nn.py 539.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
28
from .. import dygraph_utils
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
50 51
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
52
    'batch_norm',
L
lvmengsi 已提交
53
    'instance_norm',
H
heqiaozhi 已提交
54
    'data_norm',
X
Xin Pan 已提交
55 56 57 58 59 60 61
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
62 63
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
75
    'group_norm',
D
dengkaipeng 已提交
76
    'spectral_norm',
X
Xin Pan 已提交
77 78 79 80 81 82 83
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
84
    'lod_append',
X
Xin Pan 已提交
85 86 87 88 89
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
90
    'roi_align',
X
Xin Pan 已提交
91 92 93 94
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
95
    'resize_trilinear',
96
    'resize_nearest',
X
Xin Pan 已提交
97
    'gather',
98
    'gather_nd',
X
Xin Pan 已提交
99
    'scatter',
100 101
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
102 103 104
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
105
    'selu',
X
Xin Pan 已提交
106 107
    'log',
    'crop',
108
    'crop_tensor',
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
123
    'unique',
124
    'unique_with_counts',
X
Xin Pan 已提交
125
    'expand',
126
    'expand_as',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
135 136
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
137 138 139 140 141 142
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
143
    'strided_slice',
X
Xin Pan 已提交
144
    'shape',
Z
zhoukunsheng 已提交
145
    'rank',
Z
zhoukunsheng 已提交
146
    'size',
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
156
    'space_to_depth',
W
whs 已提交
157
    'affine_grid',
158
    'affine_channel',
B
barrierye 已提交
159
    'similarity_focus',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
164
    'bilinear_tensor_product',
C
chengduo 已提交
165 166
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
167
    'shuffle_channel',
168
    'temporal_shift',
S
sneaxiy 已提交
169
    'py_func',
170
    'psroi_pool',
171
    'prroi_pool',
R
ruri 已提交
172
    'pixel_shuffle',
173
    'fsp_matrix',
H
heqiaozhi 已提交
174
    'continuous_value_model',
Z
zhoukunsheng 已提交
175
    'where',
Z
zhoukunsheng 已提交
176
    'sign',
177
    'deformable_conv',
178
    'unfold',
C
cjt222 已提交
179
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
180
    'filter_by_instag',
181
    'shard_index',
H
huangjun12 已提交
182
    'hard_swish',
G
Guo Sheng 已提交
183
    'gather_tree',
184
    'uniform_random',
Y
Yu Yang 已提交
185 186 187
]


188 189 190 191 192 193 194 195 196 197 198
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    attrs = {'axis': axis, 'use_mkldnn': use_mkldnn}
    inputs = {'X': [x], 'Y': [y]}
    op = getattr(core.ops, op_name)
    outs = op(inputs, attrs)
199
    out = outs['Out'][0]
200

201 202
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
203 204


Y
Yu Yang 已提交
205 206 207 208 209 210
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
211
       name=None):
Y
Yu Yang 已提交
212
    """
213
    **Fully Connected Layer**
Y
Yu Yang 已提交
214

215 216 217
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
218
    which represents a fully connected weight matrix from each input unit to
219 220 221 222
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
223
    is not None, a bias variable will be created and added to the output.
224
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
225

226
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
227

228 229 230 231
    .. math::

        Out = Act({XW + b})

232
    When the input is a list of Tensor(or LoDTensor):
233 234 235

    .. math::

236
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
237 238 239

    In the above equation:

240 241 242
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
243
    * :math:`b`: The bias parameter created by this layer (if needed).
244
    * :math:`Act`: The activation function.
245
    * :math:`Out`: The output Tensor.
246 247 248

    .. code-block:: text

249 250 251 252 253 254 255 256 257 258 259 260 261 262
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
263 264 265 266 267 268 269 270 271 272 273 274 275
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
276
    Args:
277 278 279
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
280
        size(int): The number of output units in this layer, which also means the feature size of output
281 282
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
283
            two dimensions. If this happens, the multidimensional tensor will first be flattened
284 285
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
286
            dimensions will be flatten to form the first dimension of the final matrix (height of
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
302 303

    Raises:
304
        ValueError: If dimensions of the input Tensor is less than 2.
305 306 307 308

    Examples:
        .. code-block:: python

309
          import paddle.fluid as fluid
310
          # when input is single tensor
311
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
312
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
313 314

          # when input are multiple tensors
315 316
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
317
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
318
    """
C
caoying03 已提交
319
    helper = LayerHelper("fc", **locals())
320
    check_type(input, 'input', (list, tuple, Variable), 'fc')
321 322
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
323
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
324
    dtype = helper.input_dtype()
325
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
326
    mul_results = []
327 328
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
329 330
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
331 332 333
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
334

Y
Yu Yang 已提交
335
        w = helper.create_parameter(
336
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
        tmp = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
342
            outputs={"Out": tmp},
M
mozga-intel 已提交
343 344
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
345 346 347 348
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
349
    else:
X
Xin Pan 已提交
350
        pre_bias = helper.create_variable_for_type_inference(dtype)
351
        helper.append_op(
352 353 354
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
355
            attrs={"use_mkldnn": False})
356 357 358 359
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
360 361


362 363 364
def embedding(input,
              size,
              is_sparse=False,
365
              is_distributed=False,
366 367 368
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
369
    """
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
423 424

    Args:
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
448
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
449 450 451
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
452

453
    Returns:
454
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
455

456 457
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
458

B
bdzhuxiaoning 已提交
459
          import paddle.fluid as fluid
460 461 462
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
463
          # example 1
464 465 466 467 468 469 470 471 472 473
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
474 475 476
    """

    helper = LayerHelper('embedding', **locals())
477 478
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
479 480
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
481
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
482 483
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
484 485
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
486
    tmp = helper.create_variable_for_type_inference(dtype)
487 488
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
489 490 491 492 493
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
494 495 496
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
497
            'remote_prefetch': remote_prefetch,
498 499
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
500 501 502
    return tmp


H
hutuxian 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
551
@templatedoc()
552
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
553 554 555 556 557 558
    """
    Linear Chain CRF.

    ${comment}

    Args:
559
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
560
        label(${label_type}): ${label_comment}
561
        Length(${length_type}): ${length_comment}
562
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
563 564

    Returns:
D
dzhwinter 已提交
565 566
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
567
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
568

J
JesseyXujin 已提交
569 570 571
    Examples:
        .. code-block:: python

572 573 574 575 576 577 578
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
579 580
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
603 604 605
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
606 607 608 609 610 611
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
612
                     name='crfw',
613 614 615 616 617 618
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
619

620 621 622
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
623
            ll=np.array([[3],[3],[4],[2]])
624 625 626
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
627 628 629 630 631
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

632 633 634
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
635
            
Y
yuyang18 已提交
636
    """
Y
Yu Yang 已提交
637
    helper = LayerHelper('linear_chain_crf', **locals())
638
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
639 640 641 642
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
643 644 645 646 647 648 649 650
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
651 652 653 654 655 656
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
657
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
658 659
    helper.append_op(
        type='linear_chain_crf',
660
        inputs=this_inputs,
Y
Yu Yang 已提交
661 662 663 664 665 666 667 668 669 670
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
671
@templatedoc()
672
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
673 674
    """
    ${comment}
Y
yi.wu 已提交
675

W
wopeizl 已提交
676 677
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
678

Y
Yibing Liu 已提交
679 680 681
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
682

Y
Yibing Liu 已提交
683
        label(${label_type}, optional): ${label_comment}
684
        
Y
Yibing Liu 已提交
685
        length(${length_type}, optional): ${length_comment}
686

W
wopeizl 已提交
687 688
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
689

W
wopeizl 已提交
690 691
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
692

693
           import paddle.fluid as fluid
694 695 696

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
697 698
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
699 700 701
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
702
                     param_attr=fluid.ParamAttr(name="crfw"))
703
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
704
                     param_attr=fluid.ParamAttr(name="crfw"))
705 706 707

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
708 709 710
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
711 712 713 714 715 716 717
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
718 719 720 721 722
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
723 724 725
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
726 727
    helper.append_op(
        type='crf_decoding',
728
        inputs=inputs,
W
wopeizl 已提交
729
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
730

W
wopeizl 已提交
731
    return viterbi_path
Y
Yu Yang 已提交
732 733


Y
yi.wu 已提交
734
@templatedoc()
F
fengjiayi 已提交
735
def cos_sim(X, Y):
Y
Yu Yang 已提交
736
    """
Y
yi.wu 已提交
737 738 739
    ${comment}

    Args:
740 741
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
742

Y
yi.wu 已提交
743
    Returns:
L
lvmengsi 已提交
744
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
745 746 747 748

    Examples:
        .. code-block:: python

749
            import paddle.fluid as fluid
L
lvmengsi 已提交
750 751
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
752
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
753
    """
F
fengjiayi 已提交
754
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
755 756 757
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
758 759 760 761 762 763 764 765 766 767
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
768 769 770 771 772
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
773
            dropout_implementation="downgrade_in_infer"):
774 775 776 777 778
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
779
    training. The dropout operator randomly sets (according to the given dropout
780 781 782
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
783 784
    dropout op can be removed from the program to make the program more efficient.

785
    Args:
L
lvmengsi 已提交
786
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
787
        dropout_prob (float): Probability of setting units to zero.
788 789 790 791
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
792
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
793 794
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
795 796
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
797
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
798 799

                                           - train: out = input * mask
C
ceci3 已提交
800
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
801 802 803

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
804
                                        2. upscale_in_train, upscale the outcome at training time
805

H
haowang101779990 已提交
806 807
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
808

H
haowang101779990 已提交
809 810
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
811

M
minqiyang 已提交
812

813
    Returns:
L
lvmengsi 已提交
814
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
815 816

    Examples:
817

818 819
        .. code-block:: python

820
            import paddle.fluid as fluid
L
lvmengsi 已提交
821
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
822
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
823 824
    """

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
        attrs = get_attrs(default_main_program(), dropout_prob, is_test, seed)
        attrs['is_test'] = not _dygraph_tracer()._train_mode
        inputs = {'X': [x]}
        outs = core.ops.dropout(inputs, attrs)
        return outs['Out'][0]

F
fengjiayi 已提交
844
    helper = LayerHelper('dropout', **locals())
845 846
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
847

X
Xin Pan 已提交
848 849
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
850
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
851

852
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
853

854 855 856 857 858
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
859
        attrs=attrs)
860 861 862
    return out


Y
yi.wu 已提交
863
@templatedoc()
Y
Yu Yang 已提交
864 865 866 867
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
868 869
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
870
    """
G
Guo Sheng 已提交
871 872
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
873

M
minqiyang 已提交
874
    For some basics of chunking, please refer to
H
haowang101779990 已提交
875
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
876

G
Guo Sheng 已提交
877 878
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
879 880

    .. code-block:: python
881

Y
yi.wu 已提交
882 883 884 885 886 887 888 889 890 891
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
892
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
893

G
Guo Sheng 已提交
894 895 896
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
897 898 899 900 901 902 903 904 905 906

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
907

Y
yi.wu 已提交
908 909 910 911 912 913
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
914 915
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
916 917 918 919 920 921 922 923 924 925 926

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
927 928
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
929

Y
yi.wu 已提交
930
    Args:
G
Guo Sheng 已提交
931 932 933 934 935 936
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
937
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
938 939 940 941 942 943 944 945 946
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
947

Y
yi.wu 已提交
948
    Returns:
G
Guo Sheng 已提交
949 950 951 952
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
953

Y
yi.wu 已提交
954 955 956
    Examples:
        .. code-block:: python

957 958 959 960
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
961 962 963
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
964 965 966 967
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
968
            crf = fluid.layers.linear_chain_crf(
969
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
970
            crf_decode = fluid.layers.crf_decoding(
971
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
972 973 974 975 976
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
977
    """
F
fengjiayi 已提交
978
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
979 980

    # prepare output
X
Xin Pan 已提交
981 982 983 984 985 986 987
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
988

989 990 991 992 993
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
994 995
    helper.append_op(
        type="chunk_eval",
996
        inputs=this_input,
Y
Yu Yang 已提交
997 998 999
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1000 1001 1002 1003
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1004 1005 1006
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1007 1008
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1009
        })
1010 1011
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1012 1013


1014
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1015
    """
1016
    This operator implements the softmax layer. The calculation process is as follows:
1017

1018
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1019
    
1020 1021 1022 1023 1024 1025 1026
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1027

1028 1029
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1030

1031 1032 1033 1034 1035
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1036

1037
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1038

1039
    .. math::
1040

1041
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1042

1043
    Example:
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1090
    Args:
1091 1092
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1093
            library is installed. To improve numerical stability, set use_cudnn to \
1094 1095
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1096
            will be named automatically. Default: None.
1097
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1098
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1099
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1100 1101

    Returns:
1102
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1103 1104 1105 1106 1107

    Examples:

        .. code-block:: python

1108 1109
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1120
    """
1121 1122 1123 1124 1125 1126 1127
    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}

    if in_dygraph_mode():
        outs = core.ops.softmax(inputs, attrs)
        return outs['Out'][0]

1128
    helper = LayerHelper('softmax', **locals())
1129 1130
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1131

1132
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1133
    softmax_out = helper.create_variable_for_type_inference(dtype)
1134 1135 1136 1137
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1138
        attrs=attrs)
1139 1140 1141
    return softmax_out


Y
Yu Yang 已提交
1142 1143 1144
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1145 1146
           stride=1,
           padding=0,
1147
           dilation=1,
Y
Yu Yang 已提交
1148 1149 1150
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1151
           use_cudnn=True,
1152
           act=None,
L
liym27 已提交
1153 1154
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1155
    """
C
chengduoZH 已提交
1156
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1157
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1158
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1159
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1160 1161 1162 1163 1164 1165
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1166
    for more details.
1167 1168 1169
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1170

1171
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1172

C
chengduoZH 已提交
1173 1174
    .. math::

C
refine  
chengduoZH 已提交
1175
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1176

T
tensor-tang 已提交
1177
    Where:
C
chengduoZH 已提交
1178

L
liym27 已提交
1179
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1180 1181 1182 1183
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1184
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1185 1186 1187

    Example:

1188 1189
        - Input:

W
weixing02 已提交
1190
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1191

W
weixing02 已提交
1192
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1193

1194
        - Output:
T
tensor-tang 已提交
1195

W
weixing02 已提交
1196
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1197

C
chengduoZH 已提交
1198
        Where
1199 1200

        .. math::
C
chengduoZH 已提交
1201

W
weixing02 已提交
1202 1203
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1204 1205

    Args:
L
lvmengsi 已提交
1206 1207
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1208
        num_filters(int): The number of filter. It is as same as the output
1209
            image channel.
1210 1211
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1212 1213 1214 1215 1216 1217
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1218
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1219 1220
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1221 1222 1223
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1224 1225 1226
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1227 1228 1229 1230
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1231 1232 1233 1234
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1235 1236 1237 1238 1239
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1240
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1241 1242 1243 1244 1245
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1246 1247
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1248 1249
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1250 1251 1252
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1253 1254
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1255 1256
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1257 1258

    Returns:
L
lvmengsi 已提交
1259 1260 1261 1262
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1277 1278 1279
    Examples:
        .. code-block:: python

1280
          import paddle.fluid as fluid
L
lvmengsi 已提交
1281
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1282
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1283 1284
    """

1285 1286
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1287
    num_channels = input.shape[1]
L
liym27 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1303
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1304

1305
    l_type = 'conv2d'
X
xzl 已提交
1306 1307
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1308
        l_type = 'depthwise_conv2d'
1309 1310 1311 1312

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1313 1314 1315 1316
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1317
            raise ValueError(
1318 1319 1320
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1321
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1322

C
chengduoZH 已提交
1323 1324
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1325
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1326

L
liym27 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1350 1351 1352
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1367
            padding = [0, 0]
L
liym27 已提交
1368 1369
        elif padding == "SAME":
            padding_algorithm = "SAME"
1370
            padding = [0, 0]
L
liym27 已提交
1371 1372

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1373

M
minqiyang 已提交
1374
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1375 1376

    def _get_default_param_initializer():
C
chengduo 已提交
1377 1378
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1379 1380 1381 1382 1383 1384 1385 1386
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1387
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1388 1389

    helper.append_op(
1390
        type=l_type,
Y
Yu Yang 已提交
1391 1392 1393 1394 1395
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1396 1397 1398
        attrs={
            'strides': stride,
            'paddings': padding,
1399
            'dilations': dilation,
C
chengduoZH 已提交
1400
            'groups': groups,
1401
            'use_cudnn': use_cudnn,
1402
            'use_mkldnn': False,
L
liym27 已提交
1403 1404 1405
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1406
        })
Y
Yu Yang 已提交
1407

1408 1409 1410 1411
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1412 1413 1414 1415

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1427 1428
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1429 1430 1431
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1432
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1433 1434 1435 1436 1437
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1447
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1448
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1449 1450 1451
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1452
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1474 1475
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1476
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1477
            image channel.
1478 1479 1480 1481
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1482 1483 1484 1485
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1486
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1487 1488 1489 1490 1491 1492 1493 1494
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1495 1496 1497 1498
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1499 1500 1501 1502 1503
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1514 1515
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1516 1517
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1518 1519 1520
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1521 1522 1523 1524
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1525 1526

    Returns:
L
lvmengsi 已提交
1527 1528 1529 1530
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1545 1546 1547
    Examples:
        .. code-block:: python

