未验证 提交 01ad8d2e 编写于 作者: Y Yibing Liu 提交者: GitHub

Refactor linear chain crf op & crf decoding op (#19982)

* Update crf_decoding api & example

test=develop

* Update api spec

test=develop

* Fix linear chain crf api

test=develop

* Avoid sharing data pointer with input

test=develop

* Simplify the logic in linear_chain_crf_decoding

* Add unittest for crf_decoding when label & path both are set

test=develop

* Update API spec

test=develop

* Add unittest for layers && correct infer_shape in chunk_eval

test=develop
上级 7a9bd0c5
......@@ -132,8 +132,8 @@ paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', '
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'c37d51aad655c8a9f9b045c64717320a'))
paddle.fluid.layers.dynamic_gru (ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False)), ('document', '83617c165827e030636c80486d5de6f3'))
paddle.fluid.layers.gru_unit (ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False)), ('document', '33974b9bfa69f2f1eb85e6f956dff04e'))
paddle.fluid.layers.linear_chain_crf (ArgSpec(args=['input', 'label', 'param_attr', 'length'], varargs=None, keywords=None, defaults=(None, None)), ('document', '9045b8971e4232132ec9952695f4c3ae'))
paddle.fluid.layers.crf_decoding (ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,)), ('document', '5ce117258e243be1c81539e254178d90'))
paddle.fluid.layers.linear_chain_crf (ArgSpec(args=['input', 'label', 'param_attr', 'length'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'bc7a0fd2bb2b35dfd2f54947320e78fa'))
paddle.fluid.layers.crf_decoding (ArgSpec(args=['input', 'param_attr', 'label', 'length'], varargs=None, keywords=None, defaults=(None, None)), ('document', '933b7e268c4ffa3d5c3ef953a5ee9f0b'))
paddle.fluid.layers.cos_sim (ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None), ('document', '8e6ce424cf9e261ef32ee229c06a6e66'))
paddle.fluid.layers.cross_entropy (ArgSpec(args=['input', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100)), ('document', '789a141e97fd0b37241f630935936d08'))
paddle.fluid.layers.bpr_loss (ArgSpec(args=['input', 'label', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6263dfdeb6c670fa0922c9cbc8fb1bf4'))
......
......@@ -24,37 +24,45 @@ class ChunkEvalOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Inference"),
"Input(Inference) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input(Label) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Precision"),
"Output(Precision) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Recall"),
"Output(Recall) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("F1-Score"),
"Output(F1-Score) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"),
"Output(NumInferChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"),
"Output(NumLabelChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NumCorrectChunks"),
PADDLE_ENFORCE_EQ(ctx->HasInput("Inference"), true,
"Input(Inference) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
"Input(Label) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Precision"), true,
"Output(Precision) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Recall"), true,
"Output(Recall) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("F1-Score"), true,
"Output(F1-Score) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(
ctx->HasOutput("NumInferChunks"), true,
"Output(NumInferChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(
ctx->HasOutput("NumLabelChunks"), true,
"Output(NumLabelChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE_EQ(
ctx->HasOutput("NumCorrectChunks"), true,
"Output(NumCorrectChunks) of ChunkEvalOp should not be null.");
auto inference_dim = ctx->GetInputDim("Inference");
auto label_dim = ctx->GetInputDim("Label");
PADDLE_ENFORCE(inference_dim == label_dim,
"Inference's shape must be the same as Label's shape.");
PADDLE_ENFORCE_EQ(
inference_dim, label_dim,
