tensor.py 65.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231 232
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
246 247 248
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
249
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
250
        return out
251

252 253 254 255
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
256 257
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
258
        'uint8', 'uint16'
259 260 261
    ], 'cast')

    helper = LayerHelper('cast', **locals())
262 263
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


273
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
274
    """
275
    This OP concatenates the input along the axis.
276 277

    Args:
278 279
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
280 281
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
282
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
283
            as ``axis+R``. Default is 0.
284 285 286
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
287 288

    Returns:
289
        Tensor: A Tensor with the same data type as ``input``.
290 291 292

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
293

294
            import paddle.fluid as fluid
295 296
            import numpy as np

297 298 299 300 301 302
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
303 304 305 306
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
307 308
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
309 310
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
311 312 313 314 315 316 317 318
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
319
    """
320 321

    if in_dygraph_mode():
S
songyouwei 已提交
322 323
        if isinstance(axis, Variable):
            axis = axis.numpy()
324
            axis = axis.item(0)
325 326
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
327
        return _C_ops.concat(input, 'axis', axis)
328

329 330 331 332 333 334 335 336 337 338 339
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
340
        input = [input]
341
    check_type(axis, 'axis', (int, Variable), 'concat')
342

343 344 345 346 347
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

348
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
349
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
350 351

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
352 353 354 355
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

356
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
357
                "number of the elements must be 1, but received %s." % len(input)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
377 378 379
    return out


G
Guo Sheng 已提交
380
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
381
    r"""
G
Guo Sheng 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
432 433

    Args:
G
Guo Sheng 已提交
434 435 436 437 438 439 440
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
441 442

    Returns:
G
Guo Sheng 已提交
443 444 445
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
446 447 448 449

    Examples:
        .. code-block:: python

450
            import paddle.fluid as fluid
451
            import numpy as np
G
Guo Sheng 已提交
452 453 454 455 456 457 458
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
459
    """
460 461 462 463 464 465 466 467 468 469 470
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

471 472 473 474 475
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
476
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
477 478 479
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
480
        type='tensor_array_to_tensor',
L
li099 已提交
481 482 483
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
484 485
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
486 487 488
    return out, out_index


489
def sums(input, out=None):
490
    r"""
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
512 513

    Args:
514 515 516 517
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
518 519

    Returns:
520 521
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
522 523

    Examples:
F
fengjiayi 已提交
524
        .. code-block:: python
K
kavyasrinet 已提交
525

526 527 528 529 530 531 532 533 534
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
535

536 537
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
538
    """
539 540 541 542
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
543
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
544 545
    else:
        check_variable_and_dtype(input, "input", \
546
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
547

Y
Yu Yang 已提交
548 549
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
550 551
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
552 553 554 555
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
556 557 558 559 560
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
561 562 563
    return out


F
fengjiayi 已提交
564
def assign(input, output=None):
565
    """
S
swtkiwi 已提交
566

567
    The OP copies the :attr:`input` to the :attr:`output`.
568

569
    Parameters:
570 571 572 573
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
574
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
575
            be created as :attr:`output`. Default: None.
576 577

    Returns:
578
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
579 580 581

    Examples:
        .. code-block:: python
582

583
          import paddle
584
          import numpy as np
585
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
586 587 588 589
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
590 591 592
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
593
    """
Y
Yu Yang 已提交
594
    helper = LayerHelper('assign', **locals())
595 596
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
597 598
    is_inplace = True if output is not None else False

599 600 601 602
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
603 604 605 606 607 608
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
609
        check_dtype(input.dtype, 'input', [
610 611
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
612
        ], 'assign', '(When the type of input in assign is Variable.)')
613 614 615
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
616
        helper.append_op(
R
robot 已提交
617
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
618 619
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
620 621 622 623 624 625 626 627
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
628 629 630 631
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
632
            value_name = "fp32_values"
633
            values = [float(v) for v in input.flat]
634
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
635
            value_name = "int32_values"
636
            values = [int(v) for v in input.flat]
637 638 639
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
640
        else:
641 642
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
643
                "the data type of 'input' must be bool, float32, int32 or int64, but "
644
                "received %s." % convert_dtype(dtype))
645 646 647
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
648 649 650
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
651 652 653 654 655 656
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
657
                value_name: values
X
xuwei06 已提交
658 659
            })