1548
          import paddle.fluid as fluid
L
lvmengsi 已提交
1549
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1550
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1551 1552 1553
    """

    l_type = 'conv3d'
C
chengduo 已提交
1554
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1555 1556 1557
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1573 1574 1575 1576 1577

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1578 1579 1580 1581
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1582
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1583 1584 1585 1586 1587

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1610 1611
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1612 1613
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1614 1615
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1630
            padding = [0, 0, 0]
L
liym27 已提交
1631 1632
        elif padding == "SAME":
            padding_algorithm = "SAME"
1633
            padding = [0, 0, 0]
L
liym27 已提交
1634 1635

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1636 1637 1638 1639 1640

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1641 1642 1643
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1644 1645 1646 1647 1648 1649 1650 1651
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1652
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1667 1668 1669
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1670 1671
        })

1672 1673 1674 1675
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1676 1677 1678 1679

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1680
@templatedoc()
Y
Yu Yang 已提交
1681
def pool2d(input,
C
chengduoZH 已提交
1682 1683
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1684 1685
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1686
           global_pooling=False,
C
chengduoZH 已提交
1687
           use_cudnn=True,
1688
           ceil_mode=False,
1689
           name=None,
1690 1691
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1692
    """
F
fengjiayi 已提交
1693
    ${comment}
1694 1695

    Args:
K
Kaipeng Deng 已提交
1696 1697 1698 1699 1700
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1701
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1702 1703
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1704
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1705 1706 1707
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1708 1709 1710 1711 1712 1713 1714
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1715
            Otherwise, the pool padding size will be a square of an int.
1716 1717 1718
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1719 1720 1721
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1722
        exclusive (bool): Whether to exclude padding points in average pooling
1723 1724 1725 1726
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1727

1728
    Returns:
K
Kaipeng Deng 已提交
1729
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1730 1731

    Raises:
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1744 1745 1746 1747 1748

    Examples:

        .. code-block:: python

1749
          import paddle.fluid as fluid
1750

K
Kaipeng Deng 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1794 1795 1796
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1797
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1798
            str(pool_type))
C
chengduoZH 已提交
1799

C
chengduoZH 已提交
1800 1801
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1802 1803 1804 1805
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1806 1807
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1808 1809 1810 1811 1812

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1813

C
chengduoZH 已提交
1814 1815 1816
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1839

1840 1841
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1856
            pool_padding = [0, 0]
1857 1858 1859 1860 1861 1862
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1863
            pool_padding = [0, 0]
1864 1865 1866 1867 1868

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1869
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1870
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1871 1872

    helper.append_op(
1873
        type=op_type,
1874 1875 1876 1877 1878 1879 1880 1881
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
1882
            "padding_algorithm": padding_algorithm,
1883 1884
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1885 1886
            "use_mkldnn": False,
            "exclusive": exclusive,
1887
            "data_format": data_format,
1888 1889 1890 1891 1892
        })

    return pool_out


D
dengkaipeng 已提交
1893
@templatedoc()
1894 1895 1896 1897 1898 1899 1900 1901
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
1902
           name=None,
1903 1904
           exclusive=True,
           data_format="NCDHW"):
1905
    """
1906
    ${comment}
1907 1908

    Args:
K
Kaipeng Deng 已提交
1909 1910
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1911 1912 1913
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1914
                          of the feature.
D
dengkaipeng 已提交
1915 1916 1917 1918 1919
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1931 1932 1933
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1934 1935 1936
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1937
        exclusive (bool): Whether to exclude padding points in average pooling
1938 1939 1940 1941
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1942

1943
    Returns:
K
Kaipeng Deng 已提交
1944
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1959 1960 1961 1962
    Examples:

        .. code-block:: python

1963
          import paddle.fluid as fluid
1964

K
Kaipeng Deng 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2013 2014 2015
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2016
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2017
            str(pool_type))
C
chengduoZH 已提交
2018

C
chengduoZH 已提交
2019 2020
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2021 2022 2023 2024 2025
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2026 2027
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2028 2029 2030 2031 2032

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2033

2034 2035
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2059 2060
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2061 2062 2063

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2064 2065
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2080
            pool_padding = [0, 0, 0]
2081 2082 2083 2084 2085 2086
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2087
            pool_padding = [0, 0, 0]
2088 2089 2090 2091 2092

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2093
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2094
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2095 2096

    helper.append_op(
2097
        type=op_type,
Y
Yu Yang 已提交
2098 2099 2100 2101 2102 2103 2104
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2105
            "paddings": pool_padding,
2106
            "padding_algorithm": padding_algorithm,
2107
            "use_cudnn": use_cudnn,
2108
            "ceil_mode": ceil_mode,
2109 2110
            "use_mkldnn": False,
            "exclusive": exclusive,
2111
            "data_format": data_format,
Y
Yu Yang 已提交
2112 2113 2114 2115 2116
        })

    return pool_out


2117 2118 2119 2120 2121 2122 2123
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2124
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2125 2126 2127 2128
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2129
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2144 2145

    Args:
K
Kaipeng Deng 已提交
2146 2147 2148 2149 2150
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2151 2152 2153
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2154
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2155 2156 2157 2158
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2159 2160

    Returns:
K
Kaipeng Deng 已提交
2161 2162
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2163 2164 2165 2166 2167 2168 2169 2170 2171

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2172
          # average adaptive pool2d
M
minqiyang 已提交
2173
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2174
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2175
          # of input data into m * n grids averagely and performs poolings in each
2176 2177
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2178
          #
2179 2180 2181 2182 2183 2184 2185 2186
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2187
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2188
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2189
          pool_out = fluid.layers.adaptive_pool2d(
2190 2191
                            input=data,
                            pool_size=[3, 3],
2192
                            pool_type='avg')
K
Kaipeng Deng 已提交
2193 2194 2195

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2196
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2225
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2251
    return (pool_out, mask) if require_index else pool_out
2252 2253 2254 2255 2256 2257 2258 2259 2260


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2261
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2262 2263 2264 2265
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2266 2267
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2286 2287

    Args:
K
Kaipeng Deng 已提交
2288 2289 2290
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2291
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2292
                          The data type is float32 or float64.
2293
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2294
            it must contain three integers, (Depth, Height, Width).
2295
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2296
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2297 2298 2299 2300
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2301 2302

    Returns:
K
Kaipeng Deng 已提交
2303
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2304 2305 2306 2307 2308 2309 2310 2311 2312

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2313
          # average adaptive pool3d
2314
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2315
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2316
          # of input data into l * m * n grids averagely and performs poolings in each
2317 2318
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2319
          #
2320 2321 2322 2323 2324 2325 2326 2327 2328
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2329
          #                 output[:, :, i, j, k] =
2330 2331
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2332 2333 2334

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2335 2336
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2337
          pool_out = fluid.layers.adaptive_pool3d(
2338
                            input=data,
D
dengkaipeng 已提交
2339
                            pool_size=[3, 3, 3],
2340
                            pool_type='avg')
K
Kaipeng Deng 已提交
2341 2342 2343

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2344
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2380
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2406
    return (pool_out, mask) if require_index else pool_out
2407 2408


Y
Yu Yang 已提交
2409 2410 2411 2412 2413 2414 2415
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2416
               data_layout='NCHW',
Y
Yang Yang 已提交
2417
               in_place=False,
2418 2419
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2420
               moving_variance_name=None,
2421
               do_model_average_for_mean_and_var=True,
2422
               use_global_stats=False):
Y
Yu Yang 已提交
2423
    """
Q
qiaolongfei 已提交
2424 2425
    **Batch Normalization Layer**

L
lvmengsi 已提交
2426
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2427
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2428

Q
qiaolongfei 已提交
2429
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2430

Q
qiaolongfei 已提交
2431 2432
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2433 2434 2435
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2448

L
lvmengsi 已提交
2449 2450 2451
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2452

L
lvmengsi 已提交
2453
    moving_mean is global mean and moving_var is global variance.
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2467 2468 2469
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2470
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2471

2472
    Args:
2473
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2474
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2475
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2476 2477
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2478 2479 2480
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2481 2482 2483 2484 2485
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2486 2487
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2488 2489 2490
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2491 2492
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2493 2494 2495
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2496 2497 2498 2499
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2500
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2501 2502 2503
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2504 2505
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2506
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2507 2508
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2509 2510
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2511 2512 2513 2514 2515
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2516 2517

    Returns:
L
lvmengsi 已提交
2518 2519
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2520 2521 2522 2523 2524

    Examples:

        .. code-block:: python

2525
            import paddle.fluid as fluid
L
lvmengsi 已提交
2526
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2527 2528
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2556
    """
C
chengduo 已提交
2557
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2558 2559
    helper = LayerHelper('batch_norm', **locals())

2560 2561
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2562
    dtype = helper.input_dtype()
2563 2564 2565 2566 2567 2568 2569

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2570 2571 2572 2573
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2592
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2593

2594 2595
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2596 2597 2598
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2599
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2600
        shape=param_shape,
W
Wu Yi 已提交
2601
        dtype=dtype)
2602 2603 2604 2605 2606 2607
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2608
            trainable=False,
W
wanghaoshuang 已提交
2609
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2610
        shape=param_shape,
W
Wu Yi 已提交
2611
        dtype=dtype)
2612
    variance.stop_gradient = True
Y
Yu Yang 已提交
2613 2614 2615 2616 2617 2618

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2619 2620 2621 2622
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2623

2624 2625 2626 2627 2628
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

X
Xin Pan 已提交
2629 2630
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2662
    helper.append_op(
2663
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2664 2665 2666 2667

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2668 2669 2670 2671 2672 2673 2674 2675
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2676
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2690
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2691
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2692
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2693 2694 2695 2696
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2697 2698
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2699 2700

    Args:
L
lvmengsi 已提交
2701 2702
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2719 2720
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2721 2722 2723 2724 2725 2726

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2727
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2791
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2792 2793 2794
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2795 2796 2797
    """
    **Data Normalization Layer**

2798
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2822 2823 2824 2825
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2826 2827 2828 2829 2830
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2831 2832
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2833 2834 2835 2836 2837 2838 2839
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2840 2841 2842
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2843 2844 2845 2846 2847 2848 2849

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2850 2851
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2852

2853
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2854
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
2931 2932 2933 2934

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2935
@templatedoc()
G
guosheng 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
2946 2947 2948 2949
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2950 2951 2952

    The formula is as follows:

Y
yuyang18 已提交
2953
    ..  math::
G
guosheng 已提交
2954

2955
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2956

2957
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2958

2959
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2960

2961 2962 2963 2964 2965
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2966

G
guosheng 已提交
2967
    Args:
2968 2969 2970 2971 2972 2973
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2974
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2975 2976 2977 2978
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2979 2980
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2981
            a default :code:`ParamAttr` would be added as scale. The
2982 2983
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2984 2985
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2986
            a default :code:`ParamAttr` would be added as bias. The
2987
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2988
        act(str, optional): Activation to be applied to the output of layer normalization.
2989 2990
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2991 2992

    Returns:
2993
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2994 2995 2996

    Examples:

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3009
    """
L
lujun 已提交
3010
    assert in_dygraph_mode(
3011
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3012 3013 3014 3015 3016 3017 3018 3019
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3020
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3021 3022 3023 3024 3025 3026
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3027 3028
    else:
        if param_attr:
T
tianshuo78520a 已提交
3029
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3030
    if shift:
3031
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3032 3033 3034
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3035 3036
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3037
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3038 3039

    # create output
X
Xin Pan 已提交
3040 3041 3042 3043 3044
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3072
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3088
        act(str, optional): Activation to be applied to the output of group normalization.
3089 3090 3091 3092
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3093 3094
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3095 3096

    Returns:
3097 3098 3099 3100
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3101 3102 3103 3104 3105 3106
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3107 3108

    Examples:
3109
       .. code-block:: python
D
Dun 已提交
3110

3111 3112 3113
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3114 3115 3116 3117 3118 3119 3120
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3121 3122 3123 3124 3125 3126
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3140 3141
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3152 3153 3154 3155 3156
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3157 3158 3159 3160 3161

    return helper.append_activation(group_norm_out)


@templatedoc()
3162
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3163 3164 3165
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3166
    This operation calculates the spectral normalization value of weight parameters of
3167
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3168 3169
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3170

D
dengkaipeng 已提交
3171 3172 3173
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3174
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3175 3176

    Step 2:
T
tianshuo78520a 已提交
3177
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3178 3179
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3180 3181 3182 3183 3184 3185 3186 3187

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3188
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3189 3190 3191 3192

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3193

D
dengkaipeng 已提交
3194
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3195 3196
                

D
dengkaipeng 已提交
3197 3198 3199 3200
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3201 3202 3203
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3204 3205 3206
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3207 3208

    Returns:
D
dengkaipeng 已提交
3209
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3210
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3211 3212

    Examples:
K
Kaipeng Deng 已提交
3213
       .. code-block:: python
D
dengkaipeng 已提交
3214

K
Kaipeng Deng 已提交
3215 3216
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3217
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3218
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3219 3220
    """
    helper = LayerHelper('spectral_norm', **locals())
3221
    dtype = weight.dtype
D
dengkaipeng 已提交
3222 3223 3224

    # create intput and parameters
    inputs = {'Weight': weight}
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3243 3244

    # create output
3245
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3246 3247

    helper.append_op(
3248
        type="spectral_norm",
D
Dun 已提交
3249
        inputs=inputs,
3250 3251 3252 3253 3254 3255
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3256

3257
    return out
D
Dun 已提交
3258 3259


Y
Yu Yang 已提交
3260 3261 3262 3263
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3264 3265 3266
                     padding=0,
                     stride=1,
                     dilation=1,
3267
                     groups=None,
C
caoying03 已提交
3268
                     param_attr=None,
3269
                     bias_attr=None,
C
chengduoZH 已提交
3270
                     use_cudnn=True,
3271
                     act=None,
3272 3273
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3274
    """
3275 3276
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3277
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3278 3279 3280
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3281
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3282
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3283 3284 3285
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3286 3287 3288 3289 3290

    For each input :math:`X`, the equation is:

    .. math::

3291
        Out = \sigma (W \\ast X + b)
3292

3293
    Where:
3294

3295 3296
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3297
    * :math:`\\ast`: Convolution operation.
3298
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3299
    * :math:`\\sigma`: Activation function.
3300
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3301

3302 3303 3304 3305
    Example:

        - Input:

3306
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3307

3308
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3309 3310 3311

        - Output:

3312
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3313 3314

        Where
Y
Yu Yang 已提交
3315

3316 3317
        .. math::

3318 3319
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3320
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3321 3322
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3323
    Note:
L
lvmengsi 已提交
3324 3325 3326 3327
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3328 3329 3330 3331
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3332 3333

    Args:
3334 3335
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3336 3337
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3338
        output_size(int|tuple, optional): The output image size. If output size is a
3339
            tuple, it must contain two integers, (image_height, image_width). None if use
3340
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3341 3342 3343
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3344
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3345 3346
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3347 3348 3349 3350 3351 3352 3353
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3354 3355 3356 3357 3358 3359 3360 3361 3362
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3363 3364 3365 3366 3367 3368 3369
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3370
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3371 3372 3373 3374
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3375
            Default: groups = 1.
3376
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3377 3378 3379
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3380
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3381 3382 3383 3384
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3385
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3386
            library is installed. Default: True.
3387
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3388
            Default: None.
L
lvmengsi 已提交
3389 3390 3391
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3392 3393 3394 3395
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3396 3397

    Returns:
L
lvmengsi 已提交
3398 3399 3400 3401 3402 3403
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3404 3405

    Raises:
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3417 3418 3419 3420

    Examples:
       .. code-block:: python

3421
          import paddle.fluid as fluid
L
lvmengsi 已提交
3422
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3423
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3424
    """
C
chengduo 已提交
3425
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3426 3427 3428 3429
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3430

3431
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3432 3433 3434 3435 3436 3437
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3438 3439 3440
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3441 3442
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3443

C
chengduoZH 已提交
3444 3445
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3446

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3490 3491 3492 3493 3494
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3495

3496 3497
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3498

3499 3500 3501 3502
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3503
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3504 3505 3506
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3507

3508 3509 3510
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3511 3512 3513 3514 3515 3516
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3517
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3518
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3519

Y
Yu Yang 已提交
3520 3521 3522
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3523
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3524
    helper.append_op(
3525
        type=op_type,
Y
Yu Yang 已提交
3526 3527
        inputs={'Input': [input],
                'Filter': [img_filter]},
3528
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3529
        attrs={
3530
            'output_size': output_size,
3531 3532
            'strides': stride,
            'paddings': padding,
3533
            'padding_algorithm': padding_algorithm,
3534 3535
            'dilations': dilation,
            'groups': groups,
3536 3537
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3538 3539
        })

3540 3541 3542 3543
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3544 3545
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3546 3547


3548
def conv3d_transpose(input,
Y
Yu Yang 已提交
3549 3550 3551
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3552 3553 3554
                     padding=0,
                     stride=1,
                     dilation=1,
3555
                     groups=None,
C
caoying03 已提交
3556
                     param_attr=None,
3557
                     bias_attr=None,
C
chengduoZH 已提交
3558
                     use_cudnn=True,
3559
                     act=None,
3560 3561
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3562
    """
3563
    The convolution3D transpose layer calculates the output based on the input,
3564
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3565
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3566 3567 3568 3569
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3570
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3571 3572 3573
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3574 3575 3576 3577 3578

    For each input :math:`X`, the equation is:

    .. math::

3579
        Out = \sigma (W \\ast X + b)
3580 3581 3582

    In the above equation:

3583 3584
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3585
    * :math:`\\ast`: Convolution operation.
3586
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3587 3588
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3589

3590 3591 3592 3593
    Example:

        - Input:

3594
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3595

3596
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3597 3598 3599

        - Output:

3600
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3601 3602

        Where
Y
Yu Yang 已提交
3603

3604 3605
        .. math::

L
lvmengsi 已提交
3606 3607 3608 3609 3610 3611
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3612

L
lvmengsi 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3628 3629
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3630
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3631 3632 3633 3634
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3635
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3636
            it must contain three integers, (filter_size_depth, filter_size_height,
3637 3638
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3639 3640 3641 3642
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3643 3644 3645 3646 3647 3648 3649 3650
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3651 3652 3653 3654 3655 3656 3657 3658
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3659
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3660 3661 3662 3663 3664
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3665
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3666 3667 3668
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3669
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3670 3671 3672 3673
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3674
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3675
            library is installed. Default: True
3676
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3677
            Default: None.
L
lvmengsi 已提交
3678 3679 3680
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3681 3682 3683 3684
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3685 3686

    Returns:
L
lvmengsi 已提交
3687 3688 3689 3690 3691
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3692 3693

    Raises:
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3705 3706 3707 3708

    Examples:
       .. code-block:: python

3709
          import paddle.fluid as fluid
L
lvmengsi 已提交
3710
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3711
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3712
    """
C
chengduo 已提交
3713
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3714 3715 3716 3717
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3718 3719
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3720
    if not isinstance(input, Variable):
3721
        raise TypeError("Input of conv3d_transpose must be Variable")
3722 3723
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3724

3725 3726
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3727

C
chengduoZH 已提交
3728 3729 3730
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3745 3746 3747 3748 3749 3750 3751 3752
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3753

3754 3755
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3756

3757 3758 3759 3760 3761 3762 3763
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3764

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3778

3779
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3780

3781 3782 3783 3784 3785
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3786

3787 3788 3789
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3801

3802 3803
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3804

3805 3806 3807 3808
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3809

3810 3811 3812 3813
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3814

3815
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3816
    helper.append_op(
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3830

3831 3832 3833 3834 3835 3836
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3837 3838


C
caoying03 已提交
3839
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3840
    """
Y
yangyaming 已提交
3841
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3842 3843

    Args:
3844 3845 3846
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3847 3848
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3849 3850
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3851
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3852
            output Tensor. The result tensor will have one fewer dimension
3853 3854 3855 3856
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3857 3858

    Returns:
3859 3860
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3861

3862 3863 3864
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3865 3866 3867
    Examples:
        .. code-block:: python

3868
            import paddle.fluid as fluid
G
guosheng 已提交
3869 3870 3871
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3872
            # Each example is followed by the corresponding output tensor.
3873
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3874 3875 3876 3877
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3878

3879
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3880 3881
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3882
            # Each example is followed by the corresponding output tensor.
3883
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3884 3885
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3886

G
guosheng 已提交
3887
    """
3888 3889 3890
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
3891
        'dim': dim if dim != None and dim != [] else [0],
3892
        'keep_dim': keep_dim,
3893
        'reduce_all': True if dim == None or dim == [] else False
3894 3895 3896 3897 3898 3899 3900
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_sum(inputs, attrs)
        return outs['Out'][0]

3901 3902
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
3903
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3904
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3905 3906 3907 3908
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
3909
        attrs=attrs)
G
guosheng 已提交
3910
    return out
G
guosheng 已提交
3911 3912


C
caoying03 已提交
3913
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3914
    """
Y
Yibing Liu 已提交
3915
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3916 3917

    Args:
3918 3919 3920
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3921 3922
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3923
            must be in the range :math:`[-rank(input), rank(input))`. If
3924
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3925
            :math:`rank(input) + dim[i]`.
3926
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3927
            output Tensor. The result tensor will have one fewer dimension
3928 3929 3930 3931 3932
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
3933
    Returns:
3934 3935 3936 3937 3938 3939
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3940 3941 3942
    Examples:
        .. code-block:: python

3943
            import paddle.fluid as fluid
G
guosheng 已提交
3944 3945 3946
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
3947
            # Each example is followed by the corresponding output tensor.
3948
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3949 3950 3951
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3952
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3953

3954
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3955 3956
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
3957
            # Each example is followed by the corresponding output tensor.
3958
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3959 3960
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3961
    """
3962 3963 3964 3965

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
3966
        'dim': dim if dim != None and dim != [] else [0],
3967
        'keep_dim': keep_dim,
3968
        'reduce_all': True if dim == None or dim == [] else False
3969 3970 3971 3972 3973 3974 3975
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_mean(inputs, attrs)
        return outs['Out'][0]

3976 3977
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
3978
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3979
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3980 3981 3982 3983
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
3984
        attrs=attrs)
G
guosheng 已提交
3985
    return out
3986 3987


C
caoying03 已提交
3988
def reduce_max(input, dim=None, keep_dim=False, name=None):
3989
    """
Y
yangyaming 已提交
3990
    Computes the maximum of tensor elements over the given dimension.
3991 3992

    Args:
3993 3994 3995
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3996 3997 3998
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3999
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4000
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4001
            output Tensor. The result tensor will have one fewer dimension
4002 4003 4004 4005
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4006 4007

    Returns:
4008 4009
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4010

4011 4012 4013
    Examples:
        .. code-block:: python

4014
            import paddle.fluid as fluid
4015 4016 4017
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4018
            # Each example is followed by the corresponding output tensor.
4019
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4020 4021 4022 4023
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4024

4025
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4026 4027
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4028
            # Each example is followed by the corresponding output tensor.
4029
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4030 4031
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4032 4033
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4034
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4035 4036
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4037 4038 4039 4040 4041
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4042
            'dim': dim if dim != None and dim != [] else [0],
4043
            'keep_dim': keep_dim,
4044
            'reduce_all': True if dim == None or dim == [] else False
4045 4046 4047 4048
        })
    return out


C
caoying03 已提交
4049
def reduce_min(input, dim=None, keep_dim=False, name=None):
4050
    """
Y
yangyaming 已提交
4051
    Computes the minimum of tensor elements over the given dimension.
4052 4053

    Args:
4054 4055 4056
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4057 4058 4059
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4060
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4061
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4062
            output Tensor. The result tensor will have one fewer dimension
4063 4064 4065 4066
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4067 4068

    Returns:
4069 4070
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4071

4072 4073 4074
    Examples:
        .. code-block:: python

4075
            import paddle.fluid as fluid
4076 4077 4078
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4079
            # Each example is followed by the corresponding output tensor.
4080
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4081 4082 4083 4084
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4085

4086
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4087 4088
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4089
            # Each example is followed by the corresponding output tensor.
4090
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4091 4092
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4093 4094
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4095
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4096 4097
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4098 4099 4100 4101 4102
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4103
            'dim': dim if dim != None and dim != [] else [0],
4104
            'keep_dim': keep_dim,
4105
            'reduce_all': True if dim == None or dim == [] else False
4106 4107
        })
    return out
G
guosheng 已提交
4108 4109


4110 4111 4112 4113 4114
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4115 4116 4117
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4118
            :attr:`None`, multiply all elements of :attr:`input` and return a
4119
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4120 4121
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4122
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4123
            output Tensor. The result tensor will have one fewer dimension
4124 4125 4126 4127
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4128 4129

    Returns:
4130 4131 4132
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4133 4134 4135
    Examples:
        .. code-block:: python

4136
            import paddle.fluid as fluid
4137 4138 4139
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4140
            # Each example is followed by the corresponding output tensor.
4141
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4142 4143 4144
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4145
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4146
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4147

4148
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4149 4150
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4151
            # Each example is followed by the corresponding output tensor.
4152
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4153 4154
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4155 4156
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4157
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4158 4159
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4160 4161 4162 4163 4164
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4165
            'dim': dim if dim != None and dim != [] else [0],
4166
            'keep_dim': keep_dim,
4167
            'reduce_all': True if dim == None or dim == [] else False
4168 4169 4170 4171
        })
    return out


Z
zhoukunsheng 已提交
4172 4173
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4174
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4175 4176

    Args:
4177 4178
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4179 4180 4181
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4182
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4183 4184
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4185
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4186
        name(str|None): A name for this layer(optional). If set None, the layer
4187
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4188

4189 4190
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4191 4192 4193

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4194
        
4195
            import paddle.fluid as fluid
4196 4197 4198
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4199 4200 4201
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4202 4203 4204 4205 4206 4207
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4208 4209
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4210
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4211
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4223
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4224
            'keep_dim': keep_dim,
4225
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4226 4227 4228 4229 4230 4231
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4232
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4233 4234

    Args:
4235 4236 4237
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4238 4239
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4240
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4241 4242
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4243
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4244 4245
        name(str|None): A name for this layer(optional). If set None, the layer

4246 4247
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4248 4249 4250

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4251

4252
            import paddle.fluid as fluid
4253 4254 4255
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4256 4257 4258
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4259 4260 4261 4262 4263 4264
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4265 4266
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4267
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4268
                                     keep_dim=True)  # [[True], [False]]
4269
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4281
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4282
            'keep_dim': keep_dim,
4283
            'reduce_all': True if dim == None or dim == [] else False
4284 4285 4286 4287
        })
    return out


C
caoying03 已提交
4288
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4289
    """
4290
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4291 4292

    Args:
4293
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4294
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4295 4296
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4297 4298 4299 4300 4301
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4302
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4303 4304

    Returns:
4305
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4306

4307 4308 4309 4310
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4311
    Example:
G
guosheng 已提交
4312 4313
        .. code-block:: python

4314 4315
            import paddle.fluid as fluid

4316 4317
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4318 4319
                 name="input", shape=[3, 9, 5], dtype="float32")

4320 4321 4322 4323
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4324

4325 4326 4327 4328 4329 4330 4331 4332 4333
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4334
    """
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    if in_dygraph_mode():
        inputs = {'X': [input]}
        attrs = {}
        if isinstance(dim, int):
            dim = (len(input.shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim
        else:
            dim.stop_gradient = True
            inputs['AxisTensor'] = [dim]

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs['num'] = num_or_sections
L
Leo Chen 已提交
4348
        elif isinstance(num_or_sections, (list, tuple)):
4349
            num = len(num_or_sections)
L
Leo Chen 已提交
4350
            if utils._contain_var(num_or_sections):
4351
                raise TypeError(
L
Leo Chen 已提交
4352 4353 4354 4355 4356
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
                attrs['sections'] = list(num_or_sections)
4357 4358 4359 4360 4361
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))

L
Leo Chen 已提交
4362 4363 4364
        res = core.ops.split(inputs, attrs, {}, {'Out': num})
        return res['Out']

4365 4366 4367 4368 4369 4370 4371 4372 4373
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4374 4375
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4407 4408
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4409 4410 4411 4412 4413
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4414 4415
        num = num_or_sections
    else:
4416 4417 4418
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4419
        num = len(num_or_sections)
4420 4421 4422
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4423
        if utils._contain_var(num_or_sections):
4424 4425 4426
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4427
    outs = [
X
Xin Pan 已提交
4428
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4429 4430 4431
        for i in range(num)
    ]
    helper.append_op(
4432
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4433
    return outs
C
caoying03 已提交
4434 4435 4436 4437


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4438
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4439 4440
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4441
    .. math::
4442 4443

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4444 4445 4446 4447 4448

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4449
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4450
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4451 4452
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4453
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4454
            the default value is 1e-12.
R
ruri 已提交
4455 4456
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4457
    Returns:
R
ruri 已提交
4458
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4459 4460

    Examples:
4461

C
caoying03 已提交
4462
        .. code-block:: python
R
ruri 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4475

R
ruri 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4500 4501
    """

F
fengjiayi 已提交
4502 4503
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4504 4505
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4506 4507
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4508
    helper.append_op(
4509 4510 4511 4512
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4513
        attrs={
4514 4515
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4516 4517
        })
    return out
4518 4519


S
sneaxiy 已提交
4520
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4521
    """
Y
ying 已提交
4522 4523 4524 4525
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4526

C
chengduoZH 已提交
4527
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4528
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4529

4530 4531 4532 4533 4534
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4535
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4536

C
chengduoZH 已提交
4537
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4538
      performs in the following way.
G
guosheng 已提交
4539

4540
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4541
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4542
        last two dimensions and a batched matrix multiply supporting broadcast
4543
        applies on the two tensors.
G
guosheng 已提交
4544

Y
ying 已提交
4545 4546
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4547
    removed after matrix multiplication.
G
guosheng 已提交
4548 4549 4550

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4551 4552 4553
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4554
        alpha (float): The scale of output. Default 1.0.
4555
        name(str|None): A name for this layer(optional). If set None, the layer
4556
            will be named automatically.
G
guosheng 已提交
4557 4558

    Returns:
石晓伟 已提交
4559
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4560

G
guosheng 已提交
4561 4562 4563
    Examples:
        .. code-block:: python

4564
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4565
            # x: [B, ..., M, K], y: [B, ..., K, N]
4566
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4567

4568
            # x: [B, M, K], y: [B, K, N]
4569
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4570

4571
            # x: [B, M, K], y: [K, N]
4572
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4573

4574
            # x: [M, K], y: [K, N]
4575
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4576 4577

            # x: [B, M, K], y: [K]
4578
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4579

4580
            # x: [K], y: [K]
4581
            # fluid.layers.matmul(x, y)  # out: [1]
4582

Y
ying 已提交
4583
            # x: [M], y: [N]
4584 4585
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4586
            import paddle.fluid as fluid
4587 4588 4589
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4590
    """
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
        inputs = {'X': [x], 'Y': [y]}
        outs = core.ops.matmul(inputs, attrs)
        return outs['Out'][0]
Y
ying 已提交
4601 4602

    def __check_input(x, y):
4603 4604
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4605 4606
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4607 4608 4609 4610 4611
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4612
            y_shape = y_shape + [1]
Y
ying 已提交
4613 4614 4615 4616 4617 4618 4619

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4620 4621 4622 4623 4624
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4625

C
chengduo 已提交
4626
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4627
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4628 4629 4630
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4631
                if dim_x != y_shape[i]:
4632 4633 4634 4635 4636
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4637 4638 4639

    __check_input(x, y)

4640
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4641
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4642
    helper.append_op(
4643 4644 4645 4646
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
4647
        attrs=attrs)
4648
    return out
4649 4650


4651
def topk(input, k, name=None):
Q
qingqing01 已提交
4652
    """
4653
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4654 4655
    for the last dimension.

4656 4657
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4658 4659 4660 4661

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4662 4663
    .. code-block:: text

4664 4665 4666 4667 4668
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4669 4670 4671 4672
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4673
          Output:
F
fengjiayi 已提交
4674
            The first output:
4675 4676
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4677 4678 4679 4680
                      [10, 25],
                      [6, 10]]

            The second output:
4681 4682
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4683 4684 4685
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4686
    Args:
4687 4688 4689 4690
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4691 4692

    Returns:
4693 4694
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4695

F
fengjiayi 已提交
4696
    Raises:
4697
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4698 4699 4700 4701

    Examples:
        .. code-block:: python

4702
            import paddle.fluid as fluid
4703
            import paddle.fluid.layers as layers
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4717
    """
W
whs 已提交
4718
    inputs = {"X": [input]}
4719
    attrs = {}
W
whs 已提交
4720
    if isinstance(k, Variable):
4721
        inputs['K'] = [k]
W
whs 已提交
4722 4723
    else:
        attrs = {'k': k}
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

    if in_dygraph_mode():
        outs = core.ops.top_k(inputs, attrs)
        outs['Out'][0].stop_gradient = True
        outs['Indices'][0].stop_gradient = True
        return outs['Out'][0], outs['Indices'][0]

    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
4735 4736
    helper.append_op(
        type="top_k",
W
whs 已提交
4737
        inputs=inputs,
Q
qingqing01 已提交
4738 4739
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4740
        attrs=attrs)
Q
qingqing01 已提交
4741 4742 4743 4744 4745
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4746 4747 4748 4749 4750
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4751
    """
S
SunGaofeng 已提交
4752
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4753

S
SunGaofeng 已提交
4754
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4755 4756 4757
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4758

S
SunGaofeng 已提交
4759 4760 4761 4762
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4763 4764 4765 4766 4767
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4768
        (1) for lod mode:
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4780
        input.lod = [[4, 4]]
M
minqiyang 已提交
4781

W
whs 已提交
4782
        Computation:
4783

W
whs 已提交
4784 4785 4786 4787 4788 4789
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4790 4791 4792 4793 4794

        output.data = [[2],
                       [1],
                       [3]]

4795
        output.lod = [[2, 1]]
4796

S
SunGaofeng 已提交
4797
        (2) for padding mode:
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4824
    Parameters:
4825

S
SunGaofeng 已提交
4826 4827
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4828
                         where Lp is the sum of all input sequences' length and
4829 4830
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4831
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4832
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4833
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4834
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4835 4836
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4837
        padding_value(int): padding value.
S
SunGaofeng 已提交
4838 4839 4840
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4841 4842

    Returns:
S
SunGaofeng 已提交
4843 4844 4845 4846 4847
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
4848
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4860 4861 4862 4863

    Examples:
        .. code-block:: python

4864
            # for lod mode
S
SunGaofeng 已提交
4865
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4866
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4867
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4868 4869