"Input(Inference)'s shape must be the same as Input(Label)'s shape.");
bool use_padding = ctx->HasInput("SeqLength");
if (use_padding) {
PADDLE_ENFORCE(inference_dim.size() == 3,
"when SeqLength is provided, Inference should be of dim 3 "
"(batch, bucket, 1)");
PADDLE_ENFORCE_EQ((inference_dim.size() == 3 && inference_dim[2] == 1) ||
inference_dim.size() == 2,
true,
"when Input(SeqLength) is provided, Input(Inference) "
"should be of dim 3 (batch_size, bucket, 1) or dim 2 "
"(batch_size, bucket).");
auto seq_length_dim = ctx->GetInputDim("SeqLength");
PADDLE_ENFORCE(seq_length_dim.size() == 1, "seq_length should be rank 1");
PADDLE_ENFORCE_LE(
seq_length_dim.size(), 2,
"Input(SeqLength)'s rank should not be greater than 2.");
}
ctx->SetOutputDim("Precision", {1});
......
......@@ -39,8 +39,7 @@ class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker {
"Label",
"(Tensor<int64_t>/LoDTensor<int64_t>). The ground truth with shape "
"[N x 1] (for LoDTensor) or [B x S] (for Tensor). This input is "
"optional. "
"See more details in the operator's comments.")
"optional. See more details in the operator's comments.")
.AsDispensable();
AddOutput(
"ViterbiPath",
......@@ -126,12 +125,24 @@ class CRFDecodingOp : public framework::OperatorWithKernel {
}
if (ctx->HasInput("Label")) {
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
"The Input(Label) should be a 2-D tensor");
if (ctx->HasInput("Length")) {
PADDLE_ENFORCE_EQ(
(label_dims.size() == 3UL && label_dims[2] == 1) ||
label_dims.size() == 2UL,
true,
"The Input(Label) should be a 3-D tensor with last dimension "
"fixed to 1 or a 2-D tensor in padding mode.");
} else {
PADDLE_ENFORCE_EQ((label_dims.size() == 2UL && label_dims[1] == 1) ||
label_dims.size() == 1UL,
true,
"The Input(Label) should be a 2-D tensor with last "
"dimension fixed to 1 or a 1-D tensor.");
}
if (ctx->IsRuntime() || (emission_dims[0] > 0 && label_dims[0] > 0)) {
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"The first dimension of Input(Emission) and Input(Label) "
"should be the same.");
}
}
......
......@@ -46,23 +46,34 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
const int64_t* length_data = length->data<int64_t>();
auto in_dims = emission_weights->dims();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
framework::Tensor emission_weights_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(emission_weights->dims(),
dev_ctx);
emission_weights_tmp.ShareDataWith(*emission_weights);
Tensor emission_weights_tmp = *emission_weights;
emission_weights_tmp.Resize({in_dims[0] * in_dims[1], in_dims[2]});
decoded_path->Resize({in_dims[0] * in_dims[1], 1});
for (size_t i = 0; i < seq_num; ++i) {
if (length_data[i] == 0) continue;
int start_pos = i * in_dims[1];
int end_pos = start_pos + static_cast<int>(length_data[i]);
int64_t start_pos = i * in_dims[1];
int64_t end_pos = start_pos + static_cast<int64_t>(length_data[i]);
Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
Decode(emission_weights_tmp.Slice(start_pos, end_pos),
*transition_weights, &decoded_path_one_seq);
}
decoded_path->Resize({in_dims[0], in_dims[1]});
if (label) {
const int64_t* label_value = label->data<int64_t>();
for (size_t i = 0; i < seq_num; ++i) {
for (int64_t j = 0; j < in_dims[1]; ++j) {
int64_t start_pos = i * in_dims[1];
if (j < length_data[i]) {
path[start_pos + j] =
label_value[start_pos + j] == path[start_pos + j] ? 1 : 0;
} else {
path[start_pos + j] = 0;
}
}
}
}
} else {
PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
"The Input(Emission) should be a sequence.");
......@@ -73,22 +84,20 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
for (size_t i = 0; i < seq_num; ++i) {
if (lod[level][i] == lod[level][i + 1]) continue;
int start_pos = static_cast<int>(lod[level][i]);
int end_pos = static_cast<int>(lod[level][i + 1]);
int64_t start_pos = static_cast<int64_t>(lod[level][i]);
int64_t end_pos = static_cast<int64_t>(lod[level][i + 1]);
Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights,
&decoded_path_one_seq);
}
}
if (label) {
if (!has_length) {
if (label) {
PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
"The Input(Label) should be a sequence.");
}
const int64_t* label_value = label->data<int64_t>();
size_t numel = label->numel();
for (size_t i = 0; i < numel; ++i) {
path[i] = label_value[i] == path[i] ? 1 : 0;
const int64_t* label_value = label->data<int64_t>();
size_t numel = label->numel();
for (size_t i = 0; i < numel; ++i) {
path[i] = label_value[i] == path[i] ? 1 : 0;
}
}
}
}
......
......@@ -22,13 +22,14 @@ namespace operators {
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Emission",
"(LoDTensor/Tensor<float>). When a LoDTensor input,A 2-D LoDTensor"
" with shape [N x D], where N is the size of the "
"mini-batch and D is the total tag number. The unscaled emission "
"weight matrix for the linear chain CRF. When a Tensor input,"
"A Tensor with shape [N x S x D], where N is batch number,"
"S is max length of sequences, D is the total tag number.");
AddInput(
"Emission",
"(LoDTensor/Tensor<float>). When a LoDTensor input, A 2-D LoDTensor"
" with shape [N x D], where N is the size of the "
"mini-batch and D is the total tag number. The unscaled emission "
"weight matrix for the linear chain CRF. When a Tensor input,"
"A Tensor with shape [N x S x D], where N is batch size,"
"S is max length of sequences, D is the total tag number.");
AddInput("Transition",
"(Tensor, default Tensor<float>) A 2-D Tensor with shape "
"[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
......@@ -38,7 +39,7 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
"[N x 1], where N is the total element number in a mini-batch. "
"when a Tensor input, [N x S], where N is batch number. "
"S is max length of sequences. The ground truth.");
AddInput("length",
AddInput("Length",
"(Tensor, default Tensor<int64_t>) A Tensor with shape "
"[M x 1], where M is the sequence number in a mini-batch.")
.AsDispensable();
......@@ -169,12 +170,16 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_NE(emission_dims[0], 0,
"An empty mini-batch is not allowed.");
if (ctx->HasInput("length")) {
if (ctx->HasInput("Length")) {
PADDLE_ENFORCE_EQ(emission_dims.size(), 3,
"The Input(Emission) should be a 3-D tensor.");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(label_dims.size(), 3,
"The Input(Label) should be a 3-D tensor");
PADDLE_ENFORCE_EQ(
(label_dims.size() == 3UL && label_dims[2] == 1) ||
(label_dims.size() == 2UL),
true,
"The Input(Label) should be a 3-D tensor with last "
"dimension fixed to 1 or a 2-D tensor in padding mode.");
PADDLE_INFERSHAPE_ENFORCE_EQ(
ctx, emission_dims[0], label_dims[0],
"The batch size of Input(Emission) and Input(Label) "
......@@ -249,7 +254,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
auto label_dims = ctx->GetInputDim("Label");
if (ctx->HasInput("length")) {
if (ctx->HasInput("Length")) {
PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 3,
"The Input(EmissionExps) should be a 3-D tensor.");
PADDLE_INFERSHAPE_ENFORCE_EQ(
......@@ -281,7 +286,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
if (ctx->HasOutput(framework::GradVarName("Emission"))) {
ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
if (ctx->HasInput("length") == false) {
if (ctx->HasInput("Length") == false) {
ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
}
}
......@@ -320,8 +325,8 @@ class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
op->SetInput("Alpha", Output("Alpha"));
op->SetInput("EmissionExps", Output("EmissionExps"));
op->SetInput("TransitionExps", Output("TransitionExps"));
if (ForwardOp().Inputs().count("length") > 0) {
op->SetInput("length", Input("length"));
if (ForwardOp().Inputs().count("Length") > 0) {
op->SetInput("Length", Input("Length"));
}
op->SetInput(framework::GradVarName("LogLikelihood"),
OutputGrad("LogLikelihood"));
