410 2411 2412 2413 2414


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2415
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2416 2417 2418 2419
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2420 2421
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2422

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2440 2441

    Args:
K
Kaipeng Deng 已提交
2442 2443 2444
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2445
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2446
                          The data type is float32 or float64.
2447
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2448
            it must contain three integers, (Depth, Height, Width).
2449
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2450
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2451 2452 2453 2454
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2455 2456

    Returns:
K
Kaipeng Deng 已提交
2457
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2458 2459 2460 2461 2462 2463 2464 2465 2466

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2467
          # average adaptive pool3d
2468
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2469
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2470
          # of input data into l * m * n grids averagely and performs poolings in each
2471 2472
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2473
          #
2474 2475 2476 2477 2478 2479 2480 2481 2482
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2483
          #                 output[:, :, i, j, k] =
2484 2485
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2486 2487 2488

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2489 2490
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2491
          pool_out = fluid.layers.adaptive_pool3d(
2492
                            input=data,
D
dengkaipeng 已提交
2493
                            pool_size=[3, 3, 3],
2494
                            pool_type='avg')
K
Kaipeng Deng 已提交
2495 2496 2497

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2498
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2524
    """
2525 2526 2527 2528 2529 2530
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'adaptive_pool3d')
    check_type(pool_type, 'pool_type', str, 'adaptive_pool3d')
    check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool3d')
    check_type(require_index, 'require_index', bool, 'adaptive_pool3d')
2531 2532 2533 2534 2535 2536 2537 2538 2539
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2540
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2566
    return (pool_out, mask) if require_index else pool_out
2567 2568


Y
Yu Yang 已提交
2569 2570 2571 2572 2573 2574 2575
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2576
               data_layout='NCHW',
Y
Yang Yang 已提交
2577
               in_place=False,
2578 2579
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2580
               moving_variance_name=None,
2581
               do_model_average_for_mean_and_var=True,
2582
               use_global_stats=False):
Y
Yu Yang 已提交
2583
    """
Q
qiaolongfei 已提交
2584 2585
    **Batch Normalization Layer**

L
lvmengsi 已提交
2586
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2587
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2588

Q
qiaolongfei 已提交
2589
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2590

Q
qiaolongfei 已提交
2591 2592
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2593 2594 2595
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2608

L
lvmengsi 已提交
2609 2610 2611
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2612

L
lvmengsi 已提交
2613
    moving_mean is global mean and moving_var is global variance.
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2627 2628 2629
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2630
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2631

2632
    Args:
2633
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2634
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2635
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2636 2637
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2638 2639 2640
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2641 2642 2643 2644 2645
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2646 2647
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2648 2649 2650
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2651 2652
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2653 2654 2655
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2656
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
K
Kaipeng Deng 已提交
2657 2658 2659
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2660
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2661 2662 2663
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2664 2665
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2666
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2667 2668
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2669 2670
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2671 2672 2673 2674 2675
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2676
    Returns:
L
lvmengsi 已提交
2677 2678
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2679 2680 2681 2682 2683

    Examples:

        .. code-block:: python

2684
            import paddle.fluid as fluid
L
lvmengsi 已提交
2685
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2686 2687
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2715
    """
C
chengduo 已提交
2716
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2717 2718
    helper = LayerHelper('batch_norm', **locals())

2719 2720
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2721
    dtype = helper.input_dtype()
2722 2723 2724 2725 2726 2727 2728

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2729 2730 2731 2732
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2751
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2752

2753 2754
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2755 2756 2757
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2758
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2759
        shape=param_shape,
W
Wu Yi 已提交
2760
        dtype=dtype)
2761 2762 2763 2764 2765 2766
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2767
            trainable=False,
W
wanghaoshuang 已提交
2768
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2769
        shape=param_shape,
W
Wu Yi 已提交
2770
        dtype=dtype)
2771
    variance.stop_gradient = True
Y
Yu Yang 已提交
2772 2773 2774 2775 2776 2777

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2778 2779 2780 2781
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2782

2783 2784 2785 2786 2787
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

K
Kaipeng Deng 已提交
2788 2789
    batch_norm_out = input if in_place else \
            helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2821
    helper.append_op(
2822
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2823 2824 2825 2826

    return helper.append_activation(batch_norm_out)


K
Kaipeng Deng 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
def inplace_abn(input,
                act=None,
                is_test=False,
                momentum=0.9,
                epsilon=1e-05,
                param_attr=None,
                bias_attr=None,
                data_layout='NCHW',
                name=None,
                moving_mean_name=None,
                moving_variance_name=None,
                do_model_average_for_mean_and_var=True,
                use_global_stats=False,
                act_alpha=1.0):
    """
    **In-place Activation Batch Normalization Layer**
    
    This layer calculates batch normalization and activation with in-place memory.
    For batch normalization calculations, see `fluid.layers.batch_norm`.
    For in-place activation batch normalization, see `In-Place Activated BatchNorm for 
    Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_

    `inplace_abn` only support activation type as `None`, `identity`, `leaky_relu`,
    `elu` currently.
    `inplace_abn` only support data type as `float32`, `float64` currently.

    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.

    Args:
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
            is float16 or float32 or float64.
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of inplace_abn.
             If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, inplace_abn will save global mean with a random name, otherwise, inplace_abn 
            will save global mean with the string.
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
            If it is set to None, inplace_abn, will save global variance with a random name, otherwise, inplace_abn 
            will save global variance with the string.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
        act_alpha(float, Default 1.0): when activation is in ['elu', 'identity', 'leaky_relu'],
            inplace activative batch normalization will be used, and alpha parameter for activation
            can be given by this parameter.
    Returns:
        A Variable holding Tensor which is the result after applying batch normalization and activation on the input, 
        has same shape and data type with input. 

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.inplace_abn(input=hidden1)
            hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2)

    """
    assert act in [None, 'identity', 'leaky_relu', 'elu'], \
        "inplace_abn only support act as None, 'identity', " \
        "'leaky_relu', 'elu' currently"
    assert bias_attr is not False, "bias_attr should not be False in inplace_abn."
    helper = LayerHelper('inplace_abn', **locals())

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'inplace_abn')
    dtype = helper.input_dtype()

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

    batch_norm_out = input

    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
        "activation": act,
        "alpha": act_alpha,
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

    helper.append_op(
        type="inplace_abn", inputs=inputs, outputs=outputs, attrs=attrs)

    return batch_norm_out


L
lvmengsi 已提交
3030 3031 3032 3033 3034 3035 3036 3037
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
3038
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
3052
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3053
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
3054
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3055 3056 3057 3058
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
3059 3060
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
3061 3062

    Args:
L
lvmengsi 已提交
3063 3064
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
3081 3082
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
3083 3084 3085 3086 3087 3088

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
3089
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
3153
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
3154 3155 3156
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
3157 3158 3159
    """
    **Data Normalization Layer**

3160
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
3184 3185 3186 3187
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
3188 3189 3190 3191 3192
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3193 3194
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
3195 3196 3197 3198 3199 3200 3201
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
3202 3203 3204
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
3205 3206 3207 3208 3209 3210 3211

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3212 3213
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3214

3215
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
3216
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
3293 3294 3295 3296

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3297
@templatedoc()
G
guosheng 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
3308 3309 3310 3311
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
3312 3313 3314

    The formula is as follows:

Y
yuyang18 已提交
3315
    ..  math::
G
guosheng 已提交
3316

3317
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
3318

3319
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
3320

3321
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
3322

3323 3324 3325 3326 3327
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3328

G
guosheng 已提交
3329
    Args:
3330 3331 3332 3333 3334 3335
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
3336
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
3337 3338 3339 3340
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3341 3342
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3343
            a default :code:`ParamAttr` would be added as scale. The
3344 3345
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3346 3347
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3348
            a default :code:`ParamAttr` would be added as bias. The
3349
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
3350
        act(str, optional): Activation to be applied to the output of layer normalization.
3351 3352
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3353 3354

    Returns:
3355
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
3356 3357 3358

    Examples:

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3371
    """
L
lujun 已提交
3372
    assert in_dygraph_mode(
3373
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3374 3375 3376 3377 3378 3379 3380 3381
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3382
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3383 3384 3385 3386 3387 3388
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3389 3390
    else:
        if param_attr:
T
tianshuo78520a 已提交
3391
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3392
    if shift:
3393
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3394 3395 3396
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3397 3398
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3399
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3400 3401

    # create output
X
Xin Pan 已提交
3402 3403 3404 3405 3406
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3434
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3450
        act(str, optional): Activation to be applied to the output of group normalization.
3451 3452 3453 3454
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3455 3456
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3457 3458

    Returns:
3459 3460 3461 3462
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3463 3464 3465 3466 3467 3468
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3469 3470

    Examples:
3471
       .. code-block:: python
D
Dun 已提交
3472

3473 3474 3475
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3476 3477 3478 3479 3480 3481 3482
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3483 3484 3485 3486 3487 3488
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3502 3503
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3514 3515 3516 3517 3518
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3519 3520 3521 3522 3523

    return helper.append_activation(group_norm_out)


@templatedoc()
3524
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3525 3526 3527
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3528
    This operation calculates the spectral normalization value of weight parameters of
3529
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3530 3531
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3532

D
dengkaipeng 已提交
3533 3534 3535
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3536
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3537 3538

    Step 2:
T
tianshuo78520a 已提交
3539
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3540 3541
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3542 3543 3544 3545 3546 3547 3548 3549

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3550
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3551 3552 3553 3554

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3555

D
dengkaipeng 已提交
3556
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3557 3558
                

D
dengkaipeng 已提交
3559 3560 3561 3562
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3563 3564 3565
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3566 3567 3568
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3569 3570

    Returns:
D
dengkaipeng 已提交
3571
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3572
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3573 3574

    Examples:
K
Kaipeng Deng 已提交
3575
       .. code-block:: python
D
dengkaipeng 已提交
3576

K
Kaipeng Deng 已提交
3577 3578
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3579
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3580
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3581 3582
    """
    helper = LayerHelper('spectral_norm', **locals())
3583 3584 3585 3586 3587
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'spectral_norm')
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
3588
    dtype = weight.dtype
D
dengkaipeng 已提交
3589 3590 3591

    # create intput and parameters
    inputs = {'Weight': weight}
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3610 3611

    # create output
3612
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3613 3614

    helper.append_op(
3615
        type="spectral_norm",
D
Dun 已提交
3616
        inputs=inputs,
3617 3618 3619 3620 3621 3622
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3623

3624
    return out
D
Dun 已提交
3625 3626


Y
Yu Yang 已提交
3627 3628 3629 3630
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3631 3632 3633
                     padding=0,
                     stride=1,
                     dilation=1,
3634
                     groups=None,
C
caoying03 已提交
3635
                     param_attr=None,
3636
                     bias_attr=None,
C
chengduoZH 已提交
3637
                     use_cudnn=True,
3638
                     act=None,
3639 3640
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3641
    """
3642 3643
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3644
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3645 3646 3647
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3648
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3649
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3650 3651 3652
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3653 3654 3655 3656 3657

    For each input :math:`X`, the equation is:

    .. math::

3658
        Out = \sigma (W \\ast X + b)
3659

3660
    Where:
3661

3662 3663
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3664
    * :math:`\\ast`: Convolution operation.
3665
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3666
    * :math:`\\sigma`: Activation function.
3667
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3668

3669 3670 3671 3672
    Example:

        - Input:

3673
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3674

3675
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3676 3677 3678

        - Output:

3679
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3680 3681

        Where
Y
Yu Yang 已提交
3682

3683 3684
        .. math::

3685 3686
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3687
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3688 3689
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3690
    Note:
L
lvmengsi 已提交
3691 3692 3693 3694
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3695 3696 3697 3698
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3699 3700

    Args:
3701 3702
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3703 3704
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3705
        output_size(int|tuple, optional): The output image size. If output size is a
3706
            tuple, it must contain two integers, (image_height, image_width). None if use
3707
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3708 3709 3710
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3711
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3712 3713
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3714 3715 3716 3717 3718 3719 3720
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3721 3722 3723 3724 3725 3726 3727 3728 3729
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3730 3731 3732 3733 3734 3735 3736
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3737
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3738 3739 3740 3741
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3742
            Default: groups = 1.
3743
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3744 3745 3746
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3747
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3748 3749 3750 3751
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3752
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3753
            library is installed. Default: True.
3754
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3755
            Default: None.
L
lvmengsi 已提交
3756 3757 3758
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3759 3760 3761 3762
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3763 3764

    Returns:
L
lvmengsi 已提交
3765 3766 3767 3768 3769 3770
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3771 3772

    Raises:
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3784 3785 3786 3787

    Examples:
       .. code-block:: python

3788
          import paddle.fluid as fluid
L
lvmengsi 已提交
3789
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3790
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3791
    """
C
chengduo 已提交
3792
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3793 3794 3795 3796
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3797

3798
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3799 3800 3801 3802 3803 3804
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3805 3806 3807
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3808 3809
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3810

C
chengduoZH 已提交
3811 3812
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3857 3858 3859 3860 3861
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3862

3863 3864
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3865

3866 3867 3868 3869
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3870
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3871 3872 3873
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3874

3875 3876 3877
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3878 3879
    if output_size is None:
        output_size = []
3880
    elif isinstance(output_size, (list, tuple, int)):
3881 3882
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
3883
        raise ValueError("output_size should be int, list[int] or tuple[int]")
3884
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3885
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3886

Y
Yu Yang 已提交
3887 3888 3889
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3890
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3891
    helper.append_op(
3892
        type=op_type,
Y
Yu Yang 已提交
3893 3894
        inputs={'Input': [input],
                'Filter': [img_filter]},
3895
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3896
        attrs={
3897
            'output_size': output_size,
3898 3899
            'strides': stride,
            'paddings': padding,
3900
            'padding_algorithm': padding_algorithm,
3901 3902
            'dilations': dilation,
            'groups': groups,
3903 3904
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3905 3906
        })

3907 3908 3909 3910
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3911 3912
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3913 3914


3915
def conv3d_transpose(input,
Y
Yu Yang 已提交
3916 3917 3918
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3919 3920 3921
                     padding=0,
                     stride=1,
                     dilation=1,
3922
                     groups=None,
C
caoying03 已提交
3923
                     param_attr=None,
3924
                     bias_attr=None,
C
chengduoZH 已提交
3925
                     use_cudnn=True,
3926
                     act=None,
3927 3928
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3929
    """
3930
    The convolution3D transpose layer calculates the output based on the input,
3931
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3932
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3933 3934 3935 3936
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3937
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3938 3939 3940
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3941 3942 3943 3944 3945

    For each input :math:`X`, the equation is:

    .. math::

3946
        Out = \sigma (W \\ast X + b)
3947 3948 3949

    In the above equation:

3950 3951
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3952
    * :math:`\\ast`: Convolution operation.
3953
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3954 3955
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3956

3957 3958 3959 3960
    Example:

        - Input:

3961
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3962

3963
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3964 3965 3966

        - Output:

3967
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3968 3969

        Where
Y
Yu Yang 已提交
3970

3971 3972
        .. math::

L
lvmengsi 已提交
3973 3974 3975 3976 3977 3978
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3979