            # for padding mode
S
SunGaofeng 已提交
4870 4871
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4872 4873 4874
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4875
    """
4876
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4877
    _, topk_indices = topk(input, k=1)
4878 4879

    # ctc align op
X
Xin Pan 已提交
4880
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
4906 4907


Y
fix ci.  
ying 已提交
4908
def transpose(x, perm, name=None):
Y
ying 已提交
4909
    """
4910
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
4911 4912 4913 4914 4915

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4916 4917
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
        perm (list): Permute the input accoring to the data of perm.
4918
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4919 4920

    Returns:
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
4945 4946

    Examples:
4947

Y
ying 已提交
4948 4949
        .. code-block:: python

4950
            # use append_batch_size=False to avoid prepending extra
4951
            # batch size in shape
4952
            import paddle.fluid as fluid
4953
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
4954
                            dtype='float32', append_batch_size=False)
4955
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
4956 4957
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
4958

4959
    """
4960 4961 4962 4963 4964 4965
    if in_dygraph_mode():
        attrs = {'axis': perm}
        inputs = {'X': [x]}
        outs = core.ops.transpose2(inputs, attrs)
        return outs['Out'][0]

4966 4967 4968
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
4969
    check_type(perm, 'perm', list, 'transpose')
4970

Y
fix ci.  
ying 已提交
4971
    if len(perm) != len(x.shape):
Y
ying 已提交
4972
        raise ValueError(
4973 4974 4975 4976
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
4977 4978 4979
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
4980 4981 4982
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4983 4984

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4985 4986
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4987
    helper.append_op(
4988
        type='transpose2',
Y
fix ci.  
ying 已提交
4989
        inputs={'X': [x]},
4990 4991
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4992 4993
        attrs={'axis': perm})
    return out
4994 4995


4996 4997 4998 4999 5000 5001 5002
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5003
    """
5004
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5005 5006 5007
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5008 5009
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5010 5011 5012

    .. math::

L
Liufang Sang 已提交
5013 5014 5015 5016
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5017

L
Liufang Sang 已提交
5018
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5019

L
Liufang Sang 已提交
5020 5021
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5022

L
Liufang Sang 已提交
5023 5024 5025
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5026

L
Liufang Sang 已提交
5027 5028
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5029

L
Liufang Sang 已提交
5030 5031 5032 5033 5034 5035 5036
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5037

L
Liufang Sang 已提交
5038 5039 5040 5041
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5042
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5081 5082 5083
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5096
            output.dims = {8, 8}
5097

5098
            output.lod = [[4, 4]]
5099

T
Tink_Y 已提交
5100
    Examples:
5101 5102 5103

        .. code-block:: python

B
Bai Yifan 已提交
5104
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5105
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5106
                                     dtype='float32')
5107
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5108 5109
                input=data, stride=[1, 1], filter_size=[2, 2])

5110 5111

    """
L
lujun 已提交
5112
    assert not in_dygraph_mode(), (
5113
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5124
    inputs = {"X": input}
5125
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5126 5127 5128 5129 5130
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5131
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5132
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5133
    helper.append_op(
5134
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5135
    return out
5136 5137


Y
yuyang18 已提交
5138
@templatedoc()
5139
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5140 5141
    """
    ${comment}
5142 5143

    Args:
Y
yuyang18 已提交
5144
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5145 5146
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5147 5148 5149 5150 5151
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5152
        ${out_comment}.
5153 5154

    Examples:
D
Double_V 已提交
5155
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5156
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5157
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5158 5159
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5160 5161 5162
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5163 5164 5165 5166 5167 5168
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5169
    out = helper.create_variable_for_type_inference(dtype)
5170 5171 5172 5173 5174
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5175
    return helper.append_activation(out)
5176 5177


Y
yuyang18 已提交
5178
@templatedoc()
5179 5180
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5181

5182
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5183

5184
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5185

5186
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5187

5188
    For Example:
L
lujun 已提交
5189

5190
            .. code-block:: text
L
lujun 已提交
5191

5192
                Given:
L
lujun 已提交
5193

5194 5195 5196 5197
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5198

5199
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5200

5201 5202 5203 5204
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5205 5206


5207 5208 5209
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5210

5211
    Returns:
5212
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5213 5214

    Examples:
5215

X
xuezhong 已提交
5216 5217
        .. code-block:: python

5218
            import paddle.fluid as fluid
5219
            import numpy as np
5220

5221 5222 5223 5224
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5225

5226 5227 5228 5229 5230 5231 5232 5233 5234
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5235

5236 5237 5238 5239 5240 5241 5242 5243
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5244
    helper.append_op(
5245 5246 5247 5248 5249
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5250 5251


5252 5253
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5254 5255
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5256
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5257
    and then sums all the losses. So the shape of output Variable is
5258
    [batch_size, 1].
5259

5260 5261
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5262
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5263
            A LoDTensor or Tensor with type float32.
5264
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5265
            L1 loss op with same shape as :attr:`x`.
5266
            A LoDTensor or Tensor with type float32.
5267
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5268 5269
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5270
            by this tensor element by element.
5271
            A Tensor with type float32.
5272
        outside_weight (Variable|None): A tensor with rank at least 2. This
5273 5274
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5275
            element by element.
5276
            A Tensor with type float32.
5277
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5278 5279
           scalar with default value 1.0.

5280
    Returns:
5281
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5282 5283 5284 5285

    Examples:
        .. code-block:: python

5286
            import paddle.fluid as fluid
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5304
    """
5305

5306
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5307 5308
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5319
        attrs={'sigma': sigma if sigma is not None else 1.0})
5320
    return loss
5321 5322


5323
def one_hot(input, depth, allow_out_of_range=False):
5324
    """
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5379 5380

    Args:
5381 5382 5383 5384 5385
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5386
        allow_out_of_range(bool): A bool value indicating whether the input
5387 5388 5389 5390
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5391 5392

    Returns:
5393
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5394 5395

    Examples:
C
caoying03 已提交
5396
        .. code-block:: python
5397

5398
            import paddle.fluid as fluid
5399 5400 5401
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5402
    """
5403 5404 5405 5406 5407 5408
    if in_dygraph_mode():
        inputs = {'X': [input]}
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
        outs = core.ops.one_hot(inputs, attrs)
        outs['Out'][0].stop_gradient = True
        return outs['Out'][0]
5409

5410
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5411
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5412

5413 5414
    if not isinstance(depth, Variable):
        # user attribute
5415
        inputs = {'X': input}
Y
Yi Liu 已提交
5416
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5417
    else:
5418 5419 5420
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5421 5422
    helper.append_op(
        type="one_hot",
5423 5424
        inputs=inputs,
        attrs=attrs,
5425 5426
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5427
    return one_hot_out
Y
Yu Yang 已提交
5428 5429


Y
Yu Yang 已提交
5430
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5431
    """
Y
Yibing Liu 已提交
5432 5433 5434
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5435 5436

    Args:
Y
Yibing Liu 已提交
5437 5438 5439
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5440

5441
    Returns:
Y
Yibing Liu 已提交
5442
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5443 5444 5445 5446

    Examples:
        .. code-block:: python

5447
           import paddle.fluid as fluid
Y
yi.wu 已提交
5448
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5449
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5450 5451
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5452 5453
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5454
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5455 5456 5457 5458 5459
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5460 5461 5462
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5463
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5464
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5465 5466
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5467
            outputs={'Out': [counter]},
5468
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5469 5470 5471
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5472 5473


5474
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5475
    """
5476
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5477

5478 5479 5480 5481
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5482
    guarantee shape inference in compile-time.
C
caoying03 已提交
5483

5484
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5485

5486 5487 5488 5489
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5490
    2. 0 means the actual dimension value is going to be copied from the
5491
    corresponding dimension of x. The indice of 0s in shape can not exceed
5492
    the dimension of x.
5493 5494

    Here are some examples to explain it.
C
caoying03 已提交
5495 5496

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5497
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5498
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5499

5500
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5501 5502
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5503 5504
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5505
    dimensions.
C
caoying03 已提交
5506

5507
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5508 5509 5510 5511
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5512

5513 5514
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5515

C
caoying03 已提交
5516
    Args:
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5534

5535
    Returns:
5536
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5537

X
Xin Pan 已提交
5538
    Raises:
5539 5540 5541 5542
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5543

C
caoying03 已提交
5544 5545
    Examples:
        .. code-block:: python
G
guosheng 已提交
5546

5547
            import paddle.fluid as fluid
5548 5549 5550

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5551 5552
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5553
            reshaped_1 = fluid.layers.reshape(
5554 5555
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5556 5557 5558 5559 5560 5561

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5562
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5563 5564 5565 5566 5567 5568

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5569
    """
5570
    if in_dygraph_mode():
L
Leo Chen 已提交
5571
        #TODO(zhiqiu): enable inplace in dygraph mode.
5572 5573 5574 5575 5576 5577
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5578
            if utils._contain_var(shape):
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        inputs = {'X': [x]}
        outs = core.ops.reshape2(inputs, attrs)
5590 5591
        out = outs['Out'][0]
        return dygraph_utils._append_activation_in_dygraph(out, act)
5592

5593 5594
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5595 5596
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5597

5598
    helper = LayerHelper("reshape2", **locals())
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5623 5624
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5625 5626 5627
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5628 5629 5630 5631
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5632 5633
                else:
                    assert dim_size > 0, (
5634
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5635
                        "be negative except one unknown dimension. "
5636 5637
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5638 5639
        return attrs_shape

5640 5641 5642 5643 5644 5645 5646 5647 5648
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5649
        if utils._contain_var(shape):
5650 5651 5652 5653 5654 5655 5656
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5657
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5658
    helper.append_op(
5659
        type="reshape2",
X
Xin Pan 已提交
5660
        inputs=inputs,
5661
        attrs=attrs,
5662 5663
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5664

D
dzhwinter 已提交
5665
    return helper.append_activation(out)
5666

5667

5668
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5669
    """
5670 5671 5672
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5673

H
haowang101779990 已提交
5674

5675
    .. code-block:: text 
H
haowang101779990 已提交
5676

5677
        Case1:
H
haowang101779990 已提交
5678

5679
          Input:
H
haowang101779990 已提交
5680 5681
            X.shape = (1, 3, 1, 5)
            axes = [0]
5682
          Output:
H
haowang101779990 已提交
5683 5684
            Out.shape = (3, 1, 5)

5685
        Case2:
H
haowang101779990 已提交
5686

5687
          Input:
H
haowang101779990 已提交
5688 5689
            X.shape = (1, 3, 1, 5)
            axes = []
5690
          Output:
H
haowang101779990 已提交
5691
            Out.shape = (3, 5)
M
minqiyang 已提交
5692

5693 5694 5695 5696 5697 5698 5699 5700
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5701
    Args:
5702 5703 5704 5705 5706
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5707 5708

    Returns:
5709
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5710 5711 5712 5713

    Examples:
        .. code-block:: python

5714
            import paddle.fluid as fluid
5715
            import paddle.fluid.layers as layers
5716 5717 5718 5719
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5720 5721
    """
    helper = LayerHelper("squeeze", **locals())
5722 5723 5724
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
5725
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5726 5727
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5728
    helper.append_op(
5729
        type="squeeze2",
5730
        inputs={"X": input},
Y
Yibing Liu 已提交
5731
        attrs={"axes": axes},
5732 5733
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5734

5735 5736 5737
    return out


5738
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5739
    """
5740
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5741 5742
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5743

M
minqiyang 已提交
5744
    For example:
H
haowang101779990 已提交
5745 5746 5747

    .. code-block:: text

M
minqiyang 已提交
5748
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5749
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5750

Y
Yibing Liu 已提交
5751
    Args:
5752
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5753
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5754
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5755 5756

    Returns:
5757
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5758 5759 5760 5761

    Examples:
        .. code-block:: python

5762 5763 5764
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5765

Y
Yibing Liu 已提交
5766
    """
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
5794
        if utils._contain_var(axes):
5795 5796 5797 5798
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5799 5800
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5801
    helper.append_op(
5802
        type="unsqueeze2",
5803 5804
        inputs=inputs,
        attrs=attrs,
5805 5806
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5807

5808 5809
    return out

5810

Y
yangyaming 已提交
5811
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5812
    """
Y
Yibing Liu 已提交
5813
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5814 5815 5816 5817
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5818
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5819 5820 5821 5822 5823 5824

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5825
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5826 5827 5828
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5829
            target_lod: [4, 2]
Y
yangyaming 已提交
5830 5831

            then we get a 1-level LoDTensor:
5832
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5833 5834 5835 5836 5837 5838
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5839
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5840 5841 5842 5843
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5844
                y.data = [[2, 4]]
Y
yangyaming 已提交
5845 5846 5847
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5848
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5849 5850 5851 5852 5853 5854
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5855
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5856 5857 5858 5859
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5860
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5861 5862 5863 5864
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5865
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5866 5867 5868 5869
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
5870
        x (Variable): Input variable which could be a Tensor or LoDTensor.
5871
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5872
                           from :attr:`y`.
Y
yangyaming 已提交
5873
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5874
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5875 5876

    Returns:
Y
Yibing Liu 已提交
5877
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5878 5879

    Raises:
Y
Yibing Liu 已提交
5880
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5881 5882 5883 5884

    Examples:
        .. code-block:: python

5885
            import paddle.fluid as fluid
5886 5887 5888
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
5889 5890
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5891
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
5929
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
5930 5931 5932 5933 5934 5935

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
5947 5948 5949
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

5950 5951
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5952 5953 5954 5955 5956 5957 5958 5959

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
5960
    helper.append_op(
5961
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
5962
    return out
D
dragonwarrior 已提交
5963 5964


5965 5966
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
5967
    """
5968 5969 5970
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
5971 5972 5973 5974 5975

    The formula is as follows:

    .. math::

5976
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5977 5978 5979

    In the above equation:

5980 5981 5982 5983
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
5984 5985 5986


    Args:
5987 5988 5989
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
5990 5991 5992 5993
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
5994 5995
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
5996 5997 5998 5999 6000
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6001
    Returns:
6002 6003
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6004 6005 6006

    Examples:

6007 6008 6009 6010 6011 6012 6013 6014
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6015 6016 6017 6018 6019 6020 6021 6022
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6023
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6024
            (dims))
6025 6026 6027 6028
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6029

X
Xin Pan 已提交
6030 6031 6032
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6033 6034 6035 6036 6037 6038 6039
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6040 6041 6042 6043 6044 6045 6046
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6047 6048

    return lrn_out
G
guosheng 已提交
6049 6050 6051 6052


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6053 6054
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6055

S
SunGaofeng 已提交
6056 6057 6058 6059
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6079
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6080
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6081 6082
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6083 6084
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6085 6086 6087
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6088 6089

    Returns:
S
SunGaofeng 已提交
6090 6091 6092 6093
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6094 6095 6096

    Examples:
        .. code-block:: python
G
guosheng 已提交
6097

S
SunGaofeng 已提交
6098 6099
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6100
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6101
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6102 6103 6104 6105 6106
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6107
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6108 6109 6110 6111 6112 6113 6114
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6115 6116


C
chengduo 已提交
6117 6118
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6119
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6120
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6121 6122
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6147 6148
		And
            pad_value = -1,
C
chengduo 已提交
6149

T
Tink_Y 已提交
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6164 6165

    Args:
T
tianshuo78520a 已提交
6166
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6167 6168
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6169
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6170 6171 6172
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6173 6174

    Returns:
S
SunGaofeng 已提交
6175 6176 6177 6178
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6179 6180 6181 6182 6183 6184

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6185
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6186 6187
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6188 6189 6190 6191 6192
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6193
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6194 6195 6196 6197 6198 6199 6200 6201 6202
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6203 6204 6205 6206 6207 6208
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6209 6210
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6211

6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6229
    Parameters:
6230
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6246 6247 6248 6249 6250 6251

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6252
            
6253
            import paddle.fluid as fluid
6254
            import paddle.fluid.layers as layers
6255 6256 6257 6258 6259 6260 6261 6262

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6263 6264 6265 6266 6267 6268 6269 6270 6271

    if in_dygraph_mode():
        inputs = {"X": [label]}
        if prior_dist:
            inputs["PriorDist"] = [prior_dist]
        attrs = {"epsilon": float(epsilon)}
        outs = core.ops.label_smooth(inputs, attrs)
        return outs['Out'][0]

6272 6273
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6274
    smooth_label = helper.create_variable_for_type_inference(dtype)
6275 6276 6277 6278 6279 6280 6281
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6282 6283


W
wopeizl 已提交
6284 6285 6286
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6298
    Args:
6299 6300 6301 6302 6303 6304
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6305
    Returns:
6306 6307 6308
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6309
    Examples:
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6328 6329
                input=x,
                rois=rois,
6330 6331
                pooled_height=1,
                pooled_width=1,
6332
                spatial_scale=1.0)
6333 6334 6335 6336 6337
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6355 6356


J
jerrywgz 已提交
6357 6358 6359 6360 6361 6362
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6363 6364
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6365 6366 6367 6368 6369
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6370
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6382 6383

    Returns:
W
wangguanzhong 已提交
6384 6385 6386 6387 6388
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6389 6390 6391
    Examples:
        .. code-block:: python

6392
            import paddle.fluid as fluid
6393 6394 6395 6396
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6397 6398 6399
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6400 6401 6402 6403 6404 6405
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6406
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6421
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6422
    """
S
SunGaofeng 已提交
6423 6424 6425 6426
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6427 6428 6429 6430 6431 6432 6433 6434

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6435 6436 6437 6438 6439 6440
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6441 6442 6443
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6444 6445 6446
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6447 6448

    Returns:
S
SunGaofeng 已提交
6449 6450 6451
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6452

S
SunGaofeng 已提交
6453
    Example:
6454 6455
        .. code-block:: python

S
SunGaofeng 已提交
6456
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6457 6458 6459
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6460
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6461 6462
    """
    label = one_hot(label, depth=input.shape[-1])
6463
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6464 6465 6466 6467 6468 6469
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6470 6471


6472 6473 6474 6475
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6476
                 resample='BILINEAR',
6477 6478
                 actual_shape=None,
                 align_corners=True,
6479 6480
                 align_mode=1,
                 data_format='NCHW'):
6481
    """
R
ruri 已提交
6482
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6483

6484 6485 6486 6487
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
6488

6489
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6490 6491
    future and only use :attr:`out_shape` instead.