......
......@@ -65,62 +65,51 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
// Because the computation codes only runs on CPU, here the memory for all
// the outputs is FIXED to be allocated on the CPU memory.
auto* emission_exps_data =
emission_exps->mutable_data<T>(platform::CPUPlace());
auto* alpha_data = alpha->mutable_data<T>(platform::CPUPlace());
emission_exps->mutable_data<T>(platform::CPUPlace());
alpha->mutable_data<T>(platform::CPUPlace());
transition_exps->mutable_data<T>(platform::CPUPlace());
// Resize the output tensor to its correct dimension.
memset(emission_exps_data, 0, emission_exps->numel() * sizeof(T));
memset(alpha_data, 0, alpha->numel() * sizeof(T));
auto emission_dims = emission_weights->dims();
const Tensor* label = ctx.Input<framework::Tensor>("Label");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
Tensor emission_weights_tmp = ctx.AllocateTmpTensor<T, DeviceContext>(
emission_weights->dims(), dev_ctx);
emission_weights_tmp.ShareDataWith(*emission_weights);
Tensor label_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(label->dims(), dev_ctx);
label_tmp.ShareDataWith(*label);
Tensor emission_exps_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(emission_exps->dims(), dev_ctx);
emission_exps_tmp.ShareDataWith(*emission_exps);
Tensor alpha_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(alpha->dims(), dev_ctx);
alpha_tmp.ShareDataWith(*alpha);
size_t seq_num = 0;
size_t batch_size;
size_t tag_num;
Tensor emission_weights_tmp = *emission_weights;
Tensor label_tmp = *label;
Tensor emission_exps_tmp = *emission_exps;
Tensor alpha_tmp = *alpha;
int64_t seq_num = 0;
int64_t batch_size;
int64_t tag_num;
const int64_t* length_data = nullptr;
framework::Vector<size_t> in_lod;
if (ctx.HasInput("length")) {
const Tensor* label_length = ctx.Input<framework::Tensor>("length");
framework::LoD in_lod;
if (ctx.HasInput("Length")) {
const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
length_data = label_length->data<int64_t>();
seq_num = label_length->numel();
batch_size = emission_dims[0] * emission_dims[1];
tag_num = emission_dims[2];
emission_weights_tmp.Resize(
{emission_dims[0] * emission_dims[1], emission_dims[2]});
auto label_dims = label->dims();
label_tmp.Resize({label_dims[0] * label_dims[1], label_dims[2]});
alpha_tmp.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
emission_exps_tmp.Resize(
{emission_dims[0] * emission_dims[1], emission_dims[2]});
PADDLE_ENFORCE_EQ(seq_num, emission_dims[0],
"the size of Input(length) must be equal to "
"emission_dims[0].");
auto label_dims = label->dims();
PADDLE_ENFORCE_EQ(seq_num, label_dims[0],
"the size of Input(length) must be equal to "
"label_dims[0].");
batch_size = emission_dims[0] * emission_dims[1];
tag_num = emission_dims[2];
emission_weights_tmp.Resize({batch_size, tag_num});
label_tmp.Resize({batch_size, 1});
alpha_tmp.Resize({batch_size, tag_num});
emission_exps_tmp.Resize({batch_size, tag_num});
math::set_constant(ctx.device_context(), emission_exps, 0.0);
math::set_constant(ctx.device_context(), alpha, 0.0);
} else {
seq_num = ctx.Input<LoDTensor>("Label")->lod()[0].size() - 1;
in_lod = ctx.Input<LoDTensor>("Label")->lod();
PADDLE_ENFORCE_NE(in_lod.size(), 0, "Input(Label) must be a sequence.");
seq_num = in_lod[0].size() - 1;
batch_size = emission_dims[0];
tag_num = emission_dims[1];
in_lod = ctx.Input<LoDTensor>("Label")->lod()[0];
PADDLE_ENFORCE_NE(in_lod.size(), 0, "Input(Label) must be a sequence.");
}
ll->Resize({static_cast<int>(seq_num), 1});
// Resize the output tensor to its correct dimension.
ll->Resize({seq_num, 1});
ll->mutable_data<T>(platform::CPUPlace());
// Now, all the inputs and outputs should be on the CPU memory.
Tensor emission_row_max;
......@@ -141,16 +130,15 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
auto w_exps = EigenMatrix<T>::From(*transition_exps);