L
lvmengsi 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3995 3996
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3997
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3998 3999 4000 4001
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
4002
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
4003
            it must contain three integers, (filter_size_depth, filter_size_height,
4004 4005
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
4006 4007 4008 4009
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
4010 4011 4012 4013 4014 4015 4016 4017
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
4018 4019 4020 4021 4022 4023 4024 4025
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
4026
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
4027 4028 4029 4030 4031
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
4032
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4033 4034 4035
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4036
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
4037 4038 4039 4040
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4041
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
4042
            library is installed. Default: True
4043
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4044
            Default: None.
L
lvmengsi 已提交
4045 4046 4047
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
4048 4049 4050 4051
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
4052 4053

    Returns:
L
lvmengsi 已提交
4054 4055 4056 4057 4058
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
4059 4060

    Raises:
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
4072 4073 4074 4075

    Examples:
       .. code-block:: python

4076
          import paddle.fluid as fluid
L
lvmengsi 已提交
4077
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
4078
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4079
    """
C
chengduo 已提交
4080
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4081 4082 4083 4084
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
4085 4086
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4087
    if not isinstance(input, Variable):
4088
        raise TypeError("Input of conv3d_transpose must be Variable")
4089 4090
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
4091

4092 4093
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4094

C
chengduoZH 已提交
4095 4096 4097
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
4112 4113 4114 4115 4116 4117 4118 4119
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4120

4121 4122
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4123

4124 4125 4126 4127 4128 4129 4130
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
4145

4146
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
4147

4148 4149 4150 4151
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
4152
            output_size = [output_size, output_size, output_size]
Y
yangyaming 已提交
4153

4154 4155 4156
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
4168

4169 4170
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
4171

4172 4173 4174 4175 4176 4177 4178
    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

4179 4180 4181 4182
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
4183

4184 4185 4186 4187
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
4188

4189
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
4190
    helper.append_op(
4191 4192 4193 4194 4195
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
4196
            'output_size': output_size,
4197 4198 4199 4200 4201 4202 4203 4204
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
4205

4206 4207 4208 4209 4210 4211
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
4212 4213


C
caoying03 已提交
4214
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4215
    """
Y
yangyaming 已提交
4216
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4217 4218

    Args:
4219 4220 4221
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4222 4223
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4224 4225
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4226
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4227
            output Tensor. The result tensor will have one fewer dimension
4228 4229 4230 4231
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4232 4233

    Returns:
4234 4235
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
4236

4237 4238 4239
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4240 4241 4242
    Examples:
        .. code-block:: python

4243
            import paddle.fluid as fluid
G
guosheng 已提交
4244 4245 4246
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4247
            # Each example is followed by the corresponding output tensor.
4248
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4249 4250 4251 4252
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4253

4254
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4255 4256
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4257
            # Each example is followed by the corresponding output tensor.
4258
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4259 4260
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4261

G
guosheng 已提交
4262
    """
4263 4264
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4265 4266 4267 4268 4269 4270

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
4271
    attrs = {
4272
        'dim': dim if dim != None and dim != [] else [0],
4273
        'keep_dim': keep_dim,
4274
        'reduce_all': True if dim == None or dim == [] else False
4275
    }
4276 4277
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
4278
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4279
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4280 4281 4282 4283
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
4284
        attrs=attrs)
G
guosheng 已提交
4285
    return out
G
guosheng 已提交
4286 4287


C
caoying03 已提交
4288
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4289
    """
Y
Yibing Liu 已提交
4290
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4291 4292

    Args:
4293 4294 4295
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
4296 4297
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4298
            must be in the range :math:`[-rank(input), rank(input))`. If
4299
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4300
            :math:`rank(input) + dim[i]`.
4301
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4302
            output Tensor. The result tensor will have one fewer dimension
4303 4304 4305 4306 4307
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
4308
    Returns:
4309 4310 4311 4312 4313 4314
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4315 4316 4317
    Examples:
        .. code-block:: python

4318
            import paddle.fluid as fluid
G
guosheng 已提交
4319 4320 4321
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4322
            # Each example is followed by the corresponding output tensor.
4323
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4324 4325 4326
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4327
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4328

4329
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4330 4331
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4332
            # Each example is followed by the corresponding output tensor.
4333
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4334 4335
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4336
    """
4337 4338 4339

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4340 4341 4342 4343 4344 4345

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
4346
    attrs = {
4347
        'dim': dim if dim != None and dim != [] else [0],
4348
        'keep_dim': keep_dim,
4349
        'reduce_all': True if dim == None or dim == [] else False
4350
    }
4351 4352
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
4353
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4354
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4355 4356 4357 4358
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
4359
        attrs=attrs)
G
guosheng 已提交
4360
    return out
4361 4362


C
caoying03 已提交
4363
def reduce_max(input, dim=None, keep_dim=False, name=None):
4364
    """
Y
yangyaming 已提交
4365
    Computes the maximum of tensor elements over the given dimension.
4366 4367

    Args:
4368 4369 4370
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4371 4372 4373
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4374
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4375
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4376
            output Tensor. The result tensor will have one fewer dimension
4377 4378 4379 4380
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4381 4382

    Returns:
4383 4384
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4385

4386 4387 4388
    Examples:
        .. code-block:: python

4389
            import paddle.fluid as fluid
4390 4391 4392
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4393
            # Each example is followed by the corresponding output tensor.
4394
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4395 4396 4397 4398
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4399

4400
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4401 4402
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4403
            # Each example is followed by the corresponding output tensor.
4404
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4405 4406
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4407 4408
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4409
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4410 4411
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4412 4413 4414 4415 4416
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4417
            'dim': dim if dim != None and dim != [] else [0],
4418
            'keep_dim': keep_dim,
4419
            'reduce_all': True if dim == None or dim == [] else False
4420 4421 4422 4423
        })
    return out


C
caoying03 已提交
4424
def reduce_min(input, dim=None, keep_dim=False, name=None):
4425
    """
Y
yangyaming 已提交
4426
    Computes the minimum of tensor elements over the given dimension.
4427 4428

    Args:
4429 4430 4431
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4432 4433 4434
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4435
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4436
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4437
            output Tensor. The result tensor will have one fewer dimension
4438 4439 4440 4441
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4442 4443

    Returns:
4444 4445
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4446

4447 4448 4449
    Examples:
        .. code-block:: python

4450
            import paddle.fluid as fluid
4451 4452 4453
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4454
            # Each example is followed by the corresponding output tensor.
4455
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4456 4457 4458 4459
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4460

4461
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4462 4463
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4464
            # Each example is followed by the corresponding output tensor.
4465
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4466 4467
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4468 4469
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4470
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4471 4472
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4473 4474 4475 4476 4477
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4478
            'dim': dim if dim != None and dim != [] else [0],
4479
            'keep_dim': keep_dim,
4480
            'reduce_all': True if dim == None or dim == [] else False
4481 4482
        })
    return out
G
guosheng 已提交
4483 4484


4485 4486 4487 4488 4489
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4490 4491 4492
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4493
            :attr:`None`, multiply all elements of :attr:`input` and return a
4494
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4495 4496
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4497
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4498
            output Tensor. The result tensor will have one fewer dimension
4499 4500 4501 4502
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4503 4504

    Returns:
4505 4506 4507
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4508 4509 4510
    Examples:
        .. code-block:: python

4511
            import paddle.fluid as fluid
4512 4513 4514
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4515
            # Each example is followed by the corresponding output tensor.
4516
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4517 4518 4519
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4520
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4521
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4522

4523
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4524 4525
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4526
            # Each example is followed by the corresponding output tensor.
4527
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4528 4529
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4530 4531
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4532
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4533 4534
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4535 4536 4537 4538 4539
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4540
            'dim': dim if dim != None and dim != [] else [0],
4541
            'keep_dim': keep_dim,
4542
            'reduce_all': True if dim == None or dim == [] else False
4543 4544 4545 4546
        })
    return out


Z
zhoukunsheng 已提交
4547 4548
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4549
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4550 4551

    Args:
4552 4553
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4554 4555 4556
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4557
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4558 4559
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4560
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4561
        name(str|None): A name for this layer(optional). If set None, the layer
4562
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4563

4564 4565
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4566 4567 4568

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4569
        
4570
            import paddle.fluid as fluid
4571 4572 4573
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4574 4575 4576
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4577 4578 4579 4580 4581 4582
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4583 4584
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4585
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4586
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4598
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4599
            'keep_dim': keep_dim,
4600
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4601 4602 4603 4604 4605 4606
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4607
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4608 4609

    Args:
4610 4611 4612
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4613 4614
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4615
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4616 4617
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4618
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4619 4620
        name(str|None): A name for this layer(optional). If set None, the layer

4621 4622
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4623 4624 4625

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4626

4627
            import paddle.fluid as fluid
4628 4629 4630
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4631 4632 4633
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4634 4635 4636 4637 4638 4639
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4640 4641
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4642
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4643
                                     keep_dim=True)  # [[True], [False]]
4644
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4656
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4657
            'keep_dim': keep_dim,
4658
            'reduce_all': True if dim == None or dim == [] else False
4659 4660 4661 4662
        })
    return out


C
caoying03 已提交
4663
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4664
    """
4665
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4666 4667

    Args:
4668
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4669
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4670 4671
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4672 4673 4674 4675 4676
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4677
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4678 4679

    Returns:
4680
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4681

4682 4683 4684 4685
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4686
    Example:
G
guosheng 已提交
4687 4688
        .. code-block:: python

4689 4690
            import paddle.fluid as fluid

4691 4692
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4693 4694
                 name="input", shape=[3, 9, 5], dtype="float32")

4695 4696 4697 4698
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4709
    """
4710
    if in_dygraph_mode():
4711 4712 4713
        num = None
        attrs = ()

S
songyouwei 已提交
4714 4715 4716 4717 4718 4719
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4720
        attrs += ('axis', dim)
4721 4722 4723

        if isinstance(num_or_sections, int):
            num = num_or_sections
4724
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4725
        elif isinstance(num_or_sections, (list, tuple)):
4726
            num = len(num_or_sections)
L
Leo Chen 已提交
4727
            if utils._contain_var(num_or_sections):
4728
                raise TypeError(
L
Leo Chen 已提交
4729 4730 4731 4732
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4733
                attrs += ('sections', list(num_or_sections))
4734 4735 4736 4737
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4738
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4739

4740 4741 4742 4743 4744 4745 4746 4747 4748
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4749 4750
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4782 4783
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4784 4785 4786 4787 4788
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4789 4790
        num = num_or_sections
    else:
4791 4792 4793
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4794
        num = len(num_or_sections)
4795 4796 4797
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4798
        if utils._contain_var(num_or_sections):
4799 4800 4801
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4802
    outs = [
X
Xin Pan 已提交
4803
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4804 4805 4806
        for i in range(num)
    ]
    helper.append_op(
4807
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4808
    return outs
C
caoying03 已提交
4809 4810 4811 4812


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4813
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4814 4815
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4816
    .. math::
4817 4818

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4819 4820 4821 4822 4823

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4824
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4825
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4826 4827
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4828
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4829
            the default value is 1e-12.
R
ruri 已提交
4830 4831
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4832
    Returns:
R
ruri 已提交
4833
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4834 4835

    Examples:
4836

C
caoying03 已提交
4837
        .. code-block:: python
R
ruri 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4850

R
ruri 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4875 4876
    """

F
fengjiayi 已提交
4877 4878
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4879 4880
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4881 4882
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4883
    helper.append_op(
4884 4885 4886 4887
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4888
        attrs={
4889 4890
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4891 4892
        })
    return out
4893 4894


S
sneaxiy 已提交
4895
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4896
    """
Y
ying 已提交
4897 4898 4899 4900
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4901

C
chengduoZH 已提交
4902
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4903
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4904

4905 4906 4907 4908 4909
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4910
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4911

C
chengduoZH 已提交
4912
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4913
      performs in the following way.
G
guosheng 已提交
4914

4915
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4916
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4917
        last two dimensions and a batched matrix multiply supporting broadcast
4918
        applies on the two tensors.
G
guosheng 已提交
4919

Y
ying 已提交
4920 4921
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4922
    removed after matrix multiplication.
G
guosheng 已提交
4923 4924 4925

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4926 4927 4928
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4929
        alpha (float): The scale of output. Default 1.0.
4930
        name(str|None): A name for this layer(optional). If set None, the layer
4931
            will be named automatically.
G
guosheng 已提交
4932 4933

    Returns:
石晓伟 已提交
4934
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4935

G
guosheng 已提交
4936 4937 4938
    Examples:
        .. code-block:: python

4939
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4940
            # x: [B, ..., M, K], y: [B, ..., K, N]
4941
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4942

4943
            # x: [B, M, K], y: [B, K, N]
4944
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4945

4946
            # x: [B, M, K], y: [K, N]
4947
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4948

4949
            # x: [M, K], y: [K, N]
4950
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4951 4952

            # x: [B, M, K], y: [K]
4953
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4954

4955
            # x: [K], y: [K]
4956
            # fluid.layers.matmul(x, y)  # out: [1]
4957

Y
ying 已提交
4958
            # x: [M], y: [N]
4959 4960
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4961
            import paddle.fluid as fluid
4962 4963 4964
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4965
    """
4966
    return paddle.matmul(x, y, transpose_x, transpose_y, alpha, name)
4967 4968


4969
def topk(input, k, name=None):
Q
qingqing01 已提交
4970
    """
4971
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4972 4973
    for the last dimension.

