tensor.py 66.5 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
Z
zyfncg 已提交
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331 332 333 334
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        return _C_ops.final_state_concat(input, axis)

    if _in_legacy_dygraph():
S
songyouwei 已提交
335 336
        if isinstance(axis, Variable):
            axis = axis.numpy()
337
            axis = axis.item(0)
338 339
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
340
        return _C_ops.concat(input, 'axis', axis)
341

342 343 344 345 346 347 348 349 350 351 352
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
353
        input = [input]
354
    check_type(axis, 'axis', (int, Variable), 'concat')
355

356 357 358 359 360
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

361
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
362
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
363 364

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
365 366 367 368
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

369
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
370
                "number of the elements must be 1, but received %s." % len(input)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
390 391 392
    return out


G
Guo Sheng 已提交
393
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
394
    r"""
G
Guo Sheng 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
445 446

    Args:
G
Guo Sheng 已提交
447 448 449 450 451 452 453
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
454 455

    Returns:
G
Guo Sheng 已提交
456 457 458
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
459 460 461 462

    Examples:
        .. code-block:: python

463
            import paddle.fluid as fluid
464
            import numpy as np
G
Guo Sheng 已提交
465 466 467 468 469 470 471
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
472
    """
J
Jiabin Yang 已提交
473
    if _non_static_mode():
474 475 476 477 478 479 480 481 482 483
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

484 485 486 487 488
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
489
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
490 491 492
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
493
        type='tensor_array_to_tensor',
L
li099 已提交
494 495 496
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
497 498
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
499 500 501
    return out, out_index


502
def sums(input, out=None):
503
    r"""
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
525 526

    Args:
527 528 529 530
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
531 532

    Returns:
533 534
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
535 536

    Examples:
F
fengjiayi 已提交
537
        .. code-block:: python
K
kavyasrinet 已提交
538

539 540 541 542 543 544 545 546 547
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
548

549 550
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
551
    """
552 553 554 555
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
556
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
557 558
    else:
        check_variable_and_dtype(input, "input", \
559
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
560

Y
Yu Yang 已提交
561 562
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
563 564
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
565 566 567 568
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
569 570 571 572 573
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
574 575 576
    return out


F
fengjiayi 已提交
577
def assign(input, output=None):
578
    """
S
swtkiwi 已提交
579

580
    The OP copies the :attr:`input` to the :attr:`output`.
581

582
    Parameters:
583 584 585 586
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
587
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
588
            be created as :attr:`output`. Default: None.
589 590

    Returns:
591
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
592 593 594

    Examples:
        .. code-block:: python
595

596
          import paddle
597
          import numpy as np
598
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
599 600 601 602
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
603 604 605
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
606
    """
Y
Yu Yang 已提交
607
    helper = LayerHelper('assign', **locals())
608 609
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
610 611
    is_inplace = True if output is not None else False

612 613 614 615
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
616 617
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
618
    # but _non_static_mode()==False under @to_static, which means
619 620 621
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        if _non_static_mode():
            if output is None:
                if _in_legacy_dygraph():
                    output = core.VarBase()
                else:
                    output = core.eager.Tensor()
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
640
    elif isinstance(input, numpy.ndarray):
641 642 643 644 645
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
646
        dtype = convert_np_dtype_to_dtype_(input.dtype)
647 648 649 650 651 652 653 654
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
655 656
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
657
            values = [int(v) for v in input.flat]
658
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
659
            value_name = "fp32_values"
660
            values = [float(v) for v in input.flat]
661
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
662
            value_name = "int32_values"
663
            values = [int(v) for v in input.flat]
664 665 666
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
667
        else:
668 669
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
670
                "the data type of 'input' must be bool, float32, int32 or int64, but "
671
                "received %s." % convert_dtype(dtype))
672 673 674
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
675 676 677
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
678 679 680 681 682 683
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
684
                value_name: values
X
xuwei06 已提交
685 686
            })

J
Jiabin Yang 已提交
687
    if is_inplace and _non_static_mode():
688
        output._bump_inplace_version()
689

Y
Yu Yang 已提交
690 691 692
    return output


693
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
694
    """
S
swtkiwi 已提交
695

W
wangchaochaohu 已提交
696
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
697
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
698

T
tianshuo78520a 已提交
699
    The attribute `stop_gradient` of the created Tensor is set to True.
700 701

    Args:
702 703 704
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
705
        dtype(np.dtype|str): Data type of the output Tensor which can
706
            be float16, float32, float64, uint8, int16, int32, int64.
707 708 709 710 711 712
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
713 714
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
715 716