6492
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6493

6494
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6495

K
Kaipeng Deng 已提交
6496 6497
        'TRILINEAR' : Trilinear interpolation

6498
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6499

6500
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6501
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6502 6503 6504 6505 6506 6507 6508 6509
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6510 6511 6512 6513 6514
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6515
    Align_corners and align_mode are optional parameters,the calculation method 
6516 6517 6518 6519
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6520
    .. code-block:: text
6521

T
Tink_Y 已提交
6522
        For scale:
6523
          
T
Tink_Y 已提交
6524
            if align_corners = True && out_size > 1 :
6525

T
Tink_Y 已提交
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6537

T
Tink_Y 已提交
6538 6539
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6540

T
Tink_Y 已提交
6541 6542
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6543

T
Tink_Y 已提交
6544 6545
          else:
              align_corners = True
6546

T
Tink_Y 已提交
6547 6548
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6549

T
Tink_Y 已提交
6550 6551
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6552

T
Tink_Y 已提交
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6563

T
Tink_Y 已提交
6564 6565 6566 6567
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6568

T
Tink_Y 已提交
6569 6570
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6571

K
Kaipeng Deng 已提交
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6594 6595 6596 6597 6598 6599
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6600 6601 6602
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6603 6604


R
ruri 已提交
6605
    Parameters:
6606 6607
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6608
        out_shape(list|tuple|Variable|None): Output shape of image resize
6609 6610 6611 6612
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6613 6614 6615
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6616
             Default: None.
6617 6618
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6619 6620
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6621 6622 6623
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6624
                                :attr:`out_shape` and :attr:`scale` specifying
6625 6626
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6627 6628 6629 6630 6631
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6632
                                errors would be occurred in graph constructing stage.
6633
                                Default: None
6634 6635 6636 6637
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6638
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6639
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6640
                            src_idx = scale*dst_index.
6641 6642 6643 6644 6645
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6646 6647

    Returns:
6648 6649
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6650

6651 6652 6653
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6654 6655 6656 6657
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6658
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6659 6660
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6661
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6662
        TypeError: align_corners should be a bool value
6663
        ValueError: align_mode can only be '0' or '1'
6664
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6665

6666 6667
    Examples:
        .. code-block:: python
R
ruri 已提交
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6700

R
ruri 已提交
6701 6702 6703 6704 6705 6706
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6707

R
ruri 已提交
6708 6709 6710 6711 6712 6713 6714 6715
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6716

R
ruri 已提交
6717 6718
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6719

R
ruri 已提交
6720 6721 6722 6723
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6724

R
ruri 已提交
6725
		# [2L, 3L, 12L, 12L]
6726

6727
    """
6728 6729
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6730
        'TRILINEAR': 'trilinear',
6731 6732
        'NEAREST': 'nearest',
    }
6733 6734
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6735 6736
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6737
    resample_type = resample_methods[resample]
6738

K
Kaipeng Deng 已提交
6739 6740 6741 6742 6743
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6744 6745 6746 6747 6748
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6749
    if out_shape is None and scale is None:
6750
        raise ValueError("One of out_shape and scale must not be None.")
6751
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6752
    dtype = helper.input_dtype()
6753

6754 6755 6756 6757 6758 6759 6760 6761 6762
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6763 6764 6765
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6766 6767 6768 6769 6770
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6771
    inputs = {"X": input}
D
dengkaipeng 已提交
6772
    attrs = {
6773 6774 6775
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6776 6777
        "interp_method": resample_type,
        "align_corners": align_corners,
6778 6779
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6780 6781
    }

6782
    if out_shape is not None:
6783
        if isinstance(out_shape, Variable):
6784
            out_shape.stop_gradient = True
6785
            inputs['OutSize'] = out_shape
6786 6787
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6788 6789
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6818 6819 6820 6821
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6822 6823 6824 6825 6826 6827 6828
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6829 6830 6831 6832
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6833 6834 6835 6836 6837 6838 6839 6840 6841
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6842

6843
    else:
6844 6845 6846
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6847
        elif isinstance(scale, float) or isinstance(scale, int):
6848
            if scale <= 0:
6849
                raise ValueError("Attr(scale) should be greater than zero.")
6850
            attrs['scale'] = float(scale)
6851 6852 6853
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6854

6855
    if isinstance(actual_shape, Variable):
6856 6857 6858 6859 6860
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
6861 6862 6863 6864
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6865
    out = helper.create_variable_for_type_inference(dtype)
6866
    helper.append_op(
6867
        type='{}_interp'.format(resample_type),
6868
        inputs=inputs,
6869
        outputs={"Out": out},
D
dengkaipeng 已提交
6870
        attrs=attrs)
6871
    return out
F
stash  
fengjiayi 已提交
6872 6873


6874
@templatedoc(op_type="bilinear_interp")
6875 6876 6877 6878
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6879 6880
                    actual_shape=None,
                    align_corners=True,
6881 6882
                    align_mode=1,
                    data_format='NCHW'):
6883
    """
R
ruri 已提交
6884
    This op resizes the input by performing bilinear interpolation based on given
6885
    output shape which specified by actual_shape, out_shape and scale
6886 6887
    in priority order.

6888 6889 6890
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

6891 6892 6893 6894
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6895 6896
    again in the other direction.

6897
    For details of bilinear interpolation, please refer to Wikipedia:
6898
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6899

T
tianshuo78520a 已提交
6900
    Align_corners and align_mode are optional parameters,the calculation 
6901 6902 6903 6904
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6905
    .. code-block:: text
6906

T
Tink_Y 已提交
6907
        For scale:
6908
          
T
Tink_Y 已提交
6909
            if align_corners = True && out_size > 1 :
6910

T
Tink_Y 已提交
6911 6912 6913 6914
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
6915
              scale_factor = float(in_size/out_size)
6916

T
Tink_Y 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6927

T
Tink_Y 已提交
6928
          else:
T
tink2123 已提交
6929

T
Tink_Y 已提交
6930 6931 6932 6933
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6934

R
ruri 已提交
6935 6936
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
6937
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
6938
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
6939
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
6940 6941
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
6942
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
6943
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
6944
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
6945
             Default: None.
6946 6947 6948
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6949
                                :attr:`out_shape` and :attr:`scale` specifying
6950 6951
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6952 6953 6954 6955 6956
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6957
                                errors would be occurred in graph constructing stage.
6958
                                Default: None
6959 6960
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6961 6962 6963 6964
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
6965
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
6966 6967

    Returns:
R
ruri 已提交
6968 6969
	Variable: 4-D tensor(NCHW or NHWC).
    
6970 6971
    Examples:
        .. code-block:: python
R
ruri 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7004

R
ruri 已提交
7005 7006 7007 7008 7009 7010
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7011

R
ruri 已提交
7012 7013 7014 7015 7016 7017 7018 7019
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7020

R
ruri 已提交
7021 7022
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7023

R
ruri 已提交
7024 7025 7026 7027
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7028

R
ruri 已提交
7029
		# [2L, 3L, 12L, 12L]
7030

7031 7032
    """

7033
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7034
                        align_corners, align_mode, data_format)
7035 7036


K
Kaipeng Deng 已提交
7037 7038 7039 7040 7041 7042 7043
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7044 7045
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7046
    """
R
ruri 已提交
7047
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7048 7049 7050
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7051 7052 7053
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7054 7055 7056 7057 7058 7059 7060 7061
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7062
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7082

K
Kaipeng Deng 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7101
    Parameters:
7102 7103
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7104
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7105
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7106 7107 7108
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7109
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7110 7111 7112 7113 7114 7115
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7116 7117 7118 7119 7120
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7121
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7122 7123 7124
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7125 7126 7127 7128
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7129 7130

    Returns:
R
ruri 已提交
7131
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7132 7133 7134

    Examples:
        .. code-block:: python
R
ruri 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7167

R
ruri 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7186

R
ruri 已提交
7187 7188 7189 7190
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7191

R
ruri 已提交
7192
		# [2L, 3L, 12L, 12L, 12L]
7193 7194 7195



K
Kaipeng Deng 已提交
7196 7197 7198
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7199
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7200 7201


7202
@templatedoc(op_type="nearest_interp")
7203 7204 7205 7206
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7207
                   actual_shape=None,
7208 7209
                   align_corners=True,
                   data_format='NCHW'):
7210
    """
R
ruri 已提交
7211
    This op resizes the input by performing nearest neighbor interpolation in both the
7212 7213
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7214

7215 7216 7217
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7218 7219
    Example:

T
Tink_Y 已提交
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7232
          
T
Tink_Y 已提交
7233 7234
          if:
              align_corners = False
7235

T
Tink_Y 已提交
7236 7237
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7238

T
Tink_Y 已提交
7239 7240
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7241

T
Tink_Y 已提交
7242 7243
          else:
              align_corners = True
7244

T
Tink_Y 已提交
7245 7246
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7247

T
Tink_Y 已提交
7248 7249
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7250 7251


7252
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7253
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7254

R
ruri 已提交
7255
    Parameters:
7256 7257
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7258
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7259
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7260
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7261
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7262 7263 7264
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7265 7266
                                dynamically. If provided, image resize
                                according to this given shape rather than
7267
                                :attr:`out_shape` and :attr:`scale` specifying
7268 7269
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7270 7271 7272 7273 7274
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7275
                                errors would be occurred in graph constructing stage.
7276
                                Default: None
7277
        align_corners(bool): ${align_corners_comment}
7278 7279 7280 7281
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7282 7283

    Returns:
R
ruri 已提交
7284
	Variable: 4-D tensor(NCHW or NHWC).
7285 7286 7287

    Examples:
        .. code-block:: python
R
ruri 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7320

R
ruri 已提交
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7336

R
ruri 已提交
7337 7338
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7339

R
ruri 已提交
7340 7341 7342 7343 7344 7345
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7346 7347 7348



7349 7350
    """

7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7361 7362 7363 7364


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7365
    This op resizes a batch of images. The short edge of input images will be
7366 7367
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7368 7369
    constant.

R
ruri 已提交
7370 7371
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7372
        out_short_len(int): The length of output images' short edge.
7373
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7374

7375
    Returns:
R
ruri 已提交
7376
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7377 7378 7379 7380

    Examples:
        .. code-block:: python

7381
            import paddle.fluid as fluid
R
ruri 已提交
7382
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7383
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7394 7395 7396
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7397 7398 7399
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7400
def gather(input, index, overwrite=True):
W
whs 已提交
7401
    """
Q
qiaolongfei 已提交
7402 7403
    **Gather Layer**

7404
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7405 7406 7407 7408
    of X indexed by `index` and concatenate them together.

    .. math::

7409
        Out = X[Index]
W
whs 已提交
7410 7411 7412 7413 7414 7415 7416


    .. code-block:: text


                Given:

7417 7418
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7429 7430 7431 7432 7433
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7434 7435 7436 7437 7438
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7439 7440 7441 7442 7443

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7444

W
whs 已提交
7445 7446
        .. code-block:: python

7447
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7448 7449
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7450 7451 7452 7453
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7454
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7455 7456 7457 7458
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7459 7460
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7461 7462 7463
    return out


7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7516 7517 7518
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7519
        name (str|None): A name for this layer(optional). If set None, the
7520
                         layer will be named automatically.
7521 7522 7523 7524 7525 7526 7527 7528 7529

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7530 7531
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7550
def scatter(input, index, updates, name=None, overwrite=True):
7551 7552 7553
    """
    **Scatter Layer**

7554
    Output is obtained by updating the input on selected indices based on updates.
7555

7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7580 7581

    Args:
7582 7583
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7584
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7585 7586
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7587 7588
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7589
	    Default value is True.
7590 7591

    Returns:
7592
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7593 7594 7595 7596 7597

    Examples:

        .. code-block:: python

7598
            import numpy as np
7599 7600
            import paddle.fluid as fluid

7601 7602 7603
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7604

7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7619 7620 7621
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7622
    out = helper.create_variable_for_type_inference(dtype)
7623 7624 7625 7626 7627
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7628
        attrs={'overwrite': overwrite},
7629 7630 7631 7632
        outputs={"Out": out})
    return out


7633 7634 7635 7636 7637
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7638 7639 7640
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7641 7642 7643 7644
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7645

7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
7677
        ref (Variable): The ref input. Its dtype should be float32, float64.
7678 7679
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7680 7681 7682
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7683 7684

    Returns:
7685
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7686 7687 7688 7689 7690 7691 7692

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7693 7694 7695
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7696 7697 7698 7699 7700 7701 7702

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7703
    dtype = helper.input_dtype(input_param_name='ref')
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
7734
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
7735 7736
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7737
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7748 7749
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7750 7751 7752 7753 7754 7755 7756
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7770

7771
    Examples:
Q
qingqing01 已提交
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7785
    """
F
stash  
fengjiayi 已提交
7786
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7787
    dtype = x.dtype
X
Xin Pan 已提交
7788
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7789
    if seed is None:
7790
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7791
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7792
    if isinstance(seed, int):
F
fengjiayi 已提交
7793 7794 7795 7796 7797
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7798 7799 7800 7801
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7802
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7803 7804
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7805 7806
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7807
    return out
W
whs 已提交
7808 7809


7810
def log(x, name=None):
W
wanghaoshuang 已提交
7811 7812 7813 7814 7815
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7816
        Out = \\ln(x)
W
wanghaoshuang 已提交
7817 7818

    Args:
W
Wilber 已提交
7819 7820 7821
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7822 7823

    Returns:
W
Wilber 已提交
7824
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7825 7826 7827 7828 7829

    Examples:

        .. code-block:: python

7830
            import paddle.fluid as fluid
W
Wilber 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7844
    """
7845 7846 7847 7848 7849
    inputs = {'X': [x]}
    if in_dygraph_mode():
        outs = core.ops.log(inputs)
        return outs['Out'][0]

W
wanghaoshuang 已提交
7850
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7851
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7852
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7853
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7854 7855 7856
    return out


Z
zhupengyang 已提交
7857
@templatedoc()
7858
def relu(x, name=None):
W
wanghaoshuang 已提交
7859
    """
Z
zhupengyang 已提交
7860
    ${comment}
W
wanghaoshuang 已提交
7861 7862

    Args:
Z
zhupengyang 已提交
7863 7864 7865 7866
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
7867 7868

    Returns:
Z
zhupengyang 已提交
7869
        Variable: ${out_comment}
W
wanghaoshuang 已提交
7870 7871 7872 7873 7874

    Examples:

        .. code-block:: python

7875
            import paddle.fluid as fluid
Z
zhupengyang 已提交
7876 7877 7878 7879 7880 7881 7882 7883 7884
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
7885 7886 7887 7888 7889
    inputs = {'X': [x]}
    if in_dygraph_mode():
        outs = core.ops.relu(inputs)
        return outs['Out'][0]

W
wanghaoshuang 已提交
7890
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7891
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7892
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7893 7894
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7895
    return out
7896 7897


C
chengduo 已提交
7898 7899
def selu(x, scale=None, alpha=None, name=None):
    """
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
7914 7915

    Args:
7916 7917
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
7918 7919 7920
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7921
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
7922 7923 7924
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7925 7926
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
7927 7928

    Returns:
7929
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
7930 7931 7932 7933

    Examples:

        .. code-block:: python
7934 7935
             
            import paddle.fluid as fluid
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7963 7964 7965
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7966 7967 7968 7969
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7970
    .. math::
7971

H
haowang101779990 已提交
7972
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7973

7974
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7975 7976 7977
    is then calculated from it.