4974 4975
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4976 4977 4978 4979

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4980 4981
    .. code-block:: text

4982 4983 4984 4985 4986
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4987 4988 4989 4990
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4991
          Output:
F
fengjiayi 已提交
4992
            The first output:
4993 4994
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4995 4996 4997 4998
                      [10, 25],
                      [6, 10]]

            The second output:
4999 5000
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
5001 5002 5003
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5004
    Args:
5005 5006 5007 5008
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
5009 5010

    Returns:
5011 5012
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
5013

F
fengjiayi 已提交
5014
    Raises:
5015
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
5016 5017 5018 5019

    Examples:
        .. code-block:: python

5020
            import paddle.fluid as fluid
5021
            import paddle.fluid.layers as layers
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
5035
    """
5036
    if in_dygraph_mode():
5037 5038 5039 5040 5041
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
5042

5043 5044
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
5045 5046 5047 5048 5049
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

5050 5051 5052 5053
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
5054 5055
    helper.append_op(
        type="top_k",
W
whs 已提交
5056
        inputs=inputs,
Q
qingqing01 已提交
5057 5058
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5059
        attrs=attrs)
Q
qingqing01 已提交
5060 5061 5062 5063 5064
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5065 5066 5067 5068 5069
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
5070
    """
S
SunGaofeng 已提交
5071
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
5072

S
SunGaofeng 已提交
5073
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
5074 5075 5076
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5077

S
SunGaofeng 已提交
5078 5079 5080 5081
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

5082 5083 5084 5085 5086
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
5087
        (1) for lod mode:
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5099
        input.lod = [[4, 4]]
M
minqiyang 已提交
5100

W
whs 已提交
5101
        Computation:
5102

W
whs 已提交
5103 5104 5105 5106 5107 5108
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5109 5110 5111 5112 5113

        output.data = [[2],
                       [1],
                       [3]]

5114
        output.lod = [[2, 1]]
5115

S
SunGaofeng 已提交
5116
        (2) for padding mode:
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
5143
    Parameters:
5144

S
SunGaofeng 已提交
5145 5146
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
5147
                         where Lp is the sum of all input sequences' length and
5148 5149
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
5150
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
5151
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
5152
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
5153
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
5154 5155
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
5156
        padding_value(int): padding value.
S
SunGaofeng 已提交
5157 5158 5159
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
5160 5161

    Returns:
S
SunGaofeng 已提交
5162 5163 5164 5165 5166
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
5167
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

5179 5180 5181 5182

    Examples:
        .. code-block:: python

5183
            # for lod mode
S
SunGaofeng 已提交
5184
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5185
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
5186
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5187 5188

            # for padding mode
S
SunGaofeng 已提交
5189 5190
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
5191 5192 5193
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5194
    """
5195
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5196
    _, topk_indices = topk(input, k=1)
5197 5198

    # ctc align op
X
Xin Pan 已提交
5199
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
5225 5226


Y
fix ci.  
ying 已提交
5227
def transpose(x, perm, name=None):
Y
ying 已提交
5228
    """
5229
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
5230 5231 5232 5233 5234

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5235
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
5236
        perm (list): Permute the input according to the data of perm.
5237
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5238 5239

    Returns:
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
5264 5265

    Examples:
5266

Y
ying 已提交
5267 5268
        .. code-block:: python

5269
            # use append_batch_size=False to avoid prepending extra
5270
            # batch size in shape
5271
            import paddle.fluid as fluid
5272
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
5273
                            dtype='float32', append_batch_size=False)
5274
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
5275 5276
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
5277

5278
    """
5279
    if in_dygraph_mode():
5280 5281
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
5282

5283 5284 5285
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
5286
    check_type(perm, 'perm', list, 'transpose')
5287

Y
fix ci.  
ying 已提交
5288
    if len(perm) != len(x.shape):
Y
ying 已提交
5289
        raise ValueError(
5290 5291 5292 5293
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
5294 5295 5296
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
5297 5298 5299
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5300 5301

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5302 5303
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5304
    helper.append_op(
5305
        type='transpose2',
Y
fix ci.  
ying 已提交
5306
        inputs={'X': [x]},
5307 5308
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5309 5310
        attrs={'axis': perm})
    return out
5311 5312


5313 5314 5315 5316 5317 5318 5319
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5320
    """
5321
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5322 5323 5324
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5325 5326
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5327 5328 5329

    .. math::

L
Liufang Sang 已提交
5330 5331 5332 5333
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5334

L
Liufang Sang 已提交
5335
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5336

L
Liufang Sang 已提交
5337 5338
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5339

L
Liufang Sang 已提交
5340 5341 5342
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5343

L
Liufang Sang 已提交
5344 5345
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5346

L
Liufang Sang 已提交
5347 5348 5349 5350 5351 5352 5353
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5354

L
Liufang Sang 已提交
5355 5356 5357 5358
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5359
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5398 5399 5400
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5413
            output.dims = {8, 8}
5414

5415
            output.lod = [[4, 4]]
5416

T
Tink_Y 已提交
5417
    Examples:
5418 5419 5420

        .. code-block:: python

B
Bai Yifan 已提交
5421
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5422
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5423
                                     dtype='float32')
5424
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5425 5426
                input=data, stride=[1, 1], filter_size=[2, 2])

5427 5428

    """
L
lujun 已提交
5429
    assert not in_dygraph_mode(), (
5430
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5441
    inputs = {"X": input}
5442
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5443 5444 5445 5446 5447
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5448
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5449
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5450
    helper.append_op(
5451
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5452
    return out
5453 5454


Y
yuyang18 已提交
5455
@templatedoc()
5456
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5457 5458
    """
    ${comment}
5459 5460

    Args:
Y
yuyang18 已提交
5461
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5462 5463
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5464 5465 5466 5467 5468
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5469
        ${out_comment}.
5470 5471

    Examples:
D
Double_V 已提交
5472
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5473
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5474
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5475 5476
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5477 5478 5479
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5480 5481 5482 5483 5484 5485
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5486
    out = helper.create_variable_for_type_inference(dtype)
5487 5488 5489 5490 5491
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5492
    return helper.append_activation(out)
5493 5494


Y
yuyang18 已提交
5495
@templatedoc()
5496 5497
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5498

5499
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5500

5501
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5502

5503
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5504

5505
    For Example:
L
lujun 已提交
5506

5507
            .. code-block:: text
L
lujun 已提交
5508

5509
                Given:
L
lujun 已提交
5510

5511 5512 5513 5514
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5515

5516
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5517

5518 5519 5520 5521
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5522 5523


5524 5525 5526
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5527

5528
    Returns:
5529
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5530 5531

    Examples:
5532

X
xuezhong 已提交
5533 5534
        .. code-block:: python

5535
            import paddle.fluid as fluid
5536
            import numpy as np
5537

5538 5539 5540 5541
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5552

5553 5554 5555 5556 5557 5558 5559 5560
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5561
    helper.append_op(
5562 5563 5564 5565 5566
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5567 5568


5569 5570
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5571 5572
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5573
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5574
    and then sums all the losses. So the shape of output Variable is
5575
    [batch_size, 1].
5576

5577 5578
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5579
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5580
            A LoDTensor or Tensor with type float32.
5581
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5582
            L1 loss op with same shape as :attr:`x`.
5583
            A LoDTensor or Tensor with type float32.
5584
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5585 5586
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5587
            by this tensor element by element.
5588
            A Tensor with type float32.
5589
        outside_weight (Variable|None): A tensor with rank at least 2. This
5590 5591
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5592
            element by element.
5593
            A Tensor with type float32.
5594
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5595 5596
           scalar with default value 1.0.

5597
    Returns:
5598
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5599 5600 5601 5602

    Examples:
        .. code-block:: python

5603
            import paddle.fluid as fluid
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5621
    """
5622

5623
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5624 5625
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5636
        attrs={'sigma': sigma if sigma is not None else 1.0})
5637
    return loss
5638 5639


5640
def one_hot(input, depth, allow_out_of_range=False):
5641
    """
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5696 5697

    Args:
5698 5699 5700 5701 5702
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5703
        allow_out_of_range(bool): A bool value indicating whether the input
5704 5705 5706 5707
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5708 5709

    Returns:
5710
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5711 5712

    Examples:
C
caoying03 已提交
5713
        .. code-block:: python
5714

5715
            import paddle.fluid as fluid
5716 5717 5718
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5719
    """
5720
    if in_dygraph_mode():
S
songyouwei 已提交
5721 5722 5723 5724 5725
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5726 5727 5728 5729
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5730

5731
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5732
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5733

5734 5735
    if not isinstance(depth, Variable):
        # user attribute
5736
        inputs = {'X': input}
Y
Yi Liu 已提交
5737
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5738
    else:
5739 5740 5741
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5742 5743
    helper.append_op(
        type="one_hot",
5744 5745
        inputs=inputs,
        attrs=attrs,
5746 5747
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5748
    return one_hot_out
Y
Yu Yang 已提交
5749 5750


Y
Yu Yang 已提交
5751
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5752
    """
Y
Yibing Liu 已提交
5753 5754 5755
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5756 5757

    Args:
Y
Yibing Liu 已提交
5758 5759 5760
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5761

5762
    Returns:
Y
Yibing Liu 已提交
5763
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5764 5765 5766 5767

    Examples:
        .. code-block:: python

5768
           import paddle.fluid as fluid
Y
yi.wu 已提交
5769
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5770
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5771 5772
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5773 5774
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5775
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5776 5777 5778 5779 5780
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5781 5782 5783
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5784
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5785
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5786 5787
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5788
            outputs={'Out': [counter]},
5789
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5790 5791 5792
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5793 5794


5795
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5796
    """
5797
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5798

5799 5800 5801 5802
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5803
    guarantee shape inference in compile-time.
C
caoying03 已提交
5804

5805
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5806

5807 5808 5809 5810
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5811
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5812
    corresponding dimension of x. The index of 0s in shape can not exceed
5813
    the dimension of x.
5814 5815

    Here are some examples to explain it.
C
caoying03 已提交
5816 5817

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5818
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5819
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5820

5821
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5822 5823
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5824 5825
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5826
    dimensions.
C
caoying03 已提交
5827

5828
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5829 5830 5831 5832
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5833

5834 5835
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5836

C
caoying03 已提交
5837
    Args:
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5855

5856
    Returns:
5857
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5858

X
Xin Pan 已提交
5859
    Raises:
5860 5861 5862 5863
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5864

C
caoying03 已提交
5865 5866
    Examples:
        .. code-block:: python
G
guosheng 已提交
5867

5868
            import paddle.fluid as fluid
5869 5870 5871

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5872 5873
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5874
            reshaped_1 = fluid.layers.reshape(
5875 5876
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5877 5878 5879 5880 5881 5882

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5883
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5884 5885 5886 5887 5888 5889

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5890
    """
5891
    if in_dygraph_mode():
L
Leo Chen 已提交
5892
        #TODO(zhiqiu): enable inplace in dygraph mode.
5893 5894 5895 5896 5897 5898
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5899
            if utils._contain_var(shape):
5900 5901 5902 5903 5904 5905 5906 5907 5908
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5909
        out, _ = core.ops.reshape2(x, 'shape', shape)
5910
        return dygraph_utils._append_activation_in_dygraph(out, act)
5911

5912 5913
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5914 5915
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5916

5917
    helper = LayerHelper("reshape2", **locals())
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5942 5943
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5944 5945 5946
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5947 5948 5949 5950
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5951 5952
                else:
                    assert dim_size > 0, (
5953
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5954
                        "be negative except one unknown dimension. "
5955 5956
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5957 5958
        return attrs_shape

5959 5960 5961 5962 5963 5964 5965 5966 5967
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5968
        if utils._contain_var(shape):
5969 5970 5971 5972 5973 5974 5975
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5976
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5977
    helper.append_op(
5978
        type="reshape2",
X
Xin Pan 已提交
5979
        inputs=inputs,
5980
        attrs=attrs,
5981 5982
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5983

D
dzhwinter 已提交
5984
    return helper.append_activation(out)
5985

5986

5987
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5988
    """
5989 5990 5991
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5992

H
haowang101779990 已提交
5993

5994
    .. code-block:: text 
H
haowang101779990 已提交
5995

5996
        Case1:
H
haowang101779990 已提交
5997

5998
          Input:
H
haowang101779990 已提交
5999 6000
            X.shape = (1, 3, 1, 5)
            axes = [0]
6001
          Output:
H
haowang101779990 已提交
6002 6003
            Out.shape = (3, 1, 5)

6004
        Case2:
H
haowang101779990 已提交
6005

6006
          Input:
H
haowang101779990 已提交
6007 6008
            X.shape = (1, 3, 1, 5)
            axes = []
6009
          Output:
H
haowang101779990 已提交
6010
            Out.shape = (3, 5)
M
minqiyang 已提交
6011

6012 6013 6014 6015 6016 6017 6018 6019
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
6020
    Args:
6021 6022 6023 6024 6025
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
6026 6027

    Returns:
6028
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
6029 6030 6031 6032

    Examples:
        .. code-block:: python

6033
            import paddle.fluid as fluid
6034
            import paddle.fluid.layers as layers
6035 6036 6037 6038
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
6039 6040
    """
    helper = LayerHelper("squeeze", **locals())
6041 6042 6043
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
6044
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
6045 6046
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6047
    helper.append_op(
6048
        type="squeeze2",
6049
        inputs={"X": input},
Y
Yibing Liu 已提交
6050
        attrs={"axes": axes},
6051 6052
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6053

6054 6055 6056
    return out


6057
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6058
    """
6059
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
6060 6061
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6062

M
minqiyang 已提交
6063
    For example:
H
haowang101779990 已提交
6064 6065 6066

    .. code-block:: text

M
minqiyang 已提交
6067
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6068
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6069

Y
Yibing Liu 已提交
6070
    Args:
6071
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
6072
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
6073
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6074 6075

    Returns:
6076
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
6077 6078 6079 6080

    Examples:
        .. code-block:: python

6081 6082 6083
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
6084

Y
Yibing Liu 已提交
6085
    """
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
6113
        if utils._contain_var(axes):
6114 6115 6116 6117
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
6118 6119
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6120
    helper.append_op(
6121
        type="unsqueeze2",
6122 6123
        inputs=inputs,
        attrs=attrs,
6124 6125
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6126

6127 6128
    return out

6129

Y
yangyaming 已提交
6130
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6131
    """
Y
Yibing Liu 已提交
6132
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6133 6134 6135 6136
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
6137
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6138 6139 6140 6141 6142 6143

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6144
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6145 6146 6147
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6148
            target_lod: [4, 2]
Y
yangyaming 已提交
6149 6150

            then we get a 1-level LoDTensor:
6151
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6152 6153 6154 6155 6156 6157
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6158
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6159 6160 6161 6162
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6163
                y.data = [[2, 4]]
Y
yangyaming 已提交
6164 6165 6166
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6167
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6168 6169 6170 6171 6172 6173
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6174
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6175 6176 6177 6178
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6179
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6180 6181 6182 6183
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6184
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6185 6186 6187 6188
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
6189
        x (Variable): Input variable which could be a Tensor or LoDTensor.
6190
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6191
                           from :attr:`y`.
Y
yangyaming 已提交
6192
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6193
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6194 6195

    Returns:
Y
Yibing Liu 已提交
6196
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6197 6198

    Raises:
Y
Yibing Liu 已提交
6199
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6200 6201 6202 6203

    Examples:
        .. code-block:: python

6204
            import paddle.fluid as fluid
6205 6206 6207
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6208
    """
6209 6210
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'lod_reset')
Y
yangyaming 已提交
6211
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6212
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6213
    if y is not None:
6214 6215 6216 6217 6218
        if y.lod_level > 0:
            check_variable_and_dtype(
                y, 'y', ['float32', 'float64', 'int32', 'int64'], 'lod_reset')
        else:
            check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'lod_reset')
Y
yangyaming 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
6255
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
6256 6257 6258 6259 6260 6261

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
6262

6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
6273 6274 6275
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

6276 6277
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6278 6279 6280 6281 6282 6283 6284 6285

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
6286
    helper.append_op(
6287
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
6288
    return out
D
dragonwarrior 已提交
6289 6290


6291 6292
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
6293
    """
6294 6295 6296
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
6297 6298 6299 6300 6301

    The formula is as follows:

    .. math::

6302
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6303 6304 6305

    In the above equation:

6306 6307 6308 6309
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
6310 6311 6312


    Args:
6313 6314 6315
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6316 6317 6318 6319
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6320 6321
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6322 6323 6324 6325 6326
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6327
    Returns:
6328 6329
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6330 6331 6332

    Examples:

6333 6334 6335 6336 6337 6338 6339 6340
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6341 6342 6343 6344 6345 6346 6347 6348
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6349
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6350
            (dims))
6351 6352 6353 6354
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6355

X
Xin Pan 已提交
6356 6357 6358
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6359 6360 6361 6362 6363 6364 6365
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6366 6367 6368 6369 6370 6371 6372
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6373 6374

    return lrn_out
G
guosheng 已提交
6375 6376 6377 6378


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6379 6380
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6381

S
SunGaofeng 已提交
6382 6383 6384 6385
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:
            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6404
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6405
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6406 6407
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6408 6409
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6410 6411 6412
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6413 6414

    Returns:
S
SunGaofeng 已提交
6415 6416 6417 6418
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6419 6420 6421

    Examples:
        .. code-block:: python
G
guosheng 已提交
6422

6423
            # x is a rank 2 tensor variable
S
SunGaofeng 已提交
6424
            import paddle.fluid as fluid
6425 6426
            x = fluid.data(name='data', shape=[300, 300], dtype='float32')
            out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)
G
guosheng 已提交
6427 6428 6429
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6430
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6431 6432 6433 6434 6435 6436 6437
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6438 6439