660 661 662
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
663 664 665
    return output


666
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
667
    """
S
swtkiwi 已提交
668

W
wangchaochaohu 已提交
669
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
670
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
671

T
tianshuo78520a 已提交
672
    The attribute `stop_gradient` of the created Tensor is set to True.
673 674

    Args:
675 676 677
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
678
        dtype(np.dtype|str): Data type of the output Tensor which can
679
            be float16, float32, float64, uint8, int16, int32, int64.
680 681 682 683 684 685
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
686 687
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
688 689

    Returns:
690
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
691

692 693 694
    Examples:
        .. code-block:: python

695
          import paddle.fluid as fluid
696
          # attr shape is a list which doesn't contain  Tensor.
697 698
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
699
          # data1=[[5], [5]] data2=[[5], [5]]
700

701
          # attr shape is a list which contains Tensor.
702
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
703
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
704

705
          # attr shape is a Tensor.
706
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
707
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
708
          
709
          # attr value is a Tensor.
W
wangchaochaohu 已提交
710 711
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
712
    """
713

W
wangchaochaohu 已提交
714
    attrs = {'force_cpu': force_cpu}
715
    dtype = convert_dtype(dtype)
716
    if not isinstance(value, Variable):
717
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
718
            attrs['str_value'] = str(int(value))
719
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
720 721
        else:
            attrs['str_value'] = str(float(value))
722
            attrs['value'] = float(value)
723 724

    if in_dygraph_mode():
725
        shape = utils.convert_shape_to_list(shape)
726 727
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
728 729

        if isinstance(value, Variable):
730
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
731
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
732
            else:
733
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
734

W
wanghuancoder 已提交
735 736 737 738
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
739 740 741
        out.stop_gradient = True
        return out

742 743 744
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
745 746
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
747 748
        inputs['ValueTensor'] = value

749
    check_shape(shape)
750 751 752 753
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
        'int64'
    ], 'fill_constant')
754
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
755

756 757 758 759 760
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
761
    utils.get_shape_tensor_inputs(
762
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
763

Y
Yu Yang 已提交
764
    if out is None:
X
Xin Pan 已提交
765
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
766
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
767 768
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
769
        inputs=inputs,
Y
Yu Yang 已提交
770
        outputs={'Out': [out]},
L
liym27 已提交
771
        attrs=attrs,
M
minqiyang 已提交
772
        stop_gradient=True)
Y
Yu Yang 已提交
773 774 775 776
    out.stop_gradient = True
    return out


777
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
778
@templatedoc()
Y
Yu Yang 已提交
779 780 781 782 783
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
784 785
                                  output_dim_idx=0,
                                  force_cpu=False):
786
    """
T
tianshuo78520a 已提交
787
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
788 789 790 791
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
792 793

    Args:
W
wangchaochaohu 已提交
794 795 796 797 798 799 800 801 802 803 804
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
805
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
806 807

    Returns:
W
wangchaochaohu 已提交
808
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
809 810 811 812 813

    Examples:

        .. code-block:: python

814
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
815
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
816
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
817
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
818

819
    """
Y
Yu Yang 已提交
820
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
821
    out = helper.create_variable_for_type_inference(dtype=dtype)
822 823 824 825 826 827
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
828
        'force_cpu': force_cpu
829 830 831 832 833
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
834 835 836 837
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
838
        attrs=attrs)
Y
Yu Yang 已提交
839 840 841 842
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
843 844
def argmin(x, axis=0):
    """
845 846 847
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
848

S
sneaxiy 已提交
849 850
    **argmin**

851 852
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
853 854

    Args:
855 856 857 858 859
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
860

S
sneaxiy 已提交
861
    Returns:
862
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
863

S
sneaxiy 已提交
864 865
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
866

867
            import paddle.fluid as fluid
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
895
    """
896 897 898
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
899
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
900
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
901 902 903 904 905
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
906
    out.stop_gradient = True
S
sneaxiy 已提交
907 908 909 910 911 912 913
    return out


def argmax(x, axis=0):
    """
    **argmax**

914 915
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
916 917

    Args:
918 919 920 921 922
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
923