    Returns:
717
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
718

719 720 721
    Examples:
        .. code-block:: python

722
          import paddle.fluid as fluid
723
          # attr shape is a list which doesn't contain  Tensor.
724 725
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
726
          # data1=[[5], [5]] data2=[[5], [5]]
727

728
          # attr shape is a list which contains Tensor.
729
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
730
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
731

732
          # attr shape is a Tensor.
733
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
734
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
735
          
736
          # attr value is a Tensor.
W
wangchaochaohu 已提交
737 738
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
739
    """
740

W
wangchaochaohu 已提交
741
    attrs = {'force_cpu': force_cpu}
742
    dtype = convert_dtype(dtype)
743
    if not isinstance(value, Variable):
744
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
745
            attrs['str_value'] = str(int(value))
746
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
747 748
        else:
            attrs['str_value'] = str(float(value))
749
            attrs['value'] = float(value)
750

J
Jiabin Yang 已提交
751
    if _non_static_mode():
752
        shape = utils.convert_shape_to_list(shape)
753 754
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
755 756

        if isinstance(value, Variable):
757
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
758
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
759
            else:
760
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
761

W
wanghuancoder 已提交
762 763 764 765
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
766 767 768
        out.stop_gradient = True
        return out

769 770 771
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
772 773
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
774 775
        inputs['ValueTensor'] = value

776
    check_shape(shape)
777 778
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
779
        'int64', 'complex64', 'complex128'
780
    ], 'fill_constant')
781
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
782

783 784 785 786 787
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
788
    utils.get_shape_tensor_inputs(
789
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
790

Y
Yu Yang 已提交
791
    if out is None:
X
Xin Pan 已提交
792
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
793
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
794 795
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
796
        inputs=inputs,
Y
Yu Yang 已提交
797
        outputs={'Out': [out]},
L
liym27 已提交
798
        attrs=attrs,
M
minqiyang 已提交
799
        stop_gradient=True)
Y
Yu Yang 已提交
800 801 802 803
    out.stop_gradient = True
    return out


804
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
805
@templatedoc()
Y
Yu Yang 已提交
806 807 808 809 810
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
811 812
                                  output_dim_idx=0,
                                  force_cpu=False):
813
    """
T
tianshuo78520a 已提交
814
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
815 816 817 818
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
819 820

    Args:
W
wangchaochaohu 已提交
821 822 823 824 825 826 827 828 829 830 831
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
832
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
833 834

    Returns:
W
wangchaochaohu 已提交
835
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
836 837 838 839 840

    Examples:

        .. code-block:: python

841
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
842
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
843
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
844
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
845

846
    """
Y
Yu Yang 已提交
847
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
848
    out = helper.create_variable_for_type_inference(dtype=dtype)
849 850 851 852 853 854
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
855
        'force_cpu': force_cpu
856 857 858 859 860
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
861 862 863 864
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
865
        attrs=attrs)
Y
Yu Yang 已提交
866 867 868 869
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
870 871
def argmin(x, axis=0):
    """
872 873 874
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
875

S
sneaxiy 已提交
876 877
    **argmin**

878 879
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
880 881

    Args:
882 883 884 885 886
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
887

S
sneaxiy 已提交
888
    Returns:
889
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
890

S
sneaxiy 已提交
891 892
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
893

894
            import paddle.fluid as fluid
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
922
    """
923 924 925
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
926
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
927
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
928 929 930 931 932
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
933
    out.stop_gradient = True
S
sneaxiy 已提交
934 935 936 937 938 939 940
    return out


def argmax(x, axis=0):
    """
    **argmax**

941 942
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
943 944

    Args:
945 946 947 948 949
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
950

S
sneaxiy 已提交
951
    Returns:
952
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
953

S
sneaxiy 已提交
954 955
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
956

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
985
    """
986 987 988
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
989
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
990
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
991 992 993 994 995
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
996
    out.stop_gradient = True
S
sneaxiy 已提交
997 998 999
    return out


1000
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1001
    """
1002 1003 1004
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1005

1006 1007 1008
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1009 1010

    Args:
1011 1012 1013 1014 1015
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1016 1017 1018
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1019 1020 1021
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1022 1023

    Returns:
1024 1025 1026
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1027 1028 1029 1030

    Examples:
        .. code-block:: python

1031
            import paddle.fluid as fluid
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1073
    """
1074 1075 1076
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1077
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1078 1079 1080 1081
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1082 1083 1084 1085
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1086
                 'Indices': ids},
1087 1088
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1089 1090 1091
    return out, ids


Y
Yang Yu 已提交
1092
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1093
    """
1094 1095
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1096