C
chengduo 已提交
6440 6441
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6442
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6443
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6444 6445
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
6464

C
chengduo 已提交
6465 6466 6467 6468 6469
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
6470

C
chengduo 已提交
6471
            Y.shape = (1, 3, 1, 3)
6472 6473 6474

        And
            pad_value = 0.
C
chengduo 已提交
6475

T
Tink_Y 已提交
6476 6477
        Return:
            Out = [[[[35, 36, 37],
6478
                     [ 0,  0,  0]],
T
Tink_Y 已提交
6479
                    [[38, 39, 40],
6480
                     [ 0,  0,  0]],
T
Tink_Y 已提交
6481
                    [[41, 42, 43],
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
                     [ 0,  0,  0]]],
                   [[[ 0,  0,  0], 
                     [ 0,  0,  0]],
                    [[ 0,  0,  0], 
                     [ 0,  0,  0]],
                    [[ 0,  0,  0], 
                     [ 0,  0,  0]]]]

            Out.shape = [2, 3, 2, 3]

C
chengduo 已提交
6492 6493

    Args:
T
tianshuo78520a 已提交
6494
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6495 6496
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6497
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6498 6499 6500
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6501 6502

    Returns:
S
SunGaofeng 已提交
6503 6504 6505 6506
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6507 6508 6509 6510 6511 6512

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6513
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6514 6515
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6516 6517 6518 6519 6520
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6521
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6531 6532 6533 6534 6535 6536
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6537 6538
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6539

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6557
    Parameters:
6558
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6574 6575 6576 6577 6578 6579

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6580
            
6581
            import paddle.fluid as fluid
6582
            import paddle.fluid.layers as layers
6583 6584 6585 6586 6587 6588 6589 6590

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6591 6592

    if in_dygraph_mode():
6593 6594
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6595

6596 6597
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6598
    smooth_label = helper.create_variable_for_type_inference(dtype)
6599 6600 6601 6602 6603 6604 6605
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6606 6607


W
wopeizl 已提交
6608
@templatedoc()
F
FDInSky 已提交
6609 6610 6611 6612 6613 6614
def roi_pool(input,
             rois,
             pooled_height=1,
             pooled_width=1,
             spatial_scale=1.0,
             rois_lod=None):
W
wopeizl 已提交
6615
    """
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6627
    Args:
6628 6629
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
F
FDInSky 已提交
6630
        rois_lod (Variable): The lod info of rois. Default: None
6631 6632 6633 6634
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6635
    Returns:
6636 6637 6638
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6639
    Examples:
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
F
FDInSky 已提交
6653 6654
        rois_lod_data = np.array([0, 2])

6655 6656
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
F
FDInSky 已提交
6657 6658
        rois_lod = fluid.data(name='rois_lod', shape=[None], dtype='int64') 

6659
        pool_out = fluid.layers.roi_pool(
6660 6661
                input=x,
                rois=rois,
6662 6663
                pooled_height=1,
                pooled_width=1,
F
FDInSky 已提交
6664 6665
                spatial_scale=1.0,
                rois_lod=rois_lod)
6666 6667
    
        exe = fluid.Executor(place)
F
FDInSky 已提交
6668
        out, = exe.run(feed={'input':input_data ,'roi':roi_data, 'rois_lod': rois_lod_data}, fetch_list=[pool_out.name])
6669 6670
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6671 6672 6673 6674 6675 6676 6677 6678
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
F
FDInSky 已提交
6679 6680
                "ROIs": rois,
                "RoisLod": rois_lod},
W
wopeizl 已提交
6681 6682 6683 6684 6685 6686 6687 6688
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6689 6690


J
jerrywgz 已提交
6691 6692 6693 6694 6695 6696
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6697
              sampling_ratio=-1,
F
FDInSky 已提交
6698 6699
              name=None,
              rois_lod=None):
J
jerrywgz 已提交
6700 6701 6702 6703 6704
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6705
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6706 6707 6708
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
F
FDInSky 已提交
6709 6710
            right coordinates.
        rois_lod (Variable): The lod info of rois. Default: None
W
wangguanzhong 已提交
6711 6712 6713 6714 6715 6716 6717
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6718 6719

    Returns:
W
wangguanzhong 已提交
6720 6721 6722 6723 6724
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6725 6726 6727
    Examples:
        .. code-block:: python

6728
            import paddle.fluid as fluid
6729 6730 6731 6732
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
F
FDInSky 已提交
6733
            rois_lod = fluid.data(name='rois_lod', shape=[None], dtype='int64')
6734 6735 6736
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6737 6738
                                               pooled_width=7,
                                               spatial_scale=0.5,
F
FDInSky 已提交
6739 6740
                                               sampling_ratio=-1,
                                               rois_lod=rois_lod)
J
jerrywgz 已提交
6741
    """
6742 6743 6744
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'roi_align')
    check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align')
J
jerrywgz 已提交
6745 6746
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6747
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6748 6749 6750
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
F
FDInSky 已提交
6751 6752
                "ROIs": rois,
                "RoisLod": rois_lod},
J
jerrywgz 已提交
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6763
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6764
    """
S
SunGaofeng 已提交
6765 6766 6767 6768
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6769 6770 6771 6772 6773 6774 6775 6776

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6777 6778 6779 6780 6781 6782
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6783 6784 6785
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6786 6787 6788
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6789 6790

    Returns:
S
SunGaofeng 已提交
6791 6792 6793
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6794

S
SunGaofeng 已提交
6795
    Example:
6796 6797
        .. code-block:: python

S
SunGaofeng 已提交
6798
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6799 6800 6801
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6802
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6803 6804
    """
    label = one_hot(label, depth=input.shape[-1])
6805
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6806 6807 6808 6809 6810 6811
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6812 6813


6814 6815 6816 6817
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6818
                 resample='BILINEAR',
6819 6820
                 actual_shape=None,
                 align_corners=True,
6821 6822
                 align_mode=1,
                 data_format='NCHW'):
6823
    """
R
ruri 已提交
6824
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6825

6826 6827 6828
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6829
    and the resizing only applies on the three dimensions(depth, height and width).
6830

6831
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6832 6833
    future and only use :attr:`out_shape` instead.

6834
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6835

6836
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6837

K
Kaipeng Deng 已提交
6838 6839
        'TRILINEAR' : Trilinear interpolation

6840
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6841

6842
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6843
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6844 6845 6846 6847 6848 6849 6850 6851
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6852 6853 6854 6855 6856
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6857
    Align_corners and align_mode are optional parameters,the calculation method 
6858 6859 6860 6861
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6862
    .. code-block:: text
6863

T
Tink_Y 已提交
6864
        For scale:
6865
          
T
Tink_Y 已提交
6866
            if align_corners = True && out_size > 1 :
6867

T
Tink_Y 已提交
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6879

T
Tink_Y 已提交
6880 6881
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6882

T
Tink_Y 已提交
6883 6884
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6885

T
Tink_Y 已提交
6886 6887
          else:
              align_corners = True
6888

T
Tink_Y 已提交
6889 6890
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6891

T
Tink_Y 已提交
6892 6893
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6894

T
Tink_Y 已提交
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6905

T
Tink_Y 已提交
6906 6907 6908 6909
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6910

T
Tink_Y 已提交
6911 6912
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6913

K
Kaipeng Deng 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6936 6937 6938 6939 6940 6941
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6942 6943 6944
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6945 6946


R
ruri 已提交
6947
    Parameters:
6948 6949
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6950
        out_shape(list|tuple|Variable|None): Output shape of image resize
6951 6952 6953 6954
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6955 6956 6957
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6958
             Default: None.
6959 6960
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6961 6962
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6963 6964 6965
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6966
                                :attr:`out_shape` and :attr:`scale` specifying
6967 6968
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6969 6970 6971 6972 6973
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6974
                                errors would be occurred in graph constructing stage.
6975
                                Default: None
6976 6977 6978 6979
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6980
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6981
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6982
                            src_idx = scale*dst_index.
6983 6984 6985 6986 6987
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6988 6989

    Returns:
6990 6991
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6992

6993 6994 6995
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6996 6997 6998 6999
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7000
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7001 7002
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7003
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
7004
        TypeError: align_corners should be a bool value
7005
        ValueError: align_mode can only be '0' or '1'
7006
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
7007

7008 7009
    Examples:
        .. code-block:: python
R
ruri 已提交
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7042

R
ruri 已提交
7043 7044 7045 7046 7047 7048
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7049

R
ruri 已提交
7050 7051 7052 7053 7054 7055 7056 7057
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7058

R
ruri 已提交
7059 7060
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7061

R
ruri 已提交
7062 7063 7064 7065
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
7066

R
ruri 已提交
7067
		# [2L, 3L, 12L, 12L]
7068

7069
    """
7070 7071
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7072
        'TRILINEAR': 'trilinear',
7073 7074
        'NEAREST': 'nearest',
    }
7075 7076
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7077 7078
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7079
    resample_type = resample_methods[resample]
7080

K
Kaipeng Deng 已提交
7081 7082 7083 7084 7085
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7086 7087 7088 7089 7090
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7091
    if out_shape is None and scale is None:
7092
        raise ValueError("One of out_shape and scale must not be None.")
7093
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7094
    dtype = helper.input_dtype()
7095

7096 7097 7098 7099 7100 7101 7102 7103 7104
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

7105 7106 7107
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7108 7109 7110 7111 7112
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

7113
    inputs = {"X": input}
D
dengkaipeng 已提交
7114
    attrs = {
7115 7116 7117
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
7118 7119
        "interp_method": resample_type,
        "align_corners": align_corners,
7120 7121
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
7122 7123
    }

7124
    if out_shape is not None:
7125
        if isinstance(out_shape, Variable):
7126
            out_shape.stop_gradient = True
7127
            inputs['OutSize'] = out_shape
7128 7129
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7130 7131
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
7160 7161 7162 7163
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
7164 7165 7166 7167 7168 7169 7170
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
7171 7172 7173 7174
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
7175 7176 7177 7178 7179 7180 7181 7182 7183
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
7184

7185
    else:
7186 7187 7188
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
7189
        elif isinstance(scale, float) or isinstance(scale, int):
7190
            if scale <= 0:
7191
                raise ValueError("Attr(scale) should be greater than zero.")
7192
            attrs['scale'] = float(scale)
7193 7194 7195
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
7196

7197
    if isinstance(actual_shape, Variable):
7198 7199 7200 7201 7202
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
7203 7204 7205 7206
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7207
    out = helper.create_variable_for_type_inference(dtype)
7208
    helper.append_op(
7209
        type='{}_interp'.format(resample_type),
7210
        inputs=inputs,
7211
        outputs={"Out": out},
D
dengkaipeng 已提交
7212
        attrs=attrs)
7213
    return out
F
stash  
fengjiayi 已提交
7214 7215


7216
@templatedoc(op_type="bilinear_interp")
7217 7218 7219 7220
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7221 7222
                    actual_shape=None,
                    align_corners=True,
7223 7224
                    align_mode=1,
                    data_format='NCHW'):
7225
    """
R
ruri 已提交
7226
    This op resizes the input by performing bilinear interpolation based on given
7227
    output shape which specified by actual_shape, out_shape and scale
7228 7229
    in priority order.

7230 7231 7232
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

7233 7234 7235 7236
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7237 7238
    again in the other direction.

7239
    For details of bilinear interpolation, please refer to Wikipedia:
7240
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7241

T
tianshuo78520a 已提交
7242
    Align_corners and align_mode are optional parameters,the calculation 
7243 7244 7245 7246
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7247
    .. code-block:: text
7248

T
Tink_Y 已提交
7249
        For scale:
7250
          
T
Tink_Y 已提交
7251
            if align_corners = True && out_size > 1 :
7252

T
Tink_Y 已提交
7253 7254 7255 7256
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
7257
              scale_factor = float(in_size/out_size)
7258

T
Tink_Y 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7269

T
Tink_Y 已提交
7270
          else:
T
tink2123 已提交
7271

T
Tink_Y 已提交
7272 7273 7274 7275
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7276

R
ruri 已提交
7277 7278
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
7279
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
7280
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
7281
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
7282 7283
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
7284
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7285
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7286
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7287
             Default: None.
7288 7289 7290
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7291
                                :attr:`out_shape` and :attr:`scale` specifying
7292 7293
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7294 7295 7296 7297 7298
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7299
                                errors would be occurred in graph constructing stage.
7300
                                Default: None
7301 7302
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7303 7304 7305 7306
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
7307
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
7308 7309

    Returns:
R
ruri 已提交
7310 7311
	Variable: 4-D tensor(NCHW or NHWC).
    
7312 7313
    Examples:
        .. code-block:: python
R
ruri 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7346

R
ruri 已提交
7347 7348 7349 7350 7351 7352
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7353

R
ruri 已提交
7354 7355 7356 7357 7358 7359 7360 7361
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7362

R
ruri 已提交
7363 7364
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7365

R
ruri 已提交
7366 7367 7368 7369
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7370

R
ruri 已提交
7371
		# [2L, 3L, 12L, 12L]
7372

7373 7374
    """

7375
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7376
                        align_corners, align_mode, data_format)
7377 7378


K
Kaipeng Deng 已提交
7379 7380 7381 7382 7383 7384 7385
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7386 7387
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7388
    """
R
ruri 已提交
7389
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7390 7391 7392
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7393 7394 7395
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7396 7397 7398 7399 7400 7401 7402 7403
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7404
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7424

K
Kaipeng Deng 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7443
    Parameters:
7444 7445
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7446
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7447
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7448 7449 7450
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7451
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7452 7453 7454 7455 7456 7457
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7458 7459 7460 7461 7462
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7463
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7464 7465 7466
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7467 7468 7469 7470
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7471 7472

    Returns:
R
ruri 已提交
7473
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7474 7475 7476

    Examples:
        .. code-block:: python
R
ruri 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7509

R
ruri 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7528

R
ruri 已提交
7529 7530 7531 7532
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7533

R
ruri 已提交
7534
		# [2L, 3L, 12L, 12L, 12L]
7535 7536 7537



K
Kaipeng Deng 已提交
7538 7539 7540
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7541
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7542 7543


7544
@templatedoc(op_type="nearest_interp")
7545 7546 7547 7548
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7549
                   actual_shape=None,
7550 7551
                   align_corners=True,
                   data_format='NCHW'):
7552
    """
R
ruri 已提交
7553
    This op resizes the input by performing nearest neighbor interpolation in both the
7554 7555
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7556

7557 7558 7559
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7560 7561
    Example:

T
Tink_Y 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7574
          
T
Tink_Y 已提交
7575 7576
          if:
              align_corners = False
7577

T
Tink_Y 已提交
7578 7579
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7580

T
Tink_Y 已提交
7581 7582
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7583

T
Tink_Y 已提交
7584 7585
          else:
              align_corners = True
7586

T
Tink_Y 已提交
7587 7588
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7589

T
Tink_Y 已提交
7590 7591
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7592 7593


7594
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7595
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7596

R
ruri 已提交
7597
    Parameters:
7598 7599
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7600
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7601
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7602
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7603
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7604 7605 7606
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7607 7608
                                dynamically. If provided, image resize
                                according to this given shape rather than
7609
                                :attr:`out_shape` and :attr:`scale` specifying
7610 7611
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7612 7613 7614 7615 7616
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7617
                                errors would be occurred in graph constructing stage.
7618
                                Default: None
7619
        align_corners(bool): ${align_corners_comment}
7620 7621 7622 7623
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7624 7625

    Returns:
R
ruri 已提交
7626
	Variable: 4-D tensor(NCHW or NHWC).
7627 7628 7629

    Examples:
        .. code-block:: python
R
ruri 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7662

R
ruri 已提交
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7678

R
ruri 已提交
7679 7680
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7681

R
ruri 已提交
7682 7683 7684 7685 7686 7687
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7688 7689 7690



7691 7692
    """

7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7703 7704 7705 7706


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7707
    This op resizes a batch of images. The short edge of input images will be
7708 7709
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7710 7711
    constant.