w_exps.device(place) = w.exp();
T* log_likelihood = ll->data<T>();
for (size_t i = 0; i < seq_num; ++i) {
int start_pos = 0;
int end_pos = 0;
if (ctx.HasInput("length")) {
if (length_data[i] == 0) continue;
for (int64_t i = 0; i < seq_num; ++i) {
int64_t start_pos = 0;
int64_t end_pos = 0;
if (ctx.HasInput("Length")) {
start_pos = i * emission_dims[1];
end_pos = start_pos + static_cast<int>(length_data[i]);
end_pos = start_pos + length_data[i];
} else {
start_pos = static_cast<int>(in_lod[i]);
end_pos = static_cast<int>(in_lod[i + 1]);
start_pos = static_cast<int64_t>(in_lod[0][i]);
end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
}
if (end_pos == start_pos) {
// If an empty input sequence is given, pad 0 for its cost.
......@@ -239,44 +227,35 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
const Tensor* alpha = ctx.Input<Tensor>("Alpha");
const T* ll_grad =
ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
Tensor* emission_grad =
ctx.Output<Tensor>(framework::GradVarName("Emission"));
auto* emission_grad_data =
emission_grad->mutable_data<T>(platform::CPUPlace());
memset(emission_grad_data, 0, emission_grad->numel() * sizeof(T));
Tensor alpha_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(alpha->dims(), dev_ctx);
alpha_tmp.ShareDataWith(*alpha);
Tensor label_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(label->dims(), dev_ctx);
label_tmp.ShareDataWith(*label);
Tensor emission_exps_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(emission_exps->dims(), dev_ctx);
emission_exps_tmp.ShareDataWith(*emission_exps);
Tensor emission_grad_tmp =
ctx.AllocateTmpTensor<T, DeviceContext>(emission_grad->dims(), dev_ctx);
emission_grad_tmp.ShareDataWith(*emission_grad);
Tensor alpha_tmp = *alpha;
Tensor label_tmp = *label;
Tensor emission_exps_tmp = *emission_exps;
Tensor emission_grad_tmp = *emission_grad;
// getting seq_num using padding or not
size_t seq_num = 0;
framework::Vector<size_t> lod;
int64_t seq_num = 0;
framework::LoD in_lod;
const int64_t* length_data = nullptr;
if (ctx.HasInput("length")) {
const Tensor* label_length = ctx.Input<framework::Tensor>("length");
if (ctx.HasInput("Length")) {
const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
length_data = label_length->data<int64_t>();
seq_num = label_length->numel();
auto emission_dims = emission_grad->dims();
auto label_dims = label->dims();
emission_grad_tmp.Resize(
{emission_dims[0] * emission_dims[1], emission_dims[2]});
label_tmp.Resize({label_dims[0] * label_dims[1], label_dims[2]});
label_tmp.Resize({label_dims[0] * label_dims[1], 1});
alpha_tmp.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
emission_exps_tmp.Resize(
{emission_dims[0] * emission_dims[1], emission_dims[2]});
} else {
seq_num = ctx.Input<LoDTensor>("Label")->lod()[0].size() - 1;
lod = ctx.Input<LoDTensor>("Label")->lod()[0];
PADDLE_ENFORCE_NE(lod.size(), 0, "Input(Label) must be a sequence.");
in_lod = ctx.Input<LoDTensor>("Label")->lod();
PADDLE_ENFORCE_NE(in_lod.size(), 0, "Input(Label) must be a sequence.");
seq_num = static_cast<int64_t>(in_lod[0].size() - 1);
}
Tensor* transition_grad =
......@@ -295,21 +274,24 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
// captures the unnormalized probabilities of partial sequences starting
// at position i.
Tensor beta;
auto* beta_data = beta.mutable_data<T>(emission_dims, platform::CPUPlace());
memset(beta_data, 0, beta.numel() * sizeof(T));
if (ctx.HasInput("length")) {
beta.mutable_data<T>(emission_dims, platform::CPUPlace());
if (ctx.HasInput("Length")) {
beta.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
}
for (size_t i = 0; i < seq_num; ++i) {
int start_pos = 0;
int end_pos = 0;
if (ctx.HasInput("length")) {
if (length_data[i] == 0) continue;
for (int64_t i = 0; i < seq_num; ++i) {
int64_t start_pos = 0;
int64_t end_pos = 0;
if (ctx.HasInput("Length")) {
start_pos = i * emission_dims[1];