1097
    Parameters:
1098
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1099
        dtype (np.dtype|str): Data type of output Tensor, it supports
1100
            bool, float16, float32, float64, int32 and int64.
1101 1102
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1103
            Default: False.
1104 1105

    Returns:
1106
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1107 1108 1109 1110

    Examples:
        .. code-block:: python

1111
          import paddle.fluid as fluid
1112 1113 1114 1115 1116
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1117 1118 1119 1120
    """
    return fill_constant(value=1.0, **locals())


1121
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1122
    """
1123 1124
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1125

1126
    Parameters:
1127
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1128
        dtype (np.dtype|str): Data type of output Tensor, it supports
1129
            bool, float16, float32, float64, int32 and int64.
1130 1131
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1132
            Default: False.
1133 1134
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1135 1136

    Returns:
1137
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1138 1139 1140 1141

    Examples:
        .. code-block:: python

1142
          import paddle.fluid as fluid
1143
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1144 1145 1146 1147
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1148 1149
    """
    return fill_constant(value=0.0, **locals())
1150 1151


F
fengjiayi 已提交
1152 1153
def reverse(x, axis):
    """
1154 1155 1156
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1157

1158
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1184
    Parameters:
1185 1186
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1187 1188
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1189 1190
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1191 1192

    Returns:
1193
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1194 1195 1196 1197

    Examples:
        .. code-block:: python

1198
          import paddle.fluid as fluid
1199 1200 1201 1202
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1213
    """
1214 1215 1216
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1217 1218 1219
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1220
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1221 1222
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1223
        inputs={'X': x},
F
fengjiayi 已提交
1224 1225 1226 1227 1228
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1229 1230 1231 1232 1233 1234 1235
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1236 1237 1238
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1254 1255
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1256
        file_path(str): The file path where variables will be saved.
1257
        overwrite(bool): Whether or not cover the given file when it has already
1258 1259
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1260 1261 1262 1263 1264 1265 1266 1267

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1268
            import paddle.fluid as fluid
1269 1270 1271 1272 1273 1274 1275
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1288
    Loads a list of variable from a single file.
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1300 1301 1302 1303 1304 1305 1306


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1307
       x (Tensor): The Tensor to be checked.
1308 1309

    Returns:
S
Steffy-zxf 已提交
1310
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1311 1312 1313 1314
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1315 1316
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1317
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1318
          # [False]
1319

1320
    """
J
Jiabin Yang 已提交
1321
    if _non_static_mode():
W
wanghuancoder 已提交
1322
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1323

1324
    check_type(x, 'x', (Variable), 'has_inf')
1325
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1326
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1327 1328 1329 1330 1331 1332 1333 1334 1335
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1336
       x (Tensor): The Tensor to be checked.
1337 1338

    Returns:
S
Steffy-zxf 已提交
1339
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1340 1341 1342 1343
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1344 1345
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1346
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1347
          # [False]
1348

1349
    """
J
Jiabin Yang 已提交
1350
    if _non_static_mode():
W
wanghuancoder 已提交
1351
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1352

1353
    check_type(x, 'x', (Variable), 'has_nan')
1354
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1355
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1356 1357 1358 1359 1360 1361
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1362

1363 1364 1365 1366
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1367
        x(Tensor): The Tensor to be checked.
1368 1369

    Returns:
N
Noel 已提交
1370
        Tensor: The tensor storing the output, contains a bool value.
1371 1372 1373 1374 1375

    Examples:

        .. code-block:: python

N
Noel 已提交
1376 1377 1378 1379 1380 1381
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1382
    """
1383 1384
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1385
    helper = LayerHelper("isfinite", **locals())
1386

1387
    out = helper.create_variable_for_type_inference(dtype='bool')
1388 1389
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1390 1391


1392
def range(start, end, step, dtype, name=None):
W
whs 已提交
1393
    """
1394
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1395

1396 1397
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1398

1399 1400
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1401

L
Liufang Sang 已提交
1402
    Parameters:
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1426 1427 1428 1429 1430

    examples:

        .. code-block:: python

1431
            import paddle.fluid as fluid
W
whs 已提交
1432

1433 1434
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1435

1436 1437 1438 1439 1440 1441 1442
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1443

W
whs 已提交
1444
    if not isinstance(start, Variable):
1445
        with device_guard("cpu"):
1446
            start = fill_constant([1], dtype, start, force_cpu=True)
1447 1448
    elif start.dtype != dtype:
        start = cast(start, dtype)
1449

W
whs 已提交
1450
    if not isinstance(end, Variable):
1451
        with device_guard("cpu"):
1452
            end = fill_constant([1], dtype, end, force_cpu=True)
1453 1454
    elif end.dtype != dtype:
        end = cast(end, dtype)
1455