R
ruri 已提交
7712 7713
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7714
        out_short_len(int): The length of output images' short edge.
7715
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7716

7717
    Returns:
R
ruri 已提交
7718
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7719 7720 7721 7722

    Examples:
        .. code-block:: python

7723
            import paddle.fluid as fluid
R
ruri 已提交
7724
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7725
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7736 7737 7738
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7739 7740 7741
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7742
def gather(input, index, overwrite=True):
W
whs 已提交
7743
    """
Q
qiaolongfei 已提交
7744 7745
    **Gather Layer**

7746
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7747 7748 7749 7750
    of X indexed by `index` and concatenate them together.

    .. math::

7751
        Out = X[Index]
W
whs 已提交
7752 7753 7754 7755 7756 7757 7758


    .. code-block:: text


                Given:

7759 7760
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7771 7772 7773 7774 7775
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7776 7777 7778 7779 7780
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7781 7782 7783 7784 7785

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7786

W
whs 已提交
7787 7788
        .. code-block:: python

7789
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7790 7791
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7792 7793 7794 7795
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7796
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7797 7798 7799 7800
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7801 7802
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7803 7804 7805
    return out


7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7858 7859 7860
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7861
        name (str|None): A name for this layer(optional). If set None, the
7862
                         layer will be named automatically.
7863 7864 7865 7866 7867 7868 7869 7870 7871

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7872 7873
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7874 7875 7876 7877 7878
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
7879
    output = helper.create_variable_for_type_inference(dtype)
7880 7881 7882 7883 7884 7885 7886 7887
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7888
def scatter(input, index, updates, name=None, overwrite=True):
7889 7890 7891
    """
    **Scatter Layer**

7892
    Output is obtained by updating the input on selected indices based on updates.
7893

7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7918 7919

    Args:
7920 7921
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7922
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7923 7924
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7925 7926
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7927
	    Default value is True.
7928 7929

    Returns:
7930
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7931 7932 7933 7934 7935

    Examples:

        .. code-block:: python

7936
            import numpy as np
7937 7938
            import paddle.fluid as fluid

7939 7940 7941
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7942

7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7957 7958 7959
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7960
    out = helper.create_variable_for_type_inference(dtype)
7961 7962 7963 7964 7965
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7966
        attrs={'overwrite': overwrite},
7967 7968 7969 7970
        outputs={"Out": out})
    return out


7971 7972 7973 7974 7975
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7976 7977 7978
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7979 7980 7981 7982
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7983

7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
8015
        ref (Variable): The ref input. Its dtype should be float32, float64.
8016 8017
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
8018 8019 8020
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8021 8022

    Returns:
8023
        output (Variable): The output is a tensor with the same shape and dtype as ref.
8024 8025 8026 8027 8028 8029 8030

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8031 8032 8033
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8034 8035 8036 8037 8038 8039 8040

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
8041
    dtype = helper.input_dtype(input_param_name='ref')
8042
    output = helper.create_variable_for_type_inference(dtype)
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
8068
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
8069 8070
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
8071
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8072 8073 8074 8075 8076 8077 8078 8079 8080 8081

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8082 8083
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8084 8085 8086 8087 8088 8089 8090
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8104

8105
    Examples:
Q
qingqing01 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
8119
    """
F
stash  
fengjiayi 已提交
8120
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8121
    dtype = x.dtype
X
Xin Pan 已提交
8122
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8123
    if seed is None:
8124
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8125
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8126
    if isinstance(seed, int):
F
fengjiayi 已提交
8127 8128 8129 8130 8131
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8132 8133 8134 8135
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8136
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8137 8138
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8139 8140
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8141
    return out
W
whs 已提交
8142 8143


8144
def log(x, name=None):
W
wanghaoshuang 已提交
8145 8146 8147 8148 8149
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8150
        Out = \\ln(x)
W
wanghaoshuang 已提交
8151 8152

    Args:
W
Wilber 已提交
8153 8154 8155
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
8156 8157

    Returns:
W
Wilber 已提交
8158
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
8159 8160 8161 8162 8163

    Examples:

        .. code-block:: python

8164
            import paddle.fluid as fluid
W
Wilber 已提交
8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
8178
    """
8179
    if in_dygraph_mode():
8180
        return core.ops.log(x)
8181

8182
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8183
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8184
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8185
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8186
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8187 8188 8189
    return out


Z
zhupengyang 已提交
8190
@templatedoc()
8191
def relu(x, name=None):
W
wanghaoshuang 已提交
8192
    """
Z
zhupengyang 已提交
8193
    ${comment}
W
wanghaoshuang 已提交
8194 8195

    Args:
Z
zhupengyang 已提交
8196 8197 8198 8199
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
8200 8201

    Returns:
Z
zhupengyang 已提交
8202
        Variable: ${out_comment}
W
wanghaoshuang 已提交
8203 8204 8205 8206 8207

    Examples:

        .. code-block:: python

8208
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
8218
    if in_dygraph_mode():
8219
        return core.ops.relu(x)
8220

8221 8222
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

8223
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8224
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8225
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8226
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8227 8228
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8229
    return out
8230 8231


C
chengduo 已提交
8232 8233
def selu(x, scale=None, alpha=None, name=None):
    """
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
8248 8249

    Args:
8250 8251
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
8252 8253 8254
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8255
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
8256 8257 8258
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8259 8260
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
8261 8262

    Returns:
8263
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
8264 8265 8266 8267

    Examples:

        .. code-block:: python
8268 8269
             
            import paddle.fluid as fluid
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8297 8298 8299
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8300 8301 8302 8303
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8304
    .. math::
8305

H
haowang101779990 已提交
8306
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8307

8308
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8309 8310 8311
    is then calculated from it.


L
Liufang Sang 已提交
8312 8313
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
8314
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8315
                           Its shape should be the same as input.
L
Liufang Sang 已提交
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8328 8329 8330
    Examples:

        .. code-block:: python
8331

B
Bai Yifan 已提交
8332
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8333
            iou_shape = [None, 32, 32]
8334
            num_classes = 5
L
Liufang Sang 已提交
8335 8336 8337
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8338
                                                          num_classes)
W
whs 已提交
8339 8340 8341
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8342 8343 8344
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8345 8346
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8347 8348
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8349
        outputs={
W
whs 已提交
8350 8351 8352
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8353 8354 8355
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8356 8357 8358 8359 8360 8361


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8362 8363
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8364

8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8393 8394 8395 8396 8397 8398
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8399
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8400
            iteration. If it is a list/tuple of integers, it's length must be the same
8401
            as the rank of `x`
S
SunGaofeng 已提交
8402 8403 8404
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8405
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8406 8407 8408 8409 8410
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8411 8412

    Returns:
S
SunGaofeng 已提交
8413 8414 8415 8416
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8417 8418 8419 8420 8421 8422 8423 8424

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8425
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8426 8427
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8428 8429 8430
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8431 8432
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8433 8434 8435 8436 8437

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8438
            isinstance(shape, Variable)):
8439 8440 8441 8442 8443
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8444
    out = helper.create_variable_for_type_inference(x.dtype)
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8462 8463


8464 8465 8466 8467 8468 8469
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8470 8471
        * Case 1 (input is a 2-D Tensor):
            Input:
8472
                X.shape = [3, 5]
8473 8474 8475 8476 8477 8478 8479
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8480 8481 8482
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8493
                shape = [2, 2, -1]
8494 8495
                offsets = [0, 0, 1]
            Output:
8496 8497 8498 8499 8500
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8501 8502

    Parameters:
8503
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8504 8505
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8506
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8507
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8508 8509
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8510 8511
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8512
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8513 8514 8515 8516 8517
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8518 8519

    Returns:
8520
        Variable: The cropped Tensor has same data type with `x`.
8521 8522

    Raises:
8523 8524 8525 8526 8527 8528
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8529 8530 8531 8532 8533 8534

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8535
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8536 8537
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8538 8539
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8540 8541 8542 8543
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8544
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8545 8546
            # crop1.shape = [-1, 2, 3]

8547 8548 8549 8550 8551
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8552

8553 8554
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8555 8556 8557
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8558 8559
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8560 8561 8562 8563 8564
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8565 8566
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8567 8568 8569
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8570 8571 8572 8573 8574 8575 8576 8577

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8602 8603 8604
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8605
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8606
    elif utils._contain_var(offsets):
8607
        new_offsets_tensor = []
8608
        offsets_attr = []
8609 8610 8611 8612
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8613
                offsets_attr.append(-1)
8614
            else:
8615
                _attr_offsets_check(dim)
8616 8617 8618
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8619
                offsets_attr.append(dim)
8620
        ipts['OffsetsTensor'] = new_offsets_tensor
8621
        attrs['offsets'] = offsets_attr
8622
    else:
8623 8624
        for offset in offsets:
            _attr_offsets_check(offset)
8625 8626 8627 8628 8629
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8630
    elif utils._contain_var(shape):
8631 8632
        new_shape_tensor = []
        shape_attr = []
8633
        for dim_size in shape:
8634 8635 8636
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8637
                shape_attr.append(0)
8638
            else:
8639
                _attr_shape_check(dim_size)
8640 8641 8642 8643 8644 8645 8646 8647
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8648 8649
        for dim_size in shape:
            _attr_shape_check(dim_size)
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8660 8661 8662 8663 8664 8665 8666 8667
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8668 8669 8670 8671 8672 8673
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8674 8675

    Returns:
8676
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8677 8678 8679 8680 8681 8682 8683

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8684

S
SunGaofeng 已提交
8685
            import paddle.fluid as fluid
8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8700 8701 8702 8703
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8704
            isinstance(out_shape, Variable)):
W
whs 已提交
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8726 8727 8728 8729 8730 8731 8732
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8733
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8734 8735 8736
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8755
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8756 8757 8758 8759 8760

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8761
        .. code-block:: text
W
whs 已提交
8762

8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
            Input = [[[[1., 2., 3.],
                       [4., 5., 6.]]]]

            Case 0:
                paddings = [0, 1, 2, 3],
                mode = 'constant'
                pad_value = 0
                Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
                         [0., 0., 4., 5., 6., 0., 0., 0.],
                         [0., 0., 0., 0., 0., 0., 0., 0.]]]]

            Case 1:
                paddings = [0, 1, 2, 1],
                mode = 'reflect'
                Out = [[[[3., 2., 1., 2., 3., 2.],
                         [6., 5., 4., 5., 6., 5.],
                         [3., 2., 1., 2., 3., 2.]]]]

            Case 2:
                paddings = [0, 1, 2, 1],
                mode = 'edge'
                Out = [[[[1., 1., 1., 2., 3., 3.],
                         [4., 4., 4., 5., 6., 6.],
                         [4., 4., 4., 5., 6., 6.]]]]
M
minqiyang 已提交
8787

L
Liufang Sang 已提交
8788
    Code Examples:
W
whs 已提交
8789 8790
        .. code-block:: python

8791 8792 8793
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
            result = fluid.layers.pad2d(input=data, paddings=[0, 1, 2, 3], mode='reflect')
W
whs 已提交
8794
    """
8795 8796 8797 8798 8799 8800 8801

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8802 8803 8804 8805 8806 8807 8808 8809
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8810
    helper = LayerHelper('pad2d', **locals())
8811 8812 8813 8814

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8815
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8816
    out = helper.create_variable_for_type_inference(dtype)
8817

W
whs 已提交
8818
    helper.append_op(
8819
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8820 8821 8822 8823

    return out


8824 8825 8826 8827 8828 8829 8830
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8831 8832
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8833
    Returns:
8834
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8835 8836 8837 8838 8839

    Examples:

        .. code-block:: python

8840
            import paddle.fluid as fluid
8841 8842 8843 8844 8845 8846 8847 8848 8849
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8850 8851
    """
    helper = LayerHelper('elu', **locals())
8852
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8853
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8866

8867 8868
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8869 8870 8871 8872
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8873 8874 8875

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8876 8877 8878 8879 8880

    Examples:

        .. code-block:: python

8881
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8882 8883 8884 8885 8886 8887 8888 8889
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8890 8891
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8892
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8904 8905 8906 8907
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8908
    Args:
8909 8910 8911
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8912 8913

    Returns:
8914
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8915 8916 8917 8918 8919

    Examples:

        .. code-block:: python

8920
            import paddle.fluid as fluid
8921

8922
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8923 8924 8925

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8926
            # y_1 is x^{2.0}
8927 8928 8929 8930

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8931
            # y_2 is x^{3.0}
8932 8933
    """
    helper = LayerHelper('pow', **locals())
8934 8935 8936 8937 8938 8939 8940 8941
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8942
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8943
    helper.append_op(
8944
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8945 8946 8947 8948
    return out


@templatedoc()
8949
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8960
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8961 8962 8963 8964 8965

    Examples:

        .. code-block:: python

8966
            import paddle.fluid as fluid
8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8982 8983
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8984
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8998 8999 9000 9001 9002 9003 9004
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
9005 9006

    Returns:
9007
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
9008 9009 9010 9011 9012

    Examples:

        .. code-block:: python

9013
            import paddle.fluid as fluid
9014 9015
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
9016 9017
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9018
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
9031 9032 9033 9034 9035 9036 9037
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
9038
    Args:
9039 9040 9041 9042 9043
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
9044 9045

    Returns:
9046 9047

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
9048 9049 9050 9051

    Examples:

        .. code-block:: python
9052 9053 9054 9055 9056 9057
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
9058
            y = fluid.layers.swish(x, beta=2.0)
9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
9096 9097
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9098
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9099 9100 9101 9102 9103 9104 9105 9106
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9107 9108 9109 9110
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9111 9112
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9113

J
jerrywgz 已提交
9114 9115 9116 9117 9118 9119 9120 9121
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9122
    Args:
W
wangguanzhong 已提交
9123 9124
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
9125
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
9126 9127 9128 9129 9130
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
9131 9132

    Returns:
W
wangguanzhong 已提交
9133 9134 9135 9136
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
9137 9138 9139 9140 9141

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9142 9143
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
9144
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
9145
            mode = 'channel'
J
jerrywgz 已提交
9146 9147 9148
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9149
    """
9150 9151
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'prelu')

J
jerrywgz 已提交
9152 9153 9154 9155 9156 9157 9158
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
9159
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
9160 9161
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9162
        attr=helper.param_attr,
J
jerrywgz 已提交
9163 9164 9165
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
9166
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
9167
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9168 9169 9170 9171 9172 9173 9174 9175 9176
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9177 9178 9179 9180 9181 9182 9183 9184
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
9185 9186
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
9187
    Returns:
9188
        ${out_type}: ${out_comment}
9189 9190 9191

    Examples:

9192
    .. code-block:: python
9193

9194
            import paddle.fluid as fluid
9195 9196 9197 9198 9199 9200 9201 9202 9203
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
9204
    """
9205 9206
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu')

9207
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9208
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
9225 9226
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9227
    Returns:
9228
        output(${out_type}): ${out_comment}
9229 9230 9231 9232 9233

    Examples:

        .. code-block:: python

9234
            import paddle.fluid as fluid
W
Wilber 已提交
9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
9248
    """
9249
    if in_dygraph_mode():
9250
        return core.ops.leaky_relu(x, 'alpha', alpha)
9251

9252 9253 9254
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')

9255 9256
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
9257
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9258
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9259
    helper.append_op(
9260
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9261 9262 9263 9264 9265
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
9266 9267 9268 9269
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

9270
    Args:
9271 9272 9273 9274
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

9275
    Returns:
9276
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
9277 9278 9279

    Examples:

9280 9281 9282
        .. code-block:: python 
 
            import paddle.fluid as fluid
9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
9295 9296
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9297
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9298 9299 9300 9301 9302 9303 9304 9305
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9306 9307
def flatten(x, axis=1, name=None):
    """
9308 9309 9310
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
9311

H
haowang101779990 已提交
9312
    For Example:
M
minqiyang 已提交
9313

H
haowang101779990 已提交
9314
    .. code-block:: text
9315

H
haowang101779990 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9337 9338

    Args:
9339 9340
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9341 9342
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9343
                    The value for axis must be in the range [0, R], where R
9344 9345 9346
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9347 9348

    Returns:
H
haowang101779990 已提交
9349 9350 9351
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9352
                  inner dimension of the output. A Tensor with type same as input x.
9353 9354 9355

    Raises:
        ValueError: If x is not a variable.
9356
        ValueError: If axis is not in range [0, rank(x)].
9357 9358 9359 9360 9361

    Examples:

        .. code-block:: python

9362
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9363
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9364
            # x shape is [4, 4, 3]
9365
            out = fluid.layers.flatten(x=x, axis=2)
9366
            # out shape is [16, 3]
9367 9368 9369 9370 9371 9372 9373 9374 9375
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9376 9377
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9378
    helper.append_op(
9379
        type='flatten2',
9380
        inputs={"X": x},
9381 9382
        outputs={'Out': out,
                 'XShape': x_shape},
9383 9384
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9385 9386 9387


def stack(x, axis=0):
S
sneaxiy 已提交
9388
    """
9389

9390
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9391

C
chengduozh 已提交
9392 9393 9394
    .. code-block:: text

        Case 1:
9395

C
chengduozh 已提交
9396
          Input:
9397
            x[0].shape = [1, 2]
C
chengduozh 已提交
9398
            x[0].data = [ [1.0 , 2.0 ] ]
9399
            x[1].shape = [1, 2]
C
chengduozh 已提交
9400
            x[1].data = [ [3.0 , 4.0 ] ]
9401
            x[2].shape = [1, 2]
C
chengduozh 已提交
9402 9403 9404 9405 9406 9407
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9408
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9409 9410 9411
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9412

C
chengduozh 已提交
9413 9414

        Case 2:
9415 9416 9417 9418


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9419
            x[0].data = [ [1.0 , 2.0 ] ]
9420
            x[1].shape = [1, 2]
C
chengduozh 已提交
9421
            x[1].data = [ [3.0 , 4.0 ] ]
9422
            x[2].shape = [1, 2]
C
chengduozh 已提交
9423
            x[2].data = [ [5.0 , 6.0 ] ]
9424

C
chengduozh 已提交
9425 9426 9427 9428 9429

          Attrs:
            axis = 1 or axis = -2

          Output:
9430
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9431 9432 9433
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9434

C
chengduozh 已提交
9435

S
sneaxiy 已提交
9436
    Args:
9437 9438 9439 9440 9441 9442 9443 9444 9445
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9446

S
sneaxiy 已提交
9447
    Returns:
9448
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9449

9450 9451 9452
    Examples:
        .. code-block:: python

9453
            import paddle.fluid as fluid
9454
            import paddle.fluid.layers as layers
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9465

S
sneaxiy 已提交
9466 9467
    """

X
Xin Pan 已提交
9468 9469 9470 9471 9472
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9473
    out = helper.create_variable_for_type_inference(x[0].dtype)
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9492

X
Xin Pan 已提交
9493
    return out
D
dzhwinter 已提交
9494 9495


J
Jiawei Wang 已提交
9496
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9497
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9534 9535
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9563 9564
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9565 9566 9567 9568

    return [out, loss_weight]


D
dzhwinter 已提交
9569 9570 9571 9572
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9573
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9574

D
dzhwinter 已提交
9575 9576 9577
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9578
    raised.
D
dzhwinter 已提交
9579 9580

    Args:
9581
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9582 9583
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9584

D
dzhwinter 已提交
9585
    Returns:
9586 9587 9588 9589
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9590

9591 9592 9593 9594
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9595 9596
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9597

9598
    """
D
dzhwinter 已提交
9599 9600 9601 9602 9603 9604 9605 9606
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9607
    for _ in range(num):
X
Xin Pan 已提交
9608
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9609 9610 9611 9612 9613 9614 9615 9616

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9617 9618 9619


def expand(x, expand_times, name=None):
9620 9621 9622 9623
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9624 9625 9626 9627 9628 9629
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9630

W
whs 已提交
9631 9632 9633 9634
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9635

W
whs 已提交
9636
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9637

W
whs 已提交
9638
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9639

W
whs 已提交
9640 9641 9642 9643
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9644

W
whs 已提交
9645
    Args:
9646 9647 9648 9649 9650
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9651 9652

    Returns:
9653
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9654

9655 9656 9657
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9658 9659 9660

    Examples:
        .. code-block:: python
L
liym27 已提交
9661

W
wangchaochaohu 已提交
9662
            import paddle.fluid as fluid
L
liym27 已提交
9663 9664 9665 9666

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9667
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9668 9669 9670 9671 9672

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9673
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9674
    """
9675 9676
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9677
            if utils._contain_var(expand_times):
9678 9679 9680 9681 9682 9683 9684 9685
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9686
        return core.ops.expand(x, 'expand_times', expand_times)
9687

9688 9689
    inputs = {"X": [x]}
    attrs = {}
9690 9691
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9692
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9693 9694 9695
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9696

W
whs 已提交
9697
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9698 9699 9700 9701 9702 9703 9704 9705 9706

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9707
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9722

L
Leo Chen 已提交
9723 9724 9725 9726 9727 9728 9729 9730
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9731

L
liym27 已提交
9732 9733
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9734
    helper.append_op(
9735
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9736
    return out
S
sneaxiy 已提交
9737 9738


9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9809 9810 9811
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9812
@templatedoc()
G
fix  
gongweibao 已提交
9813 9814 9815 9816 9817 9818 9819 9820 9821
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9822 9823 9824 9825 9826 9827
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9828

9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9855
    Args:
9856 9857 9858 9859 9860 9861 9862 9863
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9864
    Returns:
9865
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9866

9867 9868 9869
    Examples:
        .. code-block:: python

9870
            import paddle.fluid as fluid
9871 9872 9873 9874
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9875

9876 9877 9878 9879
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9880 9881 9882
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9883
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9900 9901


G
gongweibao 已提交
9902
@templatedoc()
X
Xin Pan 已提交
9903
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9904
    """
9905
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9906 9907

    Args:
9908 9909 9910 9911 9912 9913 9914 9915 9916
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9917 9918

    Returns:
9919
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9920

9921
    Examples:
9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9937

9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9956 9957 9958
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9959
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9970
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9971 9972 9973 9974 9975
        })

    return out


G
gongweibao 已提交
9976
@templatedoc()
G
fix  
gongweibao 已提交
9977
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9978
    """
R
ruri 已提交
9979
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9980

R
ruri 已提交
9981 9982 9983 9984 9985
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9986
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9987 9988

    Returns:
R
ruri 已提交
9989
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9990

9991 9992 9993
    Examples:
        .. code-block:: python

9994
            import paddle.fluid as fluid
R
ruri 已提交
9995
            x = fluid.data(
9996 9997
                name="X",
                shape=[13, 11],
R
ruri 已提交
9998
                dtype='float32')
9999

Y
Yibing Liu 已提交
10000
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10001 10002 10003
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10004
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10016
@templatedoc()
G
fix  
gongweibao 已提交
10017 10018 10019 10020 10021 10022 10023 10024 10025
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10026
    ${comment}
G
fix  
gongweibao 已提交
10027 10028

    Args:
G
gongweibao 已提交
10029 10030
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
10031 10032 10033 10034 10035 10036
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
10037 10038

    Returns:
G
gongweibao 已提交
10039
        out (Variable): ${out_comment}
10040 10041 10042 10043

    Examples:
        .. code-block:: python

10044
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10045
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
10046

Y
Yibing Liu 已提交
10047
            out = fluid.layers.gaussian_random_batch_size_like(
10048
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10049 10050 10051
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10052
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10071
@templatedoc()
X
Xin Pan 已提交
10072
def sum(x):
G
fix  
gongweibao 已提交
10073
    """
G
gongweibao 已提交
10074
    ${comment}
10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
10105 10106

    Args:
10107
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
10108 10109

    Returns:
10110
        Variable: ${out_comment}
10111 10112 10113 10114

    Examples:
        .. code-block:: python

10115
            import paddle.fluid as fluid
10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
10138 10139
    """

10140
    return paddle.elementwise_sum(x)
G
fix  
gongweibao 已提交
10141 10142


G
gongweibao 已提交
10143
@templatedoc()
G
fix  
gongweibao 已提交
10144 10145
def slice(input, axes, starts, ends):
    """
10146
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
10147
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
10148 10149 10150 10151 10152 10153 10154
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
10155
    For slicing to the end of a dimension with unknown size, it is recommended
10156
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
10157 10158 10159
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10160

10161 10162 10163 10164 10165 10166 10167 10168
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
10169

10170 10171 10172 10173 10174
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
10175
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
10176
            Then:
10177
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
10178
    Args:
10179 10180 10181 10182 10183 10184 10185 10186 10187
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
10188 10189

    Returns:
10190 10191 10192 10193 10194
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
10195

10196 10197 10198
    Examples:
        .. code-block:: python

10199
            import paddle.fluid as fluid
10200

10201 10202
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
10203

10204 10205 10206 10207 10208 10209
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
10210
            # sliced_1 is input[0:3, 0:2, 2:4].
10211 10212 10213 10214 10215

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
10216
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
10217
    """
10218 10219 10220
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
10221
            if utils._contain_var(starts):
10222 10223 10224 10225 10226 10227 10228 10229 10230
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
10231
            if utils._contain_var(ends):
10232 10233 10234 10235 10236 10237 10238 10239
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

10240 10241
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
10242

10243 10244 10245 10246 10247 10248 10249
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10250
    helper = LayerHelper('slice', **locals())
10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

10269 10270 10271 10272 10273 10274 10275
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
10276
        if utils._contain_var(starts):
10277 10278 10279 10280 10281 10282 10283
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
10284 10285
        else:
            attrs['starts'] = starts
10286 10287 10288 10289 10290 10291 10292 10293

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
10294
        if utils._contain_var(ends):
10295 10296 10297 10298 10299 10300 10301
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
10302 10303 10304
        else:
            attrs['ends'] = ends

10305 10306
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10307 10308
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10309
    helper.append_op(
10310
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10311 10312 10313 10314

    return out


W
wangchaochaohu 已提交
10315 10316 10317
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10331 10332 10333 10334 10335 10336 10337 10338 10339

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10340
                strides = [1, 1]
W
wangchaochaohu 已提交
10341
            Then:
10342
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10343 10344 10345 10346 10347
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10348
                starts = [0, 1]
W
wangchaochaohu 已提交
10349 10350 10351 10352 10353 10354 10355 10356 10357
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10358
                starts = [0, 1]
10359 10360
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10361
            Then:
10362 10363
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10376 10377

    Returns:
W
wangchaochaohu 已提交
10378 10379 10380 10381 10382 10383
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10384

W
wangchaochaohu 已提交
10385 10386 10387 10388 10389
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10390
            input = fluid.data(
W
wangchaochaohu 已提交
10391 10392
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10393 10394 10395 10396 10397
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10398 10399 10400 10401 10402
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10403 10404 10405 10406

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10407 10408
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10409
    """
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10420 10421
    helper = LayerHelper('strided_slice', **locals())

10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10442 10443 10444
            'axes': axes,
            'starts': starts,
            'ends': ends,
10445 10446 10447 10448 10449 10450 10451 10452 10453 10454
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10455
            if utils._contain_var(starts):
10456 10457 10458 10459 10460 10461 10462
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10463 10464
            else:
                attrs['starts'] = starts
10465 10466 10467 10468 10469 10470 10471

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10472
            if utils._contain_var(ends):
10473 10474 10475 10476 10477 10478 10479
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10480 10481 10482
            else:
                attrs['ends'] = ends

10483 10484 10485 10486 10487 10488
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10489
            if utils._contain_var(strides):
10490 10491 10492 10493 10494 10495 10496
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10497 10498
            else:
                attrs['strides'] = strides
10499 10500 10501 10502 10503
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10504 10505 10506 10507

    return out


G
fix  
gongweibao 已提交
10508 10509
def shape(input):
    """
C
chengduozh 已提交
10510 10511
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10512
    Get the shape of the input.
G
fix  
gongweibao 已提交
10513 10514

    Args:
10515
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10516 10517

    Returns:
10518
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10519

10520 10521 10522
    Examples:
        .. code-block:: python

10523
            import paddle.fluid as fluid
10524
            import numpy as np
10525

10526 10527 10528 10529 10530 10531 10532 10533 10534 10535
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10536 10537 10538
    """

    helper = LayerHelper('shape', **locals())
10539
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10540
    helper.append_op(
G
fix  
gongweibao 已提交
10541
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10542 10543

    return out
G
merge  
gongweibao 已提交
10544 10545


Z
zhoukunsheng 已提交
10546 10547
def rank(input):
    """
10548
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10549 10550

    Args:
10551
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10552 10553

    Returns:
10554
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10555 10556 10557 10558

    Examples:
        .. code-block:: python

10559 10560
            import paddle.fluid as fluid

10561 10562
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10563 10564 10565 10566 10567 10568 10569 10570
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10600 10601 10602 10603
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10604

S
sneaxiy 已提交
10605 10606
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10607 10608 10609 10610
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10611

S
sneaxiy 已提交
10612 10613
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10614
    name = helper.kwargs.get('name', None)
10615
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10616

S
sneaxiy 已提交
10617 10618 10619 10620 10621 10622 10623 10624 10625 10626
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10627
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10628
    """
10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10642 10643

    Args:
10644
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10645
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10646 10647 10648 10649
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10650 10651

    Returns:
10652
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10653 10654 10655 10656 10657

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10658 10659 10660 10661 10662 10663 10664 10665 10666
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10667

10668 10669
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10670 10671 10672 10673 10674 10675 10676 10677

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10678
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10691
    """
10692 10693 10694 10695 10696 10697 10698 10699

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10700
    inputs = {'X': [x]}
10701 10702 10703 10704 10705
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10706
        inputs['ScaleTensor'] = [scale]
10707 10708
    else:
        attrs['scale'] = float(scale)
10709
    helper = LayerHelper('scale', **locals())
10710
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10711