end_pos = start_pos + static_cast<int>(length_data[i]);
end_pos = start_pos + length_data[i];
} else {
start_pos = static_cast<int>(lod[i]);
end_pos = static_cast<int>(lod[i + 1]);
start_pos = static_cast<int64_t>(in_lod[0][i]);
end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
}
if (end_pos == start_pos) {
continue;
}
const Tensor one_seq_emission_exps =
emission_exps_tmp.Slice(start_pos, end_pos);
......
......@@ -1491,7 +1491,7 @@ def linear_chain_crf(input, label, param_attr=None, length=None):
print(transition)
"""
helper = LayerHelper('linear_chain_crf', **locals())
size = input.shape[1]
size = input.shape[2] if length else input.shape[1]
transition = helper.create_parameter(
attr=helper.param_attr,
shape=[size + 2, size],
......@@ -1510,7 +1510,7 @@ def linear_chain_crf(input, label, param_attr=None, length=None):
"Label": [label]
}
if length:
this_inputs['length'] = [length]
this_inputs['Length'] = [length]
helper.append_op(
type='linear_chain_crf',
inputs=this_inputs,
......@@ -1525,7 +1525,7 @@ def linear_chain_crf(input, label, param_attr=None, length=None):
@templatedoc()
def crf_decoding(input, param_attr, label=None):
def crf_decoding(input, param_attr, label=None, length=None):
"""
${comment}
......@@ -1535,6 +1535,8 @@ def crf_decoding(input, param_attr, label=None):
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
label(${length_type}): ${length_comment}
Returns:
Variable: ${viterbi_path_comment}
......@@ -1543,23 +1545,41 @@ def crf_decoding(input, param_attr, label=None):
.. code-block:: python
import paddle.fluid as fluid
images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int32')
hidden = fluid.layers.fc(input=images, size=2)
crf = fluid.layers.linear_chain_crf(input=hidden, label=label,
# LoDTensor-based example
num_labels = 10
feature = fluid.layers.data(name='word_emb', shape=[784], dtype='float32', lod_level=1)
label = fluid.layers.data(name='label', shape=[1], dtype='int64', lod_level=1)
emission = fluid.layers.fc(input=feature, size=num_labels)
crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label,
param_attr=fluid.ParamAttr(name="crfw"))
crf_decode = fluid.layers.crf_decoding(input=hidden,
crf_decode = fluid.layers.crf_decoding(input=emission,
param_attr=fluid.ParamAttr(name="crfw"))
# Common tensor example
num_labels, max_len = 10, 20
feature = fluid.layers.data(name='word_emb_pad', shape=[max_len, 784], dtype='float32')
label = fluid.layers.data(name='label_pad', shape=[max_len, 1], dtype='int64')
length = fluid.layers.data(name='length', shape=[1], dtype='int64')
emission = fluid.layers.fc(input=feature, size=num_labels,
num_flatten_dims=2)
crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
param_attr=fluid.ParamAttr(name="crfw_pad"))
crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
param_attr=fluid.ParamAttr(name="crfw_pad"))
"""
helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
inputs = {"Emission": [input], "Transition": transition, "Label": label}
if length:
inputs['Length'] = length
helper.append_op(
type='crf_decoding',
inputs={"Emission": [input],
"Transition": transition,
"Label": label},
inputs=inputs,
outputs={"ViterbiPath": [viterbi_path]})
return viterbi_path
......
......@@ -176,22 +176,23 @@ class TestCRFDecodingOp4(TestCRFDecodingOp2):
self.lod = [[0, 2, 3, 0]]
def seq_pad(data, length):
max_len = np.max(length)
shape = [len(length), max_len] + list(data.shape[1:])
padded = np.zeros(shape).astype(data.dtype)
offset = 0
for i, l in enumerate(length):
padded[i, 0:l] = data[offset:offset + l]
offset += l
return np.squeeze(padded)
class TestCRFDecodingOp5(OpTest):
"""
Compare the dynamic program with random generated parameters and inputs
with grouth truth not being given.
"""
def seq_pad(self, data, length):
max_len = np.max(length)
shape = [len(length), max_len] + list(data.shape[1:])
padded = np.zeros(shape).astype(data.dtype)
offset = 0
for i, l in enumerate(length):