L
Liufang Sang 已提交
7978 7979
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
7980
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7981
                           Its shape should be the same as input.
L
Liufang Sang 已提交
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
7994 7995 7996
    Examples:

        .. code-block:: python
7997

B
Bai Yifan 已提交
7998
            import paddle.fluid as fluid
L
Liufang Sang 已提交
7999
            iou_shape = [None, 32, 32]
8000
            num_classes = 5
L
Liufang Sang 已提交
8001 8002 8003
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8004
                                                          num_classes)
W
whs 已提交
8005 8006 8007
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8008 8009 8010
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8011 8012
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8013 8014
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8015
        outputs={
W
whs 已提交
8016 8017 8018
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8019 8020 8021
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8022 8023 8024 8025 8026 8027


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8028 8029
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8030

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8059 8060 8061 8062 8063 8064
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8065
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8066
            iteration. If it is a list/tuple of integers, it's length must be the same
8067
            as the rank of `x`
S
SunGaofeng 已提交
8068 8069 8070
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8071
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8072 8073 8074 8075 8076
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8077 8078

    Returns:
S
SunGaofeng 已提交
8079 8080 8081 8082
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8083 8084 8085 8086 8087 8088 8089 8090

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8091
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8092 8093
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8094 8095 8096
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8097 8098
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8099 8100 8101 8102 8103

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8104
            isinstance(shape, Variable)):
8105 8106 8107 8108 8109
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8110
    out = helper.create_variable_for_type_inference(x.dtype)
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8128 8129


8130 8131 8132 8133 8134 8135
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8136 8137
        * Case 1 (input is a 2-D Tensor):
            Input:
8138
                X.shape = [3, 5]
8139 8140 8141 8142 8143 8144 8145
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8146 8147 8148
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8159
                shape = [2, 2, -1]
8160 8161
                offsets = [0, 0, 1]
            Output:
8162 8163 8164 8165 8166
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8167 8168

    Parameters:
8169
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8170 8171
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8172
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8173
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8174 8175
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8176 8177
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8178
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8179 8180 8181 8182 8183
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8184 8185

    Returns:
8186
        Variable: The cropped Tensor has same data type with `x`.
8187 8188

    Raises:
8189 8190 8191 8192 8193 8194
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8195 8196 8197 8198 8199 8200

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8201
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8202 8203
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8204 8205
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8206 8207 8208 8209
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8210
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8211 8212
            # crop1.shape = [-1, 2, 3]

8213 8214 8215 8216 8217
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8218

8219 8220
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8221 8222 8223
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8224 8225
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8226 8227 8228 8229 8230
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8231 8232
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8233 8234 8235
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8236 8237 8238 8239 8240 8241 8242 8243

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8268 8269 8270
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8271
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8272
    elif utils._contain_var(offsets):
8273
        new_offsets_tensor = []
8274
        offsets_attr = []
8275 8276 8277 8278
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8279
                offsets_attr.append(-1)
8280
            else:
8281
                _attr_offsets_check(dim)
8282 8283 8284
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8285
                offsets_attr.append(dim)
8286
        ipts['OffsetsTensor'] = new_offsets_tensor
8287
        attrs['offsets'] = offsets_attr
8288
    else:
8289 8290
        for offset in offsets:
            _attr_offsets_check(offset)
8291 8292 8293 8294 8295
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8296
    elif utils._contain_var(shape):
8297 8298
        new_shape_tensor = []
        shape_attr = []
8299
        for dim_size in shape:
8300 8301 8302
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8303
                shape_attr.append(0)
8304
            else:
8305
                _attr_shape_check(dim_size)
8306 8307 8308 8309 8310 8311 8312 8313
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8314 8315
        for dim_size in shape:
            _attr_shape_check(dim_size)
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8326 8327 8328 8329 8330 8331 8332 8333
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8334 8335 8336 8337 8338 8339
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8340 8341

    Returns:
8342
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8343 8344 8345 8346 8347 8348 8349

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8350

S
SunGaofeng 已提交
8351
            import paddle.fluid as fluid
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8366 8367 8368 8369
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8370
            isinstance(out_shape, Variable)):
W
whs 已提交
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

    Returns: a 4-D Tensor padded accordding to paddings and mode and data type is same as input.

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8427
        .. code-block:: text
W
whs 已提交
8428

T
Tink_Y 已提交
8429
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8430

T
Tink_Y 已提交
8431 8432
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8433

T
Tink_Y 已提交
8434
	      Case 0:
M
minqiyang 已提交
8435

T
Tink_Y 已提交
8436 8437 8438
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8439

T
Tink_Y 已提交
8440 8441 8442
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8443

T
Tink_Y 已提交
8444
	      Case 1:
M
minqiyang 已提交
8445

T
Tink_Y 已提交
8446 8447
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8448

T
Tink_Y 已提交
8449 8450 8451
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8452

T
Tink_Y 已提交
8453
	      Case 2:
M
minqiyang 已提交
8454

T
Tink_Y 已提交
8455 8456
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8457

T
Tink_Y 已提交
8458 8459 8460
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8461

L
Liufang Sang 已提交
8462
    Code Examples:
W
whs 已提交
8463 8464
        .. code-block:: python

B
Bai Yifan 已提交
8465
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8466
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8467 8468 8469
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8470
    """
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

    if in_dygraph_mode():
        outs = core.ops.pad2d(inputs, attrs)
        return outs['Out'][0]
W
whs 已提交
8482 8483

    helper = LayerHelper('pad2d', **locals())
8484 8485 8486 8487

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8488
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8489
    out = helper.create_variable_for_type_inference(dtype)
8490

W
whs 已提交
8491
    helper.append_op(
8492
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8493 8494 8495 8496

    return out


8497 8498 8499 8500 8501 8502 8503
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8504 8505
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8506
    Returns:
8507
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8508 8509 8510 8511 8512

    Examples:

        .. code-block:: python

8513
            import paddle.fluid as fluid
8514 8515 8516 8517 8518 8519 8520 8521 8522
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8523 8524
    """
    helper = LayerHelper('elu', **locals())
8525
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8526
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8539

8540 8541
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8542 8543 8544 8545
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8546 8547 8548

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8549 8550 8551 8552 8553

    Examples:

        .. code-block:: python

8554
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8555 8556 8557 8558 8559 8560 8561 8562
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8563 8564
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8565
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8577 8578 8579 8580
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8581
    Args:
8582 8583 8584
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8585 8586

    Returns:
8587
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8588 8589 8590 8591 8592

    Examples:

        .. code-block:: python

8593
            import paddle.fluid as fluid
8594

8595
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8596 8597 8598

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8599
            # y_1 is x^{2.0}
8600 8601 8602 8603

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8604
            # y_2 is x^{3.0}
8605 8606
    """
    helper = LayerHelper('pow', **locals())
8607 8608 8609 8610 8611 8612 8613 8614
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8615
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8616
    helper.append_op(
8617
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8618 8619 8620 8621
    return out


@templatedoc()
8622
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8633
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8634 8635 8636 8637 8638

    Examples:

        .. code-block:: python

8639
            import paddle.fluid as fluid
8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8655 8656
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8657
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8671 8672 8673 8674 8675 8676 8677
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8678 8679

    Returns:
8680
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8681 8682 8683 8684 8685

    Examples:

        .. code-block:: python

8686
            import paddle.fluid as fluid
8687 8688
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8689 8690
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8691
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8704 8705 8706 8707 8708 8709 8710
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8711
    Args:
8712 8713 8714 8715 8716
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8717 8718

    Returns:
8719 8720

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8721 8722 8723 8724

    Examples:

        .. code-block:: python
8725 8726 8727 8728 8729 8730
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8731
            y = fluid.layers.swish(x, beta=2.0)
8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8769 8770
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8771
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8772 8773 8774 8775 8776 8777 8778 8779
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8780 8781 8782 8783
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8784 8785
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8786

J
jerrywgz 已提交
8787 8788 8789 8790 8791 8792 8793 8794
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8795
    Args:
W
wangguanzhong 已提交
8796 8797
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8798
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8799 8800 8801 8802 8803
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8804 8805

    Returns:
W
wangguanzhong 已提交
8806 8807 8808 8809
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8810 8811 8812 8813 8814

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8815 8816
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8817
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8818
            mode = 'channel'
J
jerrywgz 已提交
8819 8820 8821
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8822 8823 8824 8825 8826 8827 8828 8829
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8830
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
8831 8832
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8833
        attr=helper.param_attr,
J
jerrywgz 已提交
8834 8835 8836
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8837
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8838
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8839 8840 8841 8842 8843 8844 8845 8846 8847
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8848 8849 8850 8851 8852 8853 8854 8855
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8856 8857
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8858
    Returns:
8859
        ${out_type}: ${out_comment}
8860 8861 8862

    Examples:

8863
    .. code-block:: python
8864

8865
            import paddle.fluid as fluid
8866 8867 8868 8869 8870 8871 8872 8873 8874
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
8875 8876
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8877
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
8894 8895
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

8896
    Returns:
8897
        output(${out_type}): ${out_comment}
8898 8899 8900 8901 8902

    Examples:

        .. code-block:: python

8903
            import paddle.fluid as fluid
W
Wilber 已提交
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
8917
    """
8918 8919 8920 8921 8922 8923
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
    if in_dygraph_mode():
        outs = core.ops.leaky_relu(inputs, attrs)
        return outs['Out'][0]

8924
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8925
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8926
    helper.append_op(
8927
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8928 8929 8930 8931 8932
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
8933 8934 8935 8936
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

8937
    Args:
8938 8939 8940 8941
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

8942
    Returns:
8943
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
8944 8945 8946

    Examples:

8947 8948 8949
        .. code-block:: python 
 
            import paddle.fluid as fluid
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
8962 8963
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8964
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8965 8966 8967 8968 8969 8970 8971 8972
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8973 8974
def flatten(x, axis=1, name=None):
    """
8975 8976 8977
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
8978

H
haowang101779990 已提交
8979
    For Example:
M
minqiyang 已提交
8980

H
haowang101779990 已提交
8981
    .. code-block:: text
8982

H
haowang101779990 已提交
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9004 9005

    Args:
9006 9007
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9008 9009
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9010
                    The value for axis must be in the range [0, R], where R
9011 9012 9013
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9014 9015

    Returns:
H
haowang101779990 已提交
9016 9017 9018
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9019
                  inner dimension of the output. A Tensor with type same as input x.
9020 9021 9022

    Raises:
        ValueError: If x is not a variable.
9023
        ValueError: If axis is not in range [0, rank(x)].
9024 9025 9026 9027 9028

    Examples:

        .. code-block:: python

9029
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9030
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9031
            # x shape is [4, 4, 3]
9032
            out = fluid.layers.flatten(x=x, axis=2)
9033
            # out shape is [16, 3]
9034 9035 9036 9037 9038 9039 9040 9041 9042
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9043 9044
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9045
    helper.append_op(
9046
        type='flatten2',
9047
        inputs={"X": x},
9048 9049
        outputs={'Out': out,
                 'XShape': x_shape},
9050 9051
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9052 9053 9054


def stack(x, axis=0):
S
sneaxiy 已提交
9055
    """
9056

9057
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9058

C
chengduozh 已提交
9059 9060 9061
    .. code-block:: text

        Case 1:
9062

C
chengduozh 已提交
9063
          Input:
9064
            x[0].shape = [1, 2]
C
chengduozh 已提交
9065
            x[0].data = [ [1.0 , 2.0 ] ]
9066
            x[1].shape = [1, 2]
C
chengduozh 已提交
9067
            x[1].data = [ [3.0 , 4.0 ] ]
9068
            x[2].shape = [1, 2]
C
chengduozh 已提交
9069 9070 9071 9072 9073 9074
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9075
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9076 9077 9078
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9079

C
chengduozh 已提交
9080 9081

        Case 2:
9082 9083 9084 9085


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9086
            x[0].data = [ [1.0 , 2.0 ] ]
9087
            x[1].shape = [1, 2]
C
chengduozh 已提交
9088
            x[1].data = [ [3.0 , 4.0 ] ]
9089
            x[2].shape = [1, 2]
C
chengduozh 已提交
9090
            x[2].data = [ [5.0 , 6.0 ] ]
9091

C
chengduozh 已提交
9092 9093 9094 9095 9096

          Attrs:
            axis = 1 or axis = -2

          Output:
9097
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9098 9099 9100
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9101

C
chengduozh 已提交
9102

S
sneaxiy 已提交
9103
    Args:
9104 9105 9106 9107 9108 9109 9110 9111 9112
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9113

S
sneaxiy 已提交
9114
    Returns:
9115
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9116

9117 9118 9119
    Examples:
        .. code-block:: python

9120
            import paddle.fluid as fluid
9121
            import paddle.fluid.layers as layers
9122 9123 9124 9125 9126 9127 9128 9129 9130 9131
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9132

S
sneaxiy 已提交
9133 9134
    """

X
Xin Pan 已提交
9135 9136 9137 9138 9139 9140
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9141
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9142
    helper.append_op(
S
sneaxiy 已提交
9143 9144
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9145

X
Xin Pan 已提交
9146
    return out
D
dzhwinter 已提交
9147 9148


J
Jiawei Wang 已提交
9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9219 9220 9221 9222
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9223
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9224

D
dzhwinter 已提交
9225 9226 9227
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9228
    raised.
D
dzhwinter 已提交
9229 9230

    Args:
9231
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9232 9233
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9234

D
dzhwinter 已提交
9235
    Returns:
9236 9237 9238 9239
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9240

9241 9242 9243 9244
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9245 9246
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9247

9248
    """
D
dzhwinter 已提交
9249 9250 9251 9252 9253 9254 9255 9256
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9257
    for _ in range(num):
X
Xin Pan 已提交
9258
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9259 9260 9261 9262 9263 9264 9265 9266

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9267 9268 9269


def expand(x, expand_times, name=None):
9270 9271 9272 9273
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9274 9275 9276 9277 9278 9279
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9280

W
whs 已提交
9281 9282 9283 9284
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9285

W
whs 已提交
9286
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9287

W
whs 已提交
9288
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9289

W
whs 已提交
9290 9291 9292 9293
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9294

W
whs 已提交
9295
    Args:
9296 9297 9298 9299 9300
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9301 9302

    Returns:
9303
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9304

9305 9306 9307
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9308 9309 9310

    Examples:
        .. code-block:: python
L
liym27 已提交
9311

W
wangchaochaohu 已提交
9312
            import paddle.fluid as fluid
L
liym27 已提交
9313 9314 9315 9316

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9317
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9318 9319 9320 9321 9322

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9323
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9324
    """
9325 9326 9327 9328 9329
    inputs = {"X": [x]}
    attrs = {}

    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9330
            if utils._contain_var(expand_times):
9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['expand_times'] = expand_times
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        outs = core.ops.expand(inputs, attrs)
        return outs['Out'][0]

9343 9344
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9345
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9346 9347 9348
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9349

W
whs 已提交
9350
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9351 9352 9353 9354 9355 9356 9357 9358 9359

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9360
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9375

L
Leo Chen 已提交
9376 9377 9378 9379 9380 9381 9382 9383
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9384

L
liym27 已提交
9385 9386
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9387
    helper.append_op(
9388
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9389
    return out
S
sneaxiy 已提交
9390 9391


9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9462 9463 9464
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9465
@templatedoc()
G
fix  
gongweibao 已提交
9466 9467 9468 9469 9470 9471 9472 9473 9474
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9475 9476 9477 9478 9479 9480
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9481

9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9508
    Args:
9509 9510 9511 9512 9513 9514 9515 9516
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9517
    Returns:
9518
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9519

9520 9521 9522
    Examples:
        .. code-block:: python

9523
            import paddle.fluid as fluid
9524 9525 9526 9527
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9528

9529 9530 9531 9532
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9533 9534 9535
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9536
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9553 9554


G
gongweibao 已提交
9555
@templatedoc()
X
Xin Pan 已提交
9556
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9557
    """
9558
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9559 9560

    Args:
9561 9562 9563 9564 9565 9566 9567 9568 9569
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9570 9571

    Returns:
9572
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9573

9574
    Examples:
9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9590

9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9609 9610 9611
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9612
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9613 9614 9615 9616 9617 9618 9619 9620 9621 9622
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9623
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9624 9625 9626 9627 9628
        })

    return out


G
gongweibao 已提交
9629
@templatedoc()
G
fix  
gongweibao 已提交
9630
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9631
    """
R
ruri 已提交
9632
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9633

R
ruri 已提交
9634 9635 9636 9637 9638
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9639
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9640 9641

    Returns:
R
ruri 已提交
9642
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9643

9644 9645 9646
    Examples:
        .. code-block:: python

9647
            import paddle.fluid as fluid
R
ruri 已提交
9648
            x = fluid.data(
9649 9650
                name="X",
                shape=[13, 11],
R
ruri 已提交
9651
                dtype='float32')
9652

Y
Yibing Liu 已提交
9653
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9654 9655 9656
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9657
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9669
@templatedoc()
G
fix  
gongweibao 已提交
9670 9671 9672 9673 9674 9675 9676 9677 9678
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9679
    ${comment}
G
fix  
gongweibao 已提交
9680 9681

    Args:
G
gongweibao 已提交
9682 9683
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9684 9685 9686 9687 9688 9689
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9690 9691

    Returns:
G
gongweibao 已提交
9692
        out (Variable): ${out_comment}
9693 9694 9695 9696

    Examples:
        .. code-block:: python

9697
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9698
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9699

Y
Yibing Liu 已提交
9700
            out = fluid.layers.gaussian_random_batch_size_like(
9701
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9702 9703 9704
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9705
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9724
@templatedoc()
X
Xin Pan 已提交
9725
def sum(x):
G
fix  
gongweibao 已提交
9726
    """
G
gongweibao 已提交
9727
    ${comment}
9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9758 9759

    Args:
9760
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9761 9762

    Returns:
9763
        Variable: ${out_comment}
9764 9765 9766 9767

    Examples:
        .. code-block:: python

9768
            import paddle.fluid as fluid
9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9791 9792 9793
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9794 9795
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9796 9797 9798 9799
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9800
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9801 9802 9803 9804

    return out


G
gongweibao 已提交
9805
@templatedoc()
G
fix  
gongweibao 已提交
9806 9807
def slice(input, axes, starts, ends):
    """
9808
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9809
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9810 9811 9812 9813 9814 9815 9816
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9817
    For slicing to the end of a dimension with unknown size, it is recommended
9818
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9819 9820 9821
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9822