S
sneaxiy 已提交
10712
    helper.append_op(
10713
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10714
    return helper.append_activation(out)
S
sneaxiy 已提交
10715 10716


X
Xin Pan 已提交
10717
def elementwise_add(x, y, axis=-1, act=None, name=None):
10718 10719 10720 10721 10722 10723 10724 10725 10726 10727
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10728 10729
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10730 10731
            }

10732 10733
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10734
        z = fluid.layers.elementwise_add(x, y)
10735
        # z = x + y
10736 10737 10738 10739 10740 10741

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10742
        print(z_value) # [3., 8., 6.]
10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10756 10757
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10758
        z = fluid.layers.elementwise_add(x, y, axis=1)
10759
        # z = x + y
10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10781 10782
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10783
        z = fluid.layers.elementwise_add(x, y, axis=3)
10784
        # z = x + y
10785 10786 10787 10788 10789 10790 10791 10792 10793

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10794 10795 10796 10797
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10798 10799 10800
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10801
def elementwise_div(x, y, axis=-1, act=None, name=None):
10802 10803 10804 10805 10806 10807 10808 10809 10810 10811
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10812 10813
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10814 10815
            }

10816 10817
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10818
        z = fluid.layers.elementwise_div(x, y)
10819
        # z = x / y
10820 10821 10822 10823 10824 10825

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10826
        print(z_value) # [2., 0.6, 2.]
10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10840 10841
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10842
        z = fluid.layers.elementwise_div(x, y, axis=1)
10843
        # z = x / y
10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10865 10866
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10867
        z = fluid.layers.elementwise_div(x, y, axis=3)
10868
        # z = x / y
10869 10870 10871 10872 10873 10874 10875 10876 10877

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10878 10879 10880 10881
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10882 10883 10884
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10885
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10886 10887 10888 10889 10890 10891 10892 10893 10894 10895
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10896 10897
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10898 10899
            }

10900 10901
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10902
        z = fluid.layers.elementwise_sub(x, y)
10903
        # z = x - y
10904 10905 10906 10907 10908 10909

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10910
        print(z_value) # [1., -2., 2.]
10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10924 10925
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10926
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10927
        # z = x - y
10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10949 10950
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10951
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10952
        # z = x - y
10953 10954 10955 10956 10957 10958 10959 10960 10961

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10962 10963 10964 10965
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10966 10967 10968
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10969
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10970 10971 10972 10973 10974 10975 10976 10977 10978 10979
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10980 10981
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10982 10983
            }

10984 10985
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10986
        z = fluid.layers.elementwise_mul(x, y)
10987
        # z = x * y
10988 10989 10990 10991 10992 10993

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10994
        print(z_value) # [2., 15., 8.]
10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11008 11009
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11010
        z = fluid.layers.elementwise_mul(x, y, axis=1)
11011
        # z = x * y
11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
11033 11034
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
11035
        z = fluid.layers.elementwise_mul(x, y, axis=3)
11036
        # z = x * y
11037 11038 11039 11040 11041 11042 11043 11044 11045

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
11046 11047 11048 11049
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
11050 11051 11052
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11053
def elementwise_max(x, y, axis=-1, act=None, name=None):
11054 11055 11056 11057 11058 11059 11060 11061 11062 11063
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11064 11065
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11066 11067
            }

11068 11069
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11091 11092
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
11104 11105 11106 11107
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
11108 11109 11110
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11111
def elementwise_min(x, y, axis=-1, act=None, name=None):
11112 11113 11114 11115 11116 11117 11118 11119 11120 11121
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11122 11123
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11124 11125
            }

11126 11127
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11128
        z = fluid.layers.elementwise_min(x, y)
11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11148 11149
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11150
        z = fluid.layers.elementwise_min(x, y, axis=1)
11151 11152 11153 11154 11155 11156 11157 11158 11159

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
11160 11161 11162
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
11163

S
sneaxiy 已提交
11164 11165 11166
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11167
def elementwise_pow(x, y, axis=-1, act=None, name=None):
11168 11169 11170 11171 11172 11173 11174 11175 11176 11177
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11178 11179
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11180 11181
            }

11182 11183
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11184 11185 11186 11187 11188 11189 11190 11191 11192
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
11193 11194 11195
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
11196 11197 11198
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11199
def elementwise_mod(x, y, axis=-1, act=None, name=None):
11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
11225 11226 11227 11228
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

11229 11230 11231 11232
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
11258 11259 11260 11261
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

11262 11263 11264
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11265
for func in [
11266 11267 11268 11269
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
11270 11271
        elementwise_max,
        elementwise_pow,
11272
        elementwise_min,
11273 11274
        elementwise_mod,
        elementwise_floordiv,
11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11292
for func in []:
S
sneaxiy 已提交
11293 11294 11295 11296
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11297 11298
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11299
        ])
11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11337 11338


11339
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11340 11341
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11342 11343
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11344 11345

    if out is None:
11346
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11359
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11360
    """
W
Wilber 已提交
11361 11362 11363 11364 11365 11366 11367 11368
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11369 11370 11371 11372

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11373 11374
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11375 11376

    Returns:
W
Wilber 已提交
11377
        ${out_type}: ${out_comment}
11378 11379 11380 11381

    Examples:
        .. code-block:: python

11382
            import paddle.fluid as fluid
W
Wilber 已提交
11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11401 11402 11403 11404 11405 11406 11407
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11408
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11409
    """
W
Wilber 已提交
11410 11411 11412 11413 11414 11415 11416 11417
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11418 11419 11420 11421

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11422 11423
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11424 11425

    Returns:
W
Wilber 已提交
11426
        ${out_type}: ${out_comment}
11427 11428 11429 11430

    Examples:
        .. code-block:: python

11431
            import paddle.fluid as fluid
W
Wilber 已提交
11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11450 11451 11452 11453 11454 11455 11456
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11457
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11458
    """
W
Wilber 已提交
11459 11460 11461 11462 11463 11464 11465 11466
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11467 11468 11469 11470

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11471 11472
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11473 11474

    Returns:
W
Wilber 已提交
11475
        ${out_type}: ${out_comment}
11476 11477 11478 11479

    Examples:
        .. code-block:: python

11480
            import paddle.fluid as fluid
W
Wilber 已提交
11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11499 11500 11501 11502 11503 11504 11505
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11506
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11507
    """
W
Wilber 已提交
11508 11509 11510 11511 11512 11513 11514 11515
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11516 11517 11518

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11519 11520
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11521 11522

    Returns:
W
Wilber 已提交
11523
        ${out_type}: ${out_comment}
11524 11525 11526 11527

    Examples:
        .. code-block:: python

11528
            import paddle.fluid as fluid
W
Wilber 已提交
11529 11530 11531 11532 11533
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11534
            # The comment lists another avaliable method.
W
Wilber 已提交
11535 11536 11537 11538 11539 11540 11541 11542 11543 11544
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11545 11546 11547 11548
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11549 11550 11551 11552 11553 11554 11555 11556 11557


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11558 11559 11560 11561 11562
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11563 11564

    Returns:
S
SunGaofeng 已提交
11565 11566 11567 11568
        ${out_comment}

    Return Type:
        ${out_type}
11569 11570 11571 11572

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11573
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11574
            input = fluid.data(
11575 11576
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11577 11578 11579 11580 11581
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11582 11583
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11584 11585 11586

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11606 11607 11608
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11609 11610

    Returns:
W
wangguanzhong 已提交
11611 11612
        Variable:

11613
        out(${out_type}): ${out_comment}
11614

W
wangguanzhong 已提交
11615

11616 11617 11618
    Examples:
        .. code-block:: python

11619
            import paddle.fluid as fluid
11620 11621
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11622
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11623 11624 11625 11626 11627
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11628 11629
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11630 11631 11632

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11633 11634 11635 11636 11637 11638 11639 11640

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11654 11655 11656 11657

    Examples:
        .. code-block:: python

11658
            import paddle.fluid as fluid
11659 11660 11661
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11662
    """
11663
    if in_dygraph_mode():
11664
        return core.ops.mean(x)
X
Xin Pan 已提交
11665 11666

    helper = LayerHelper("mean", **locals())
11667
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
11668
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11669 11670 11671 11672 11673 11674 11675

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11687 11688 11689 11690

    Examples:
        .. code-block:: python

11691
            import paddle.fluid as fluid
11692 11693 11694 11695 11696
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11709 11710
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11711 11712 11713 11714 11715 11716 11717 11718
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11719 11720

    Args:
L
liu zhengxi 已提交
11721 11722 11723 11724 11725
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11726 11727

    Returns:
L
liu zhengxi 已提交
11728
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11729 11730

    Examples:
L
liu zhengxi 已提交
11731
        ..  code-block:: python
11732 11733 11734 11735 11736 11737 11738 11739 11740
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11741
    """
11742
    if in_dygraph_mode():
11743 11744
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11745

11746 11747
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11748
    helper = LayerHelper("mul", **locals())
11749 11750
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
11751
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11752 11753

    helper.append_op(
11754 11755
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11756 11757 11758 11759
    return out


@templatedoc()
11760
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11761 11762 11763 11764 11765
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11766 11767
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11768 11769 11770
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11771 11772

    Returns:
11773
        Variable: ${out_comment}
J
jerrywgz 已提交
11774

11775 11776
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11777
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11778

J
jerrywgz 已提交
11779 11780 11781
    Examples:
        .. code-block:: python

11782
            import paddle.fluid as fluid
11783
            input = fluid.data(
J
jerrywgz 已提交
11784
                name='data', 
11785
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11786 11787
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11788 11789
    """
    helper = LayerHelper("maxout", **locals())
11790 11791 11792 11793 11794 11795
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11796

11797
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11798 11799 11800 11801

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11802 11803
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11804 11805
        outputs={"Out": out})
    return out
11806 11807


J
JiabinYang 已提交
11808
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11809
    """
J
JiabinYang 已提交
11810
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11811

11812 11813 11814
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11815
    The attr blocksize indicates the input block size.
11816

T
tianshuo78520a 已提交
11817
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11818 11819
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11820

J
JiabinYang 已提交
11821 11822 11823 11824 11825
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11843

J
JiabinYang 已提交
11844
    Args:
11845 11846 11847 11848 11849 11850
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11851

11852 11853 11854 11855
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11856 11857

    Raises:
11858
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11859 11860 11861

    Examples:
        .. code-block:: python
11862
    
11863 11864
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11865

11866 11867
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11868
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11869
                x=data, blocksize=2)
11870

11871
            exe = fluid.Executor(fluid.CPUPlace())
11872
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11873 11874 11875 11876 11877 11878 11879

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11880
            out_main = exe.run(fluid.default_main_program(),
11881 11882 11883 11884 11885 11886 11887 11888
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11889

J
JiabinYang 已提交
11890 11891
    """

J
JiabinYang 已提交
11892
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11893

J
JiabinYang 已提交
11894 11895
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11896

11897
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
J
JiabinYang 已提交
11898 11899

    helper.append_op(
J
JiabinYang 已提交
11900
        type="space_to_depth",
J
JiabinYang 已提交
11901
        inputs={"X": x},
J
JiabinYang 已提交
11902
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11903
        outputs={"Out": out})
J
JiabinYang 已提交
11904 11905
    return out

J
JiabinYang 已提交
11906

11907 11908 11909 11910 11911 11912
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11913 11914 11915 11916 11917
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11918

11919 11920 11921
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11922
            is applied in the second dimension.The data type is float32 or float64.
11923 11924
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11925
            the input.The data type is float32 or float64.
11926 11927
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11928
            The data type is float32 or float64.
11929 11930 11931 11932 11933
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11934 11935
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11936
        act (str, default None): Activation to be applied to the output of this layer.
11937 11938

    Returns:
L
LielinJiang 已提交
11939
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11940 11941 11942

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11943 11944

            import numpy as np
B
Bai Yifan 已提交
11945
            import paddle.fluid as fluid
L
LielinJiang 已提交
11946 11947 11948 11949 11950 11951 11952 11953 11954 11955

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11956
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11957 11958 11959 11960 11961 11962 11963 11964 11965 11966
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11967

11968 11969
    """
    helper = LayerHelper("affine_channel", **locals())
11970
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
11971 11972 11973 11974 11975 11976 11977 11978

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11979
    return helper.append_activation(out)
11980 11981


B
barrierye 已提交
11982
def similarity_focus(input, axis, indexes, name=None):
11983
    """
B
barrierye 已提交
11984
    SimilarityFocus Operator
B
barrierye 已提交
11985 11986

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11987

11988 11989 11990
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11991
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11992 11993 11994 11995 11996 11997 11998
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11999
       each index.
B
barrierye 已提交
12000 12001 12002 12003
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12053
    Args:
12054
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
12055 12056
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
12057
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12058
            1, 2 or 3.
B
barrierye 已提交
12059
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12060 12061

    Returns:
H
haowang101779990 已提交
12062 12063
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12064

B
barrierye 已提交
12065 12066
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12067

12068
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
12069
            data = fluid.data(
Y
Yibing Liu 已提交
12070 12071
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

12084
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
B
barrierye 已提交
12085 12086 12087 12088 12089 12090 12091
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12092 12093


M
minqiyang 已提交
12094 12095
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
12096
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
12097 12098
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12099 12100

    Args:
Z
zhupengyang 已提交
12101 12102 12103 12104 12105 12106
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
12107 12108

    Returns:
Z
zhupengyang 已提交
12109
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
12110 12111

    Examples:
Z
zhupengyang 已提交
12112
        .. code-block:: python
H
haowang101779990 已提交
12113

12114
            import paddle.fluid as fluid
Z
zhupengyang 已提交
12115
            import numpy as np
12116

Z
zhupengyang 已提交
12117
            place = fluid.core.CPUPlace()
12118

Z
zhupengyang 已提交
12119 12120
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
12121

Z
zhupengyang 已提交
12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
12139 12140
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12141 12142
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12143 12144 12145 12146 12147 12148 12149
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12150 12151


D
dengkaipeng 已提交
12152
@templatedoc()
12153 12154
def grid_sampler(x, grid, name=None):
    """
12155
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
12156
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
12157 12158
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
12159 12160
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
12161 12162
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
12163

H
haowang101779990 已提交
12164
    .. code-block:: text
12165

H
haowang101779990 已提交
12166 12167
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12168

K
Kaipeng Deng 已提交
12169 12170 12171 12172
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12173

H
haowang101779990 已提交
12174 12175 12176
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12177

H
haowang101779990 已提交
12178 12179 12180 12181 12182 12183 12184 12185 12186
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12187

H
haowang101779990 已提交
12188 12189 12190 12191
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12192

H
haowang101779990 已提交
12193 12194 12195 12196
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12197

H
haowang101779990 已提交
12198 12199 12200 12201
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12202

H
haowang101779990 已提交
12203 12204
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12205 12206

    Args:
K
Kaipeng Deng 已提交
12207 12208 12209 12210 12211 12212 12213 12214 12215
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
12216 12217

    Returns:
H
haowang101779990 已提交
12218
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
12219 12220
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
12221

H
haowang101779990 已提交
12222 12223 12224 12225
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12226 12227
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
12228 12229
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
12230 12231
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12232
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12233

D
dengkaipeng 已提交
12234 12235 12236
    """
    helper = LayerHelper("grid_sampler", **locals())

12237 12238 12239
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                             'grid_sampler')
D
dengkaipeng 已提交
12240 12241 12242 12243 12244 12245
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12246
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12247 12248
    ipts = {'X': x, 'Grid': grid}