padded[i, 0:l] = data[offset:offset + l]
offset += l
return np.squeeze(padded)
def set_test_data(self):
SEQ_NUM = 3
TAG_NUM = 17
......@@ -208,7 +209,7 @@ class TestCRFDecodingOp5(OpTest):
[TAG_NUM + 2, TAG_NUM]).astype("float64")
self.inputs = {
"Emission": self.seq_pad(emission, lod[0]),
"Emission": seq_pad(emission, lod[0]),
"Transition": transition,
"Length": np.array(lod).astype('int64'),
}
......@@ -216,7 +217,7 @@ class TestCRFDecodingOp5(OpTest):
decoder = CRFDecoding(emission, transition, lod[0])
decoded_path = decoder.decode()
self.outputs = {"ViterbiPath": self.seq_pad(decoded_path, lod[0])}
self.outputs = {"ViterbiPath": seq_pad(decoded_path, lod[0])}
def setUp(self):
self.op_type = "crf_decoding"
......@@ -226,5 +227,45 @@ class TestCRFDecodingOp5(OpTest):
self.check_output()
class TestCRFDecodingOp6(OpTest):
def init_lod(self):
self.lod = [[1, 2, 3, 4]]
def setUp(self):
self.op_type = "crf_decoding"
TAG_NUM = 5
self.init_lod()
total_len = sum(self.lod[-1])
transition = np.repeat(
np.arange(
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
TAG_NUM + 2,
axis=0)
emission = np.repeat(
np.arange(
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
total_len,
axis=0)
labels = np.random.randint(
low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64")
predicted_labels = np.ones(
(total_len, 1), dtype="int64") * (TAG_NUM - 1)
expected_output = (labels == predicted_labels).astype("int64")
self.inputs = {
"Emission": seq_pad(emission, self.lod[0]),
"Transition": transition,
"Label": seq_pad(labels, self.lod[0]),
"Length": np.array(self.lod).astype('int64'),
}
self.outputs = {"ViterbiPath": seq_pad(expected_output, self.lod[0])}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
......@@ -2556,21 +2556,46 @@ class TestBook(LayerTest):
input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
def test_linear_chain_crf(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
label_dict_len = 10
images = layers.data(name='pixel', shape=[784], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int32')
hidden = layers.fc(input=images, size=2)
feature = layers.data(name='feature', shape=[784], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int64')
emission = layers.fc(input=feature, size=10)
crf = layers.linear_chain_crf(
input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
input=emission, label=label, param_attr=ParamAttr(name="crfw"))
crf_decode = layers.crf_decoding(
input=emission, param_attr=ParamAttr(name="crfw"))
self.assertFalse(crf is None)
self.assertFalse(crf_decode is None)
return layers.chunk_eval(
input=crf_decode,
label=label,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) // 2)
def test_linear_chain_crf_padding(self):
with self.static_graph():
label_dict_len, max_len = 10, 20
feature = layers.data(
name='feature', shape=[max_len, 784], dtype='float32')
label = layers.data(name='label', shape=[max_len], dtype='int64')
length = layers.data(name='length', shape=[1], dtype='int64')
emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
crf = layers.linear_chain_crf(
input=emission,
label=label,
length=length,
param_attr=ParamAttr(name="crfw"))
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
input=emission,
length=length,
param_attr=ParamAttr(name="crfw"))
self.assertFalse(crf is None)
self.assertFalse(crf_decode is None)
return layers.chunk_eval(
input=crf_decode,
label=label,
seq_length=length,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) // 2)
......
......@@ -205,7 +205,7 @@ class TestLinearChainCrfPaddingTensor(OpTest):
"Emission": self.seq_pad(emission, lod[0]),
"Transition": transition,
"Label": self.seq_pad(labels, lod[0]),
"length": np.array(lod).astype("int64")
"Length": np.array(lod).astype("int64")
}
crf = LinearChainCrfForward(seq_start_pos, emission, emission_row_max,
emission_exps, transition, transition_exps,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册