9823 9824 9825 9826 9827 9828 9829 9830
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9831

9832 9833 9834 9835 9836
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9837
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9838
            Then:
9839
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9840
    Args:
9841 9842 9843 9844 9845 9846 9847 9848 9849
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
9850 9851

    Returns:
9852 9853 9854 9855 9856
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
9857

9858 9859 9860
    Examples:
        .. code-block:: python

9861
            import paddle.fluid as fluid
9862

9863 9864
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
9865

9866 9867 9868 9869 9870 9871
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
9872
            # sliced_1 is input[0:3, 0:2, 2:4].
9873 9874 9875 9876 9877

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
9878
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
9879
    """
9880 9881 9882 9883 9884
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        inputs = {'Input': [input]}

        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
9885
            if utils._contain_var(starts):
9886 9887 9888 9889 9890 9891 9892 9893 9894
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
9895
            if utils._contain_var(ends):
9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
        outs = core.ops.slice(inputs, attrs)
        return outs['Out'][0]

9913 9914 9915 9916 9917 9918 9919
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
9920
    helper = LayerHelper('slice', **locals())
9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

9939 9940 9941 9942 9943 9944 9945
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
9946
        if utils._contain_var(starts):
9947 9948 9949 9950 9951 9952 9953
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
9954 9955
        else:
            attrs['starts'] = starts
9956 9957 9958 9959 9960 9961 9962 9963

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
9964
        if utils._contain_var(ends):
9965 9966 9967 9968 9969 9970 9971
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
9972 9973 9974
        else:
            attrs['ends'] = ends

9975 9976
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
9977 9978
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9979
    helper.append_op(
9980
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
9981 9982 9983 9984

    return out


W
wangchaochaohu 已提交
9985 9986 9987
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10001 10002 10003 10004 10005 10006 10007 10008 10009

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10010
                strides = [1, 1]
W
wangchaochaohu 已提交
10011
            Then:
10012
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10013 10014 10015 10016 10017
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10018
                starts = [0, 1]
W
wangchaochaohu 已提交
10019 10020 10021 10022 10023 10024 10025 10026 10027
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10028
                starts = [0, 1]
10029 10030
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10031
            Then:
10032 10033
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10046 10047

    Returns:
W
wangchaochaohu 已提交
10048 10049 10050 10051 10052 10053
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10054

W
wangchaochaohu 已提交
10055 10056 10057 10058 10059
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10060
            input = fluid.data(
W
wangchaochaohu 已提交
10061 10062
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10063 10064 10065 10066 10067
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10068 10069 10070 10071 10072
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10073 10074 10075 10076

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10077 10078
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10079
    """
10080 10081 10082 10083 10084 10085 10086 10087 10088 10089
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10090 10091
    helper = LayerHelper('strided_slice', **locals())

10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10112 10113 10114
            'axes': axes,
            'starts': starts,
            'ends': ends,
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10125
            if utils._contain_var(starts):
10126 10127 10128 10129 10130 10131 10132
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10133 10134
            else:
                attrs['starts'] = starts
10135 10136 10137 10138 10139 10140 10141

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10142
            if utils._contain_var(ends):
10143 10144 10145 10146 10147 10148 10149
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10150 10151 10152
            else:
                attrs['ends'] = ends

10153 10154 10155 10156 10157 10158
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10159
            if utils._contain_var(strides):
10160 10161 10162 10163 10164 10165 10166
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10167 10168
            else:
                attrs['strides'] = strides
10169 10170 10171 10172 10173
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10174 10175 10176 10177

    return out


G
fix  
gongweibao 已提交
10178 10179
def shape(input):
    """
C
chengduozh 已提交
10180 10181
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10182
    Get the shape of the input.
G
fix  
gongweibao 已提交
10183 10184

    Args:
10185
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10186 10187

    Returns:
10188
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10189

10190 10191 10192
    Examples:
        .. code-block:: python

10193
            import paddle.fluid as fluid
10194
            import numpy as np
10195

10196 10197 10198 10199 10200 10201 10202 10203 10204 10205
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10206 10207 10208
    """

    helper = LayerHelper('shape', **locals())
10209
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10210
    helper.append_op(
G
fix  
gongweibao 已提交
10211
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10212 10213

    return out
G
merge  
gongweibao 已提交
10214 10215


Z
zhoukunsheng 已提交
10216 10217
def rank(input):
    """
10218
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10219 10220

    Args:
10221
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10222 10223

    Returns:
10224
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10225 10226 10227 10228

    Examples:
        .. code-block:: python

10229 10230
            import paddle.fluid as fluid

10231 10232
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10233 10234 10235 10236 10237 10238 10239 10240
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10270 10271 10272 10273
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10274

S
sneaxiy 已提交
10275 10276
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10277 10278 10279 10280
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10281

S
sneaxiy 已提交
10282 10283
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10284 10285
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10286
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10287 10288 10289
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10290

S
sneaxiy 已提交
10291 10292 10293 10294 10295 10296 10297 10298 10299 10300
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10301
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10302
    """
10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10316 10317

    Args:
10318
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10319
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10320 10321 10322 10323
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10324 10325

    Returns:
10326
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10327 10328 10329 10330 10331

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10332 10333 10334 10335 10336 10337 10338 10339 10340
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10341

10342 10343
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10344 10345 10346 10347 10348 10349 10350 10351

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10352
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10365
    """
10366
    inputs = {'X': [x]}
10367 10368 10369 10370 10371
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10372
        inputs['ScaleTensor'] = [scale]
10373 10374 10375
    else:
        attrs['scale'] = float(scale)

10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
    if in_dygraph_mode():
        outs = core.ops.scale(inputs, attrs)
        return dygraph_utils._append_activation_in_dygraph(outs['Out'][0])

    helper = LayerHelper('scale', **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

S
sneaxiy 已提交
10387
    helper.append_op(
10388
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10389
    return helper.append_activation(out)
S
sneaxiy 已提交
10390 10391


X
Xin Pan 已提交
10392
def elementwise_add(x, y, axis=-1, act=None, name=None):
10393 10394 10395 10396 10397 10398 10399 10400 10401 10402
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10403 10404
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10405 10406
            }

10407 10408
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429
        z = fluid.layers.elementwise_add(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3., 8., 6.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10430 10431
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453
        z = fluid.layers.elementwise_add(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10454 10455
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465
        z = fluid.layers.elementwise_add(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10466 10467 10468 10469
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10470 10471 10472
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10473
def elementwise_div(x, y, axis=-1, act=None, name=None):
10474 10475 10476 10477 10478 10479 10480 10481 10482 10483
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10484 10485
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10486 10487
            }

10488 10489
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510
        z = fluid.layers.elementwise_div(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 0.6, 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10511 10512
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534
        z = fluid.layers.elementwise_div(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10535 10536
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10537 10538 10539 10540 10541 10542 10543 10544 10545 10546
        z = fluid.layers.elementwise_div(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10547 10548 10549 10550
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10551 10552 10553
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10554
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10555 10556 10557 10558 10559 10560 10561 10562 10563 10564
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10565 10566
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10567 10568
            }

10569 10570
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591
        z = fluid.layers.elementwise_sub(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1., -2., 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10592 10593
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615
        z = fluid.layers.elementwise_sub(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10616 10617
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10618 10619 10620 10621 10622 10623 10624 10625 10626 10627
        z = fluid.layers.elementwise_sub(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10628 10629 10630 10631
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10632 10633 10634
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10635
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10636 10637 10638 10639 10640 10641 10642 10643 10644 10645
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10646 10647
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10648 10649
            }

10650 10651
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672
        z = fluid.layers.elementwise_mul(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 15., 8.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10673 10674
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696
        z = fluid.layers.elementwise_mul(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10697 10698
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10699 10700 10701 10702 10703 10704 10705 10706 10707 10708
        z = fluid.layers.elementwise_mul(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
10709 10710 10711 10712
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
10713 10714 10715
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10716
def elementwise_max(x, y, axis=-1, act=None, name=None):
10717 10718 10719 10720 10721 10722 10723 10724 10725 10726
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10727 10728
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10729 10730
            }

10731 10732
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10754 10755
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
10767 10768 10769 10770
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
10771 10772 10773
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10774
def elementwise_min(x, y, axis=-1, act=None, name=None):
10775 10776 10777 10778 10779 10780 10781 10782 10783 10784
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10785 10786
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10787 10788
            }

10789 10790
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10811 10812
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10813 10814 10815 10816 10817 10818 10819 10820 10821 10822
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
10823 10824 10825
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
10826

S
sneaxiy 已提交
10827 10828 10829
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10830
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10831 10832 10833 10834 10835 10836 10837 10838 10839 10840
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10841 10842
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10843 10844
            }

10845 10846
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10847 10848 10849 10850 10851 10852 10853 10854 10855
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
10856 10857 10858
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
10859 10860 10861
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10862
def elementwise_mod(x, y, axis=-1, act=None, name=None):
10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
10888 10889 10890 10891
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

10892 10893 10894 10895
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
10921 10922 10923 10924
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

10925 10926 10927
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10928
for func in [
10929 10930 10931 10932
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
10933 10934
        elementwise_max,
        elementwise_pow,
10935
        elementwise_min,
10936 10937
        elementwise_mod,
        elementwise_floordiv,
10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

10955
for func in []:
S
sneaxiy 已提交
10956 10957 10958 10959
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10960 10961
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10962
        ])
10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11000 11001


11002
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11003 11004
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11005 11006
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11007 11008 11009

    if out is None:
        if name is None:
X
Xin Pan 已提交
11010
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11026
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11027
    """
W
Wilber 已提交
11028 11029 11030 11031 11032 11033 11034 11035
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11036 11037 11038 11039

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11040 11041
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11042 11043

    Returns:
W
Wilber 已提交
11044
        ${out_type}: ${out_comment}
11045 11046 11047 11048

    Examples:
        .. code-block:: python

11049
            import paddle.fluid as fluid
W
Wilber 已提交
11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11068 11069 11070 11071 11072 11073 11074
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11075
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11076
    """
W
Wilber 已提交
11077 11078 11079 11080 11081 11082 11083 11084
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11085 11086 11087 11088

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11089 11090
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11091 11092

    Returns:
W
Wilber 已提交
11093
        ${out_type}: ${out_comment}
11094 11095 11096 11097

    Examples:
        .. code-block:: python

11098
            import paddle.fluid as fluid
W
Wilber 已提交
11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11117 11118 11119 11120 11121 11122 11123
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11124
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11125
    """
W
Wilber 已提交
11126 11127 11128 11129 11130 11131 11132 11133
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11134 11135 11136 11137

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11138 11139
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11140 11141

    Returns:
W
Wilber 已提交
11142
        ${out_type}: ${out_comment}
11143 11144 11145 11146

    Examples:
        .. code-block:: python

11147
            import paddle.fluid as fluid
W
Wilber 已提交
11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11166 11167 11168 11169 11170 11171 11172
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11173
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11174
    """
W
Wilber 已提交
11175 11176 11177 11178 11179 11180 11181 11182
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11183 11184 11185

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11186 11187
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11188 11189

    Returns:
W
Wilber 已提交
11190
        ${out_type}: ${out_comment}
11191 11192 11193 11194

    Examples:
        .. code-block:: python

11195
            import paddle.fluid as fluid
W
Wilber 已提交
11196 11197 11198 11199 11200
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11201
            # The comment lists another avaliable method.
W
Wilber 已提交
11202 11203 11204 11205 11206 11207 11208 11209 11210 11211
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11212 11213 11214 11215
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11216 11217 11218 11219 11220 11221 11222 11223 11224


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11225 11226 11227 11228 11229
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11230 11231

    Returns:
S
SunGaofeng 已提交
11232 11233 11234 11235
        ${out_comment}

    Return Type:
        ${out_type}
11236 11237 11238 11239

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11240
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11241
            input = fluid.data(
11242 11243
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11244 11245 11246 11247 11248
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11249 11250
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11251 11252 11253

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11273 11274 11275
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11276 11277

    Returns:
W
wangguanzhong 已提交
11278 11279
        Variable:

11280
        out(${out_type}): ${out_comment}
11281

W
wangguanzhong 已提交
11282

11283 11284 11285
    Examples:
        .. code-block:: python

11286
            import paddle.fluid as fluid
11287 11288
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11289
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11290 11291 11292 11293 11294
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11295 11296
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11297 11298 11299

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11300 11301 11302 11303 11304 11305 11306 11307

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11321 11322 11323 11324

    Examples:
        .. code-block:: python

11325
            import paddle.fluid as fluid
11326 11327 11328
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11329
    """
11330 11331 11332 11333
    if in_dygraph_mode():
        inputs = {"X": [x]}
        outs = core.ops.mean(inputs)
        return outs['Out'][0]
X
Xin Pan 已提交
11334 11335

    helper = LayerHelper("mean", **locals())
11336
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
X
Xin Pan 已提交
11337
    if name is None:
X
Xin Pan 已提交
11338
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11339 11340 11341 11342 11343 11344 11345 11346 11347 11348
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11360 11361 11362 11363

    Examples:
        .. code-block:: python

11364
            import paddle.fluid as fluid
11365 11366 11367 11368 11369
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11382 11383
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11384 11385 11386 11387 11388 11389 11390 11391
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11392 11393

    Args:
L
liu zhengxi 已提交
11394 11395 11396 11397 11398
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11399 11400

    Returns:
L
liu zhengxi 已提交
11401
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11402 11403

    Examples:
L
liu zhengxi 已提交
11404
        ..  code-block:: python
11405 11406 11407 11408 11409 11410 11411 11412 11413
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11414
    """
11415 11416 11417 11418 11419
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
    if in_dygraph_mode():
        outs = core.ops.mul(inputs, attrs)
        return outs['Out'][0]
X
Xin Pan 已提交
11420 11421

    helper = LayerHelper("mul", **locals())
11422 11423
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
X
Xin Pan 已提交
11424
    if name is None:
X
Xin Pan 已提交
11425
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11426 11427 11428 11429 11430
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
11431 11432
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11433 11434 11435 11436
    return out


@templatedoc()
11437
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11438 11439 11440 11441 11442
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11443 11444
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11445 11446 11447
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11448 11449

    Returns:
11450
        Variable: ${out_comment}
J
jerrywgz 已提交
11451

11452 11453
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11454
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11455

J
jerrywgz 已提交
11456 11457 11458
    Examples:
        .. code-block:: python

11459
            import paddle.fluid as fluid
11460
            input = fluid.data(
J
jerrywgz 已提交
11461
                name='data', 
11462
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11463 11464
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11465 11466
    """
    helper = LayerHelper("maxout", **locals())
11467 11468 11469 11470 11471 11472
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11473 11474

    if name is None:
X
Xin Pan 已提交
11475
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11476 11477 11478 11479 11480 11481 11482
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11483 11484
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11485 11486
        outputs={"Out": out})
    return out
11487 11488


J
JiabinYang 已提交
11489
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11490
    """
J
JiabinYang 已提交
11491
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11492

11493 11494 11495
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11496
    The attr blocksize indicates the input block size.
11497

T
tianshuo78520a 已提交
11498
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11499 11500
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11501

J
JiabinYang 已提交
11502 11503 11504 11505 11506
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11524

J
JiabinYang 已提交
11525
    Args:
11526 11527 11528 11529 11530 11531
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11532

11533 11534 11535 11536
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11537 11538

    Raises:
11539
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11540 11541 11542

    Examples:
        .. code-block:: python
11543
    
11544 11545
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11546

11547 11548
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11549
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11550
                x=data, blocksize=2)
11551

11552
            exe = fluid.Executor(fluid.CPUPlace())
11553
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11554 11555 11556 11557 11558 11559 11560

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11561
            out_main = exe.run(fluid.default_main_program(),
11562 11563 11564 11565 11566 11567 11568 11569
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11570

J
JiabinYang 已提交
11571 11572
    """

J
JiabinYang 已提交
11573
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11574

J
JiabinYang 已提交
11575 11576
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11577 11578

    if name is None:
J
JiabinYang 已提交
11579 11580
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11581 11582 11583 11584 11585
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11586
        type="space_to_depth",
J
JiabinYang 已提交
11587
        inputs={"X": x},
J
JiabinYang 已提交
11588
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11589
        outputs={"Out": out})
J
JiabinYang 已提交
11590 11591
    return out

J
JiabinYang 已提交
11592

11593 11594 11595 11596 11597 11598
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11599 11600 11601 11602 11603
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11604

11605 11606 11607
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11608
            is applied in the second dimension.The data type is float32 or float64.
11609 11610
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11611
            the input.The data type is float32 or float64.
11612 11613
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11614
            The data type is float32 or float64.
11615 11616 11617 11618 11619
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11620 11621
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11622
        act (str, default None): Activation to be applied to the output of this layer.
11623 11624

    Returns:
L
LielinJiang 已提交
11625
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11626 11627 11628

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11629 11630

            import numpy as np
B
Bai Yifan 已提交
11631
            import paddle.fluid as fluid
L
LielinJiang 已提交
11632 11633 11634 11635 11636 11637 11638 11639 11640 11641

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11642
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11643 11644 11645 11646 11647 11648 11649 11650 11651 11652
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11653

11654 11655 11656 11657
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11658
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11670
    return helper.append_activation(out)
11671 11672


B
barrierye 已提交
11673
def similarity_focus(input, axis, indexes, name=None):
11674
    """
B
barrierye 已提交
11675
    SimilarityFocus Operator
B
barrierye 已提交
11676 11677