12249
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12250 12251 12252
    return out


G
gmcather 已提交
12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12266
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12267
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12268 12269 12270 12271 12272 12273 12274
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12275 12276 12277 12278 12279 12280 12281

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12282
          import paddle.fluid as fluid
12283 12284
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12285 12286 12287 12288
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

12289
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
G
gmcather 已提交
12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12302 12303
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12304

G
Guo Sheng 已提交
12305 12306
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12307

G
Guo Sheng 已提交
12308
    The formula is as follows:
G
gmcather 已提交
12309 12310

    .. math::
H
haowang101779990 已提交
12311 12312 12313
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12314 12315

    Where:
G
Guo Sheng 已提交
12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12333 12334

    Returns:
G
Guo Sheng 已提交
12335
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12336 12337 12338 12339

    Examples:
        .. code-block:: python

12340 12341
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12342
          tensor = fluid.data(
12343
              name='tensor',
G
Guo Sheng 已提交
12344 12345
              shape=[None, 64, 512],
              dtype='float32')
12346 12347
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12348

G
gmcather 已提交
12349 12350 12351 12352
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

12353
    out = helper.create_variable_for_type_inference(dtype=dtype)
G
gmcather 已提交
12354 12355 12356 12357 12358 12359 12360 12361

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12362 12363 12364 12365 12366 12367 12368 12369 12370 12371


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12372
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12373

Q
Qiao Longfei 已提交
12374
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12375 12376 12377
    For example:

    .. math::
H
haowang101779990 已提交
12378
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12379

Q
Qiao Longfei 已提交
12380
    In this formula:
12381 12382
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12383
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12384
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12385 12386 12387
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12388 12389 12390 12391
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12392
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12393 12394 12395 12396 12397 12398 12399 12400 12401
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12402
    Returns:
Y
Yibing Liu 已提交
12403
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12404 12405 12406 12407

    Examples:
        .. code-block:: python

12408
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12409 12410
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12411
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12412 12413
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12414
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12415 12416 12417 12418

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12419
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
12420
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12433 12434 12435 12436 12437


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12454 12455

    Args:
12456 12457 12458
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12459 12460

    Returns:
12461
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12462 12463 12464 12465 12466 12467 12468 12469

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12470 12471 12472 12473 12474 12475 12476 12477 12478 12479
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12480 12481


S
shippingwang 已提交
12482
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12483
    """
S
shippingwang 已提交
12484 12485 12486 12487 12488 12489
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12490
    
S
shippingwang 已提交
12491
    .. code-block:: text
12492

S
shippingwang 已提交
12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12521
    Args: 
S
shippingwang 已提交
12522
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12523
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12524 12525

    Returns:
S
shippingwang 已提交
12526 12527
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12528 12529

    Raises:
S
shippingwang 已提交
12530
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12531 12532 12533

    Examples:
        .. code-block:: python
12534

12535
            import paddle.fluid as fluid
R
ruri 已提交
12536
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12537
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12538 12539 12540
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12541
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12542 12543 12544 12545 12546 12547 12548 12549 12550

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12551
    return out
S
Add  
shippingwang 已提交
12552 12553


12554
@templatedoc()
D
dengkaipeng 已提交
12555
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12556 12557 12558 12559 12560 12561 12562 12563
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12564
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12565 12566 12567
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12568 12569 12570

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12571
        same shape and same data type as the input.
12572 12573 12574 12575 12576 12577 12578

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12579
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12580
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12581
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12582 12583
    """
    helper = LayerHelper("temporal_shift", **locals())
12584 12585 12586
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
    check_type(seg_num, 'seg_num', int, 'temporal_shift')
    check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')
12587 12588 12589 12590 12591 12592 12593 12594 12595 12596

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12597 12598
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12599 12600 12601
    return out


S
sneaxiy 已提交
12602
class PyFuncRegistry(object):
S
sneaxiy 已提交
12603 12604 12605
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12606
        if func is None or not callable(func):
S
sneaxiy 已提交
12607 12608 12609
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12610
        # find named args using reflection
S
sneaxiy 已提交
12611 12612 12613 12614 12615 12616 12617
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12618 12619 12620
        '''
        Why record self here?

M
minqiyang 已提交
12621 12622
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12623
           to find the registered function corresponding
M
minqiyang 已提交
12624
           to :code:`idx`.
S
sneaxiy 已提交
12625

M
minqiyang 已提交
12626 12627
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12628
           whose reference count is 1 would cause
M
minqiyang 已提交
12629
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12630 12631
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12632
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12647 12648 12649 12650 12651 12652 12653 12654 12655
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12656

S
sneaxiy 已提交
12657 12658
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12659 12660

        ret = []
S
sneaxiy 已提交
12661 12662 12663
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12664 12665
                continue

S
sneaxiy 已提交
12666 12667
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12668

S
sneaxiy 已提交
12669 12670 12671
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12672

S
sneaxiy 已提交
12673
        return tuple(ret)
S
sneaxiy 已提交
12674 12675


S
sneaxiy 已提交
12676 12677 12678
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12679 12680 12681 12682 12683 12684 12685
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12686
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12687
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12715 12716 12717 12718 12719
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12720 12721 12722 12723 12724
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12725 12726
    
    Returns: 
12727
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12728 12729

    Examples:
12730
        .. code-block:: python
12731 12732
	    
            # example 1:
12733 12734 12735
            import paddle.fluid as fluid
            import six

12736 12737
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12738 12739 12740
            def tanh(x):
                return np.tanh(x)

12741 12742 12743
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12744 12745
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12746 12747
            
            # Creates a forward function for debugging running networks(print value)
12748 12749
            def debug_func(x):
                print(x)
12750 12751 12752 12753
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12767
                    # User-defined debug functions that print out the input LodTensor
12768 12769 12770 12771 12772
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12830
    """
S
sneaxiy 已提交
12831
    helper = LayerHelper('py_func', **locals())
12832
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
12833 12834 12835
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12836
        x = [x]
12837 12838 12839
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12840
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
12841
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
12842 12843 12844
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12845
        out_list = [out]
12846 12847
    elif isinstance(out, tuple):
        out_list = list(out)
12848 12849 12850
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12851 12852
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12853

S
sneaxiy 已提交
12854 12855
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12856
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12857 12858

    for each_out in out_list:
S
sneaxiy 已提交
12859 12860
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12861 12862
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12863

S
sneaxiy 已提交
12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12879 12880 12881 12882

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12883 12884
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12885 12886 12887
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12888
        })
S
sneaxiy 已提交
12889
    return out
S
sneaxiy 已提交
12890 12891 12892


# For debug usage
S
sneaxiy 已提交
12893 12894 12895 12896
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12908
    Parameters:
12909
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12910
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12911 12912 12913
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12914 12915
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12916
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12917 12918 12919 12920 12921
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12922 12923

    Returns:
S
SunGaofeng 已提交
12924 12925 12926 12927
        ${out_comment}.

    Return Type:
        Variable
12928 12929 12930 12931

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12932
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12933 12934
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12935
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12961 12962 12963 12964 12965 12966 12967 12968


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12969
               batch_roi_nums=None,
12970 12971
               name=None):
    """
12972
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12973 12974

    Args:
12975
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12976 12977 12978
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12979 12980 12981 12982 12983
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12984 12985 12986 12987 12988 12989
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12990
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12991
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12992 12993
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12994 12995 12996
        name (str, default None): The name of this operation.

    Returns:
12997
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12998 12999 13000 13001

    Examples:
        .. code-block:: python

13002
            ## prroi_pool without batch_roi_num
13003
            import paddle.fluid as fluid
13004 13005
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
13006
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
13007 13008 13009 13010 13011 13012 13013 13014 13015
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
13027 13028 13029
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
13030 13031
    helper.append_op(
        type='prroi_pool',
13032
        inputs=inputs_op,
13033 13034 13035 13036 13037 13038 13039
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13040

M
minqiyang 已提交
13041

R
ruri 已提交
13042 13043 13044
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
13045
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
13046 13047 13048 13049 13050 13051 13052
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
13053
    Parameters:
R
ruri 已提交
13054

R
ruri 已提交
13055 13056
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
13057 13058

    Returns:
13059
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13060 13061 13062 13063 13064 13065 13066

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13102 13103 13104 13105 13106
def fsp_matrix(x, y):
    """

    **FSP matrix op**

13107
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

13119 13120 13121
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
13122
                      The y_channel can be different with the x_channel of Input(X)
13123 13124
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
13125 13126 13127 13128

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
13129 13130
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
13131 13132 13133 13134 13135

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13136
            import paddle.fluid as fluid
B
Bai Yifan 已提交
13137
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
13138 13139 13140 13141
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13142 13143 13144 13145 13146 13147 13148 13149
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13150 13151 13152 13153


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13154

H
heqiaozhi 已提交
13155
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13156

Z
zhoushiyu 已提交
13157
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
13158

Z
zhoushiyu 已提交
13159 13160
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
13161
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
13162 13163
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
13164

Z
zhoushiyu 已提交
13165 13166 13167 13168 13169 13170 13171
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
13172

H
heqiaozhi 已提交
13173
    Returns:
H
fix doc  
heqiaozhi 已提交
13174

Z
zhoushiyu 已提交
13175 13176
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
13177

H
heqiaozhi 已提交
13178
    Examples:
H
fix doc  
heqiaozhi 已提交
13179

H
heqiaozhi 已提交
13180
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13181

13182
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
13183 13184
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
13185 13186 13187 13188 13189 13190 13191 13192
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13193

H
heqiaozhi 已提交
13194 13195 13196 13197 13198 13199 13200 13201 13202
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13203
    return out
Z
zhoukunsheng 已提交
13204 13205 13206 13207 13208 13209 13210


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
13211
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
13212 13213

    Returns:
13214
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
13215 13216 13217 13218

    Examples:
        .. code-block:: python

13219
             import paddle.fluid as fluid
13220 13221 13222
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13223
             # condition is a tensor [True, False, True]
13224 13225 13226
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13227 13228

             # condition is a tensor [[True, False], [False, True]]
13229 13230 13231
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13232 13233

             # condition is a tensor [False, False, False]
13234 13235 13236 13237
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13238
    """
13239
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
13240 13241 13242 13243 13244

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
13245 13246 13247
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
13248
    return out
Z
zhoukunsheng 已提交
13249 13250 13251 13252


def sign(x):
    """
13253
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13254 13255

    Args:
13256 13257
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13258 13259

    Returns:
13260
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13261 13262 13263 13264

    Examples:
        .. code-block:: python

13265 13266 13267
          import paddle.fluid as fluid
          import numpy as np

13268 13269
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13270 13271 13272
    """

    helper = LayerHelper("sign", **locals())
13273 13274 13275 13276
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13277 13278 13279 13280 13281
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13282 13283


Z
zhoukunsheng 已提交
13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13323 13324
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13325
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13326
    and an index tensor pointing to this unique tensor. 
13327

13328
    **NOTICE**: This op support the variable type of Tensor only.
13329 13330

    Args:
13331 13332
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13333

13334 13335 13336 13337
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13338
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13339
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13340 13341 13342 13343 13344 13345 13346 13347 13348

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13349
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13392
                    modulated=True,
13393 13394
                    name=None):
    """
13395
    **Deformable Convolution op**
13396 13397 13398

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13399 13400 13401
   
    
    Deformable Convolution v2: 
13402 13403 13404 13405
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13406 13407

    Deformable Convolution v1:
13408
    
13409 13410 13411 13412 13413
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13414
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13415
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13440 13441
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13442
        offset (Variable): The input coordinate offset of deformable convolution layer.
13443
            A Tensor with type float32, float64.
13444 13445 13446
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13447 13448
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13449
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13469
            The total batch size should be devisable by this value or smaller
13470 13471 13472
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13473
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13474 13475 13476 13477 13478
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13479
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13480 13481 13482 13483
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13484 13485
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13486 13487
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13488 13489
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13490
                  result. A Tensor with type float32, float64.
13491 13492 13493 13494 13495 13496
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13497 13498
          #deformable conv v2:
         
13499
          import paddle.fluid as fluid
13500 13501
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13502 13503 13504
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13505
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13506
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13507 13508 13509 13510

          #deformable conv v1:

          import paddle.fluid as fluid
13511 13512
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13513 13514
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13515
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13516
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13594 13595 13596

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13597 13598 13599 13600 13601


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13602
    This op returns a col buffer of sliding local blocks of input x, also known
13603
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13604
    all element will be rearranged as a column. While the convolution filter sliding over
13605 13606
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13607
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13625 13626 13627
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13640
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13641
                                  [dilation_h, dilation_w], or an integer dilation treated as
13642
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13643 13644 13645
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13646 13647 13648

    
    Returns:
S
SunGaofeng 已提交
13649
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13650
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13651 13652 13653 13654 13655 13656
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13657 13658 13659 13660 13661 13662

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13663
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13734 13735 13736 13737 13738 13739 13740
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13741
    
13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13768
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13769 13770 13771 13772 13773 13774 13775
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13776
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13777 13778 13779 13780
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13781 13782 13783 13784

    Examples:
      .. code-block:: python

13785 13786
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13809 13810
  
        # position_sensitive=False
13811
        import paddle.fluid as fluid
C
chengjuntao 已提交
13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13871 13872 13873 13874


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13875
    This operator recomputes the `input` indices according to the offset of the
13876 13877 13878 13879 13880
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13881
        
13882 13883
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13884

13885 13886
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13887 13888

    Examples:
13889
    ::
13890
    
13891
        Input:
13892 13893
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13894 13895 13896
          index_num = 20
          nshards = 2
          ignore_value = -1
13897
        
13898
        if shard_id == 0, we get:
13899 13900 13901
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13902
        if shard_id == 1, we get:
13903 13904 13905 13906
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13907
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13908
        - **index_num** (scalar): An integer defining the range of the index.
13909 13910
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13911
        - **ignore_value** (scalar): An integer value out of sharded index range
13912 13913

    Returns:
13914
        Variable: The sharded index of input.
13915 13916 13917 13918 13919

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13920 13921
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13946 13947 13948 13949 13950


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13951 13952 13953
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13954

13955
    The formula is as follows:
H
huangjun12 已提交
13956

13957
    .. math::
H
huangjun12 已提交
13958

13959
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13960

13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14006 14007


G
Guo Sheng 已提交
14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


14083 14084 14085
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
14086 14087
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
14099 14100
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
14101 14102
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
14103
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
14104
                                                  Default: float32.
14105 14106
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
14107 14108 14109 14110 14111
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

14112 14113
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
14114

14115
    Raises:
T
tianshuo78520a 已提交
14116
        TypeError: The shape type should be list or tuple or variable.
14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
14130 14131
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
14132 14133

            # example 3:
14134
            # attr shape is a Variable, the data type must be int64 or int32.
14135
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
14136
            result_3 = fluid.layers.uniform_random(var_shape)
14137 14138 14139 14140
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

14141 14142

    """
14143
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
14144 14145
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
14146
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
14147

14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
14170
                    "Each dimension size given in shape must not be negative "
14171 14172 14173 14174 14175
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
14176
    attrs = {'seed': seed, 'min': min, 'max': max}
14177
    if in_dygraph_mode():
H
hong 已提交
14178
        attrs['shape'] = shape
14179 14180 14181 14182 14183 14184 14185 14186
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
14187
            if utils._contain_var(shape):
14188 14189 14190 14191 14192 14193 14194 14195
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)