W
whs 已提交
1456
    if not isinstance(step, Variable):
1457
        with device_guard("cpu"):
1458
            step = fill_constant([1], dtype, step, force_cpu=True)
1459 1460
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1461

Z
zyfncg 已提交
1462 1463 1464 1465
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1466
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1467 1468 1469
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1470

W
wanghuancoder 已提交
1471 1472 1473 1474 1475
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1476 1477 1478
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1479
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1480 1481 1482 1483 1484
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1485
        outputs={'Out': out})
1486
    out.stop_gradient = True
W
whs 已提交
1487
    return out
Z
zhoukunsheng 已提交
1488 1489


1490
def linspace(start, stop, num, dtype=None, name=None):
1491
    r"""
1492
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1493 1494

    Args:
1495 1496 1497 1498
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1499
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1500
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1501
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1502
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1503 1504
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1505 1506

    Returns:
1507
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1508 1509
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1510

Z
zhoukunsheng 已提交
1511
    Examples:
Z
zhoukunsheng 已提交
1512 1513
        .. code-block:: python

1514 1515 1516
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1517 1518

    """
1519 1520
    if dtype is None:
        dtype = 'float32'
1521 1522 1523
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1524 1525
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1526 1527
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1528
    if not isinstance(start, Variable):
1529 1530
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1531
    if not isinstance(stop, Variable):
1532 1533
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1534
    if not isinstance(num, Variable):
1535 1536
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
J
Jiabin Yang 已提交
1537
    if _non_static_mode():
W
wanghuancoder 已提交
1538 1539
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1540 1541 1542

    helper = LayerHelper("linspace", **locals())

1543 1544 1545
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1546
    if isinstance(start, Variable):
1547 1548
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1549 1550
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1551

1552
    if isinstance(stop, Variable):
1553 1554
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1555 1556 1557 1558 1559 1560
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1561 1562 1563 1564 1565 1566 1567 1568
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1569 1570

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1571 1572 1573

    helper.append_op(
        type='linspace',
1574 1575 1576 1577
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1578
        outputs={'Out': [out]})
1579 1580
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1581
    return out
1582 1583


Z
zhoukunsheng 已提交
1584 1585
def zeros_like(x, out=None):
    """
1586
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1587 1588 1589
    with `x`.

    Args:
1590 1591 1592 1593 1594 1595
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1596 1597

    Returns:
1598 1599 1600
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1601 1602 1603 1604

    Examples:
        .. code-block:: python

1605
          import paddle.fluid as fluid
1606
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1607 1608
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1609 1610
    """

1611 1612
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1613 1614 1615
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1616 1617 1618
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1619
            'zeros_like')
1620

Z
zhoukunsheng 已提交
1621 1622 1623 1624
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1625 1626


1627
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1628
def diag(diagonal):
1629
    r"""
1630 1631 1632
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1633

1634
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1635 1636

    Args:
1637 1638
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1639 1640

    Returns:
1641 1642
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1643 1644 1645 1646 1647 1648 1649

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1650 1651 1652

          import paddle.fluid as fluid
          import numpy as np
1653 1654 1655
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1656 1657

    """
1658 1659 1660
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1673 1674


1675 1676 1677 1678 1679
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1680
    """
1681
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1682 1683 1684

    Args:
        num_rows(int): the number of rows in each batch tensor.
1685 1686
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1687 1688
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1689
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1690 1691 1692 1693
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1694 1695

    Returns:
1696
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1697 1698 1699 1700 1701

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1702 1703
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1704
          #  [0, 1, 0]
1705 1706
          #  [0, 0, 1]]

1707
          data = fluid.layers.eye(2, 3, dtype='int32')
1708
          # [[1, 0, 0]
1709
          #  [0, 1, 0]]
1710 1711

          data = fluid.layers.eye(2, batch_shape=[3])
1712 1713 1714 1715 1716
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1717 1718
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1719 1720 1721 1722 1723
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1724

J
Jiabin Yang 已提交
1725
    if _non_static_mode():
W
wanghuancoder 已提交
1726 1727
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1746 1747

    if batch_shape is not None:
1748 1749 1750
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1751
        if _non_static_mode():
W
wanghuancoder 已提交
1752 1753
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1754

1755 1756
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1757
        for batch_val in (batch_shape):
1758 1759
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1760 1761 1762 1763 1764 1765

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1766 1767 1768
    return out


Z
zhoukunsheng 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1781
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1792 1793
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1794 1795 1796 1797

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1798 1799 1800 1801
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1802 1803 1804 1805 1806 1807
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1808 1809 1810 1811 1812 1813


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)