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11678

11679 11680 11681
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11682
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11683 11684 11685 11686 11687 11688 11689
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11690
       each index.
B
barrierye 已提交
11691 11692 11693 11694
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11744
    Args:
11745
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11746 11747
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11748
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11749
            1, 2 or 3.
B
barrierye 已提交
11750
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11751 11752

    Returns:
H
haowang101779990 已提交
11753 11754
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11755

B
barrierye 已提交
11756 11757
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11758

11759
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11760
            data = fluid.data(
Y
Yibing Liu 已提交
11761 11762
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11775 11776 11777 11778 11779
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11780 11781 11782 11783 11784 11785 11786
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11787 11788


M
minqiyang 已提交
11789 11790
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11791
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11792 11793
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11794 11795

    Args:
Z
zhupengyang 已提交
11796 11797 11798 11799 11800 11801
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11802 11803

    Returns:
Z
zhupengyang 已提交
11804
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11805 11806

    Examples:
Z
zhupengyang 已提交
11807
        .. code-block:: python
H
haowang101779990 已提交
11808

11809
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11810
            import numpy as np
11811

Z
zhupengyang 已提交
11812
            place = fluid.core.CPUPlace()
11813

Z
zhupengyang 已提交
11814 11815
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11816

Z
zhupengyang 已提交
11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11834 11835
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11836 11837
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11838 11839 11840 11841 11842 11843 11844
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11845 11846


D
dengkaipeng 已提交
11847
@templatedoc()
11848 11849
def grid_sampler(x, grid, name=None):
    """
11850
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
11851
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
11852 11853
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
11854 11855
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
11856 11857
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
11858

H
haowang101779990 已提交
11859
    .. code-block:: text
11860

H
haowang101779990 已提交
11861 11862
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11863

K
Kaipeng Deng 已提交
11864 11865 11866 11867
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11868

H
haowang101779990 已提交
11869 11870 11871
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11872

H
haowang101779990 已提交
11873 11874 11875 11876 11877 11878 11879 11880 11881
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11882

H
haowang101779990 已提交
11883 11884 11885 11886
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11887

H
haowang101779990 已提交
11888 11889 11890 11891
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11892

H
haowang101779990 已提交
11893 11894 11895 11896
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11897

H
haowang101779990 已提交
11898 11899
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11900 11901

    Args:
K
Kaipeng Deng 已提交
11902 11903 11904 11905 11906 11907 11908 11909 11910
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
11911 11912

    Returns:
H
haowang101779990 已提交
11913
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
11914 11915
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
11916

H
haowang101779990 已提交
11917 11918 11919 11920
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11921 11922
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
11923 11924
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
11925 11926
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11927
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11928

D
dengkaipeng 已提交
11929 11930 11931 11932 11933 11934 11935 11936 11937
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11938
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11939 11940
    ipts = {'X': x, 'Grid': grid}

11941
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11942 11943 11944
    return out


G
gmcather 已提交
11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
11958
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
11959
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
11960 11961 11962 11963 11964 11965 11966
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
11967 11968 11969 11970 11971 11972 11973

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11974
          import paddle.fluid as fluid
11975 11976
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
11998 11999
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12000

G
Guo Sheng 已提交
12001 12002
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12003

G
Guo Sheng 已提交
12004
    The formula is as follows:
G
gmcather 已提交
12005 12006

    .. math::
H
haowang101779990 已提交
12007 12008 12009
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12010 12011

    Where:
G
Guo Sheng 已提交
12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12029 12030

    Returns:
G
Guo Sheng 已提交
12031
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12032 12033 12034 12035

    Examples:
        .. code-block:: python

12036 12037
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12038
          tensor = fluid.data(
12039
              name='tensor',
G
Guo Sheng 已提交
12040 12041
              shape=[None, 64, 512],
              dtype='float32')
12042 12043
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12044

G
gmcather 已提交
12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12061 12062 12063 12064 12065 12066 12067 12068 12069 12070


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12071
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12072

Q
Qiao Longfei 已提交
12073
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12074 12075 12076
    For example:

    .. math::
H
haowang101779990 已提交
12077
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12078

Q
Qiao Longfei 已提交
12079
    In this formula:
12080 12081
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12082
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12083
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12084 12085 12086
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12087 12088 12089 12090
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12091
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12092 12093 12094 12095 12096 12097 12098 12099 12100
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12101
    Returns:
Y
Yibing Liu 已提交
12102
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12103 12104 12105 12106

    Examples:
        .. code-block:: python

12107
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12108 12109
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12110
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12111 12112
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12113
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12114 12115 12116 12117

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12118
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12136 12137 12138 12139 12140


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12157 12158

    Args:
12159 12160 12161
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12162 12163

    Returns:
12164
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12165 12166 12167 12168 12169 12170 12171 12172

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12173 12174 12175 12176 12177 12178 12179 12180 12181 12182
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12183 12184


S
shippingwang 已提交
12185
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12186
    """
S
shippingwang 已提交
12187 12188 12189 12190 12191 12192
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12193
    
S
shippingwang 已提交
12194
    .. code-block:: text
12195

S
shippingwang 已提交
12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12224
    Args: 
S
shippingwang 已提交
12225
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12226
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12227 12228

    Returns:
S
shippingwang 已提交
12229 12230
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12231 12232

    Raises:
S
shippingwang 已提交
12233
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12234 12235 12236

    Examples:
        .. code-block:: python
12237

12238
            import paddle.fluid as fluid
R
ruri 已提交
12239
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12240
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12241 12242 12243
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12244
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12245 12246 12247 12248 12249 12250 12251 12252 12253

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12254
    return out
S
Add  
shippingwang 已提交
12255 12256


12257
@templatedoc()
D
dengkaipeng 已提交
12258
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12259 12260 12261 12262 12263 12264 12265 12266
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12267
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12268 12269 12270
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12271 12272 12273

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12274
        same shape and same data type as the input.
12275 12276 12277 12278 12279 12280 12281

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12282
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12283
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12284
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12297 12298
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12299 12300 12301
    return out


S
sneaxiy 已提交
12302
class PyFuncRegistry(object):
S
sneaxiy 已提交
12303 12304 12305
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12306
        if func is None or not callable(func):
S
sneaxiy 已提交
12307 12308 12309
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12310
        # find named args using reflection
S
sneaxiy 已提交
12311 12312 12313 12314 12315 12316 12317
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12318 12319 12320
        '''
        Why record self here?

M
minqiyang 已提交
12321 12322
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12323
           to find the registered function corresponding
M
minqiyang 已提交
12324
           to :code:`idx`.
S
sneaxiy 已提交
12325

M
minqiyang 已提交
12326 12327
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12328
           whose reference count is 1 would cause
M
minqiyang 已提交
12329
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12330 12331
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12332
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12347 12348 12349 12350 12351 12352 12353 12354 12355
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12356

S
sneaxiy 已提交
12357 12358
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12359 12360

        ret = []
S
sneaxiy 已提交
12361 12362 12363
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12364 12365
                continue

S
sneaxiy 已提交
12366 12367
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12368

S
sneaxiy 已提交
12369 12370 12371
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12372

S
sneaxiy 已提交
12373
        return tuple(ret)
S
sneaxiy 已提交
12374 12375


S
sneaxiy 已提交
12376 12377 12378
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12379 12380 12381 12382 12383 12384 12385
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12386
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12387
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12415 12416 12417 12418 12419
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12420 12421 12422 12423 12424
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12425 12426
    
    Returns: 
12427
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12428 12429

    Examples:
12430
        .. code-block:: python
12431 12432
	    
            # example 1:
12433 12434 12435
            import paddle.fluid as fluid
            import six

12436 12437
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12438 12439 12440
            def tanh(x):
                return np.tanh(x)

12441 12442 12443
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12444 12445
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12446 12447
            
            # Creates a forward function for debugging running networks(print value)
12448 12449
            def debug_func(x):
                print(x)
12450 12451 12452 12453
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12467
                    # User-defined debug functions that print out the input LodTensor
12468 12469 12470 12471 12472
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12530
    """
S
sneaxiy 已提交
12531
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12532 12533 12534
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12535
        x = [x]
12536 12537 12538
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12539
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12540

S
sneaxiy 已提交
12541 12542 12543
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12544
        out_list = [out]
12545 12546
    elif isinstance(out, tuple):
        out_list = list(out)
12547 12548 12549
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12550 12551
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12552

S
sneaxiy 已提交
12553 12554
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12555
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12556 12557

    for each_out in out_list:
S
sneaxiy 已提交
12558 12559
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12560 12561
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12562

S
sneaxiy 已提交
12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12578 12579 12580 12581

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12582 12583
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12584 12585 12586
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12587
        })
S
sneaxiy 已提交
12588
    return out
S
sneaxiy 已提交
12589 12590 12591


# For debug usage
S
sneaxiy 已提交
12592 12593 12594 12595
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12607
    Parameters:
12608
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12609
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12610 12611 12612
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12613 12614
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12615
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12616 12617 12618 12619 12620
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12621 12622

    Returns:
S
SunGaofeng 已提交
12623 12624 12625 12626
        ${out_comment}.

    Return Type:
        Variable
12627 12628 12629 12630

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12631
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12632 12633
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12634
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12660 12661 12662 12663 12664 12665 12666 12667


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12668
               batch_roi_nums=None,
12669 12670
               name=None):
    """
12671
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12672 12673

    Args:
12674
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12675 12676 12677
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12678 12679 12680 12681 12682
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12683 12684 12685 12686 12687 12688
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12689
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12690
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12691 12692
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12693 12694 12695
        name (str, default None): The name of this operation.

    Returns:
12696
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12697 12698 12699 12700

    Examples:
        .. code-block:: python

12701
            ## prroi_pool without batch_roi_num
12702
            import paddle.fluid as fluid
12703 12704
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
12705
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12706 12707 12708 12709 12710 12711 12712 12713 12714
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
12726 12727 12728
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
12729 12730
    helper.append_op(
        type='prroi_pool',
12731
        inputs=inputs_op,
12732 12733 12734 12735 12736 12737 12738
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12739

M
minqiyang 已提交
12740

R
ruri 已提交
12741 12742 12743
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12744
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12745 12746 12747 12748 12749 12750 12751
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12752
    Parameters:
R
ruri 已提交
12753

R
ruri 已提交
12754 12755
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12756 12757

    Returns:
12758
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12759 12760 12761 12762 12763 12764 12765

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12801 12802 12803 12804 12805
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12806
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12818 12819 12820
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12821
                      The y_channel can be different with the x_channel of Input(X)
12822 12823
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12824 12825 12826 12827

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12828 12829
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12830 12831 12832 12833 12834

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12835
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12836
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12837 12838 12839 12840
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12841 12842 12843 12844 12845 12846 12847 12848
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12849 12850 12851 12852


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12853

H
heqiaozhi 已提交
12854
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12855

Z
zhoushiyu 已提交
12856
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
12857

Z
zhoushiyu 已提交
12858 12859
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
12860
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
12861 12862
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
12863

Z
zhoushiyu 已提交
12864 12865 12866 12867 12868 12869 12870
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
12871

H
heqiaozhi 已提交
12872
    Returns:
H
fix doc  
heqiaozhi 已提交
12873

Z
zhoushiyu 已提交
12874 12875
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
12876

H
heqiaozhi 已提交
12877
    Examples:
H
fix doc  
heqiaozhi 已提交
12878

H
heqiaozhi 已提交
12879
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12880

12881
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
12882 12883
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
12884 12885 12886 12887 12888 12889 12890 12891
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12892

H
heqiaozhi 已提交
12893 12894 12895 12896 12897 12898 12899 12900 12901
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12902
    return out
Z
zhoukunsheng 已提交
12903 12904 12905 12906 12907 12908 12909


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
12910
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
12911 12912

    Returns:
12913
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
12914 12915 12916 12917

    Examples:
        .. code-block:: python

12918
             import paddle.fluid as fluid
12919 12920 12921
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12922
             # condition is a tensor [True, False, True]
12923 12924 12925
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12926 12927

             # condition is a tensor [[True, False], [False, True]]
12928 12929 12930
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12931 12932

             # condition is a tensor [False, False, False]
12933 12934 12935 12936
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12937 12938 12939 12940 12941 12942 12943 12944 12945
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12946 12947 12948 12949


def sign(x):
    """
12950
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
12951 12952

    Args:
12953 12954
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
12955 12956

    Returns:
12957
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
12958 12959 12960 12961

    Examples:
        .. code-block:: python

12962 12963 12964
          import paddle.fluid as fluid
          import numpy as np

12965 12966
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
12967 12968 12969
    """

    helper = LayerHelper("sign", **locals())
12970 12971 12972 12973
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
12974 12975 12976 12977 12978
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12979 12980


Z
zhoukunsheng 已提交
12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13020 13021
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13022
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13023
    and an index tensor pointing to this unique tensor. 
13024

13025
    **NOTICE**: This op support the variable type of Tensor only.
13026 13027

    Args:
13028 13029
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13030

13031 13032 13033 13034
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13035
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13036
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13037 13038 13039 13040 13041 13042 13043 13044 13045

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13046
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13089
                    modulated=True,
13090 13091
                    name=None):
    """
13092
    **Deformable Convolution op**
13093 13094 13095

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13096 13097 13098
   
    
    Deformable Convolution v2: 
13099 13100 13101 13102
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13103 13104

    Deformable Convolution v1:
13105
    
13106 13107 13108 13109 13110
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13111
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13112
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13137 13138
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13139
        offset (Variable): The input coordinate offset of deformable convolution layer.
13140
            A Tensor with type float32, float64.
13141 13142 13143
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13144 13145
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13146
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13166
            The total batch size should be devisable by this value or smaller
13167 13168 13169
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13170
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13171 13172 13173 13174 13175
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13176
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13177 13178 13179 13180
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13181 13182
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13183 13184
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13185 13186
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13187
                  result. A Tensor with type float32, float64.
13188 13189 13190 13191 13192 13193
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13194 13195
          #deformable conv v2:
         
13196
          import paddle.fluid as fluid
13197 13198
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13199 13200 13201
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13202
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13203
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13204 13205 13206 13207

          #deformable conv v1:

          import paddle.fluid as fluid
13208 13209
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13210 13211
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13212
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13213
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13291 13292 13293

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13294 13295 13296 13297 13298


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13299
    This op returns a col buffer of sliding local blocks of input x, also known
13300
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13301
    all element will be rearranged as a column. While the convolution filter sliding over
13302 13303
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13304
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13322 13323 13324
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
T
tianshuo78520a 已提交
13338
                                  [dilation_h, dilation_w], or an integer dilation treated as
13339
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13340 13341 13342
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13343 13344 13345

    
    Returns:
S
SunGaofeng 已提交
13346
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13347
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13348 13349 13350 13351 13352 13353
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13354 13355 13356 13357 13358 13359

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13360
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13431 13432 13433 13434 13435 13436 13437
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13438
    
13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13465
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13466 13467 13468 13469 13470 13471 13472
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13473
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13474 13475 13476 13477
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13478 13479 13480 13481

    Examples:
      .. code-block:: python

13482 13483
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13506 13507
  
        # position_sensitive=False
13508
        import paddle.fluid as fluid
C
chengjuntao 已提交
13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13568 13569 13570 13571


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13572
    This operator recomputes the `input` indices according to the offset of the
13573 13574 13575 13576 13577
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13578
        
13579 13580
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13581

13582 13583
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13584 13585

    Examples:
13586
    ::
13587
    
13588
        Input:
13589 13590
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13591 13592 13593
          index_num = 20
          nshards = 2
          ignore_value = -1
13594
        
13595
        if shard_id == 0, we get:
13596 13597 13598
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13599
        if shard_id == 1, we get:
13600 13601 13602 13603
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13604
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13605
        - **index_num** (scalar): An integer defining the range of the index.
13606 13607
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13608
        - **ignore_value** (scalar): An integer value out of sharded index range
13609 13610

    Returns:
13611
        Variable: The sharded index of input.
13612 13613 13614 13615 13616

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13617 13618
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13643 13644 13645 13646 13647


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13648 13649 13650
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13651

13652
    The formula is as follows:
H
huangjun12 已提交
13653

13654
    .. math::
H
huangjun12 已提交
13655

13656
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13657

13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13703 13704


G
Guo Sheng 已提交
13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13780 13781 13782
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13783 13784
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13796 13797
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13798 13799
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13800
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13801
                                                  Default: float32.
13802 13803
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13804 13805 13806 13807 13808
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13809 13810
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13811

13812
    Raises:
T
tianshuo78520a 已提交
13813
        TypeError: The shape type should be list or tuple or variable.
13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13827 13828
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13829 13830

            # example 3:
13831
            # attr shape is a Variable, the data type must be int64 or int32.
13832
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13833
            result_3 = fluid.layers.uniform_random(var_shape)
13834 13835 13836 13837
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13838 13839

    """
13840
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
13841 13842
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
13843
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
13844

13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
13867
                    "Each dimension size given in shape must not be negative "
13868 13869 13870 13871 13872
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
13873
    attrs = {'seed': seed, 'min': min, 'max': max}
13874
    if in_dygraph_mode():
H
hong 已提交
13875
        attrs['shape'] = shape
13876 13877 13878 13879 13880 13881 13882 13883
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
13884
            if utils._contain_var(shape):
13885 13886 13887 13888 13889 13890 13891 13892
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)