S
sneaxiy 已提交
924
    Returns:
925
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
926

S
sneaxiy 已提交
927 928
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
929

930
            import paddle.fluid as fluid
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
958
    """
959 960 961
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
962
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
963
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
964 965 966 967 968
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
969
    out.stop_gradient = True
S
sneaxiy 已提交
970 971 972
    return out


973
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
974
    """
975 976 977
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
978

979 980 981
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
982 983

    Args:
984 985 986 987 988
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
989 990 991
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
992 993 994
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
995 996

    Returns:
997 998 999
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1000 1001 1002 1003

    Examples:
        .. code-block:: python

1004
            import paddle.fluid as fluid
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1046
    """
1047 1048 1049
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1050
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1051 1052 1053 1054
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1055 1056 1057 1058
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1059
                 'Indices': ids},
1060 1061
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1062 1063 1064
    return out, ids


Y
Yang Yu 已提交
1065
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1066
    """
1067 1068
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1069

1070
    Parameters:
1071
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1072
        dtype (np.dtype|str): Data type of output Tensor, it supports
1073
            bool, float16, float32, float64, int32 and int64.
1074 1075
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1076
            Default: False.
1077 1078

    Returns:
1079
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1080 1081 1082 1083

    Examples:
        .. code-block:: python

1084
          import paddle.fluid as fluid
1085 1086 1087 1088 1089
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1090 1091 1092 1093
    """
    return fill_constant(value=1.0, **locals())


1094
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1095
    """
1096 1097
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1098

1099
    Parameters:
1100
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1101
        dtype (np.dtype|str): Data type of output Tensor, it supports
1102
            bool, float16, float32, float64, int32 and int64.
1103 1104
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1105
            Default: False.
1106 1107
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1108 1109

    Returns:
1110
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1111 1112 1113 1114

    Examples:
        .. code-block:: python

1115
          import paddle.fluid as fluid
1116
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1117 1118 1119 1120
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1121 1122
    """
    return fill_constant(value=0.0, **locals())
1123 1124


F
fengjiayi 已提交
1125 1126
def reverse(x, axis):
    """
1127 1128 1129
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1130

1131
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1157
    Parameters:
1158 1159
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1160 1161
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1162 1163
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1164 1165

    Returns:
1166
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1167 1168 1169 1170

    Examples:
        .. code-block:: python

1171
          import paddle.fluid as fluid
1172 1173 1174 1175
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1186
    """
1187 1188 1189
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1190 1191 1192
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1193
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1194 1195
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1196
        inputs={'X': x},
F
fengjiayi 已提交
1197 1198 1199 1200 1201
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1202 1203 1204 1205 1206 1207 1208
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1209 1210 1211
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1227 1228
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1229
        file_path(str): The file path where variables will be saved.
1230
        overwrite(bool): Whether or not cover the given file when it has already
1231 1232
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1233 1234 1235 1236 1237 1238 1239 1240

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1241
            import paddle.fluid as fluid
1242 1243 1244 1245 1246 1247 1248
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1261
    Loads a list of variable from a single file.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1273 1274 1275 1276 1277 1278 1279


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1280
       x (Tensor): The Tensor to be checked.
1281 1282

    Returns:
S
Steffy-zxf 已提交
1283
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1284 1285 1286 1287
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1288 1289
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1290
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1291
          # [False]
1292

1293
    """
S
Steffy-zxf 已提交
1294
    if in_dygraph_mode():
W
wanghuancoder 已提交
1295
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1296

1297
    check_type(x, 'x', (Variable), 'has_inf')
1298
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1299
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1300 1301 1302 1303 1304 1305 1306 1307 1308
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1309
       x (Tensor): The Tensor to be checked.
1310 1311

    Returns:
S
Steffy-zxf 已提交
1312
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1313 1314 1315 1316
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1317 1318
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1319
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1320
          # [False]
1321

1322
    """
S
Steffy-zxf 已提交
1323
    if in_dygraph_mode():
W
wanghuancoder 已提交
1324
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1325

1326
    check_type(x, 'x', (Variable), 'has_nan')
1327
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1328
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1329 1330 1331 1332 1333 1334
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1335

1336 1337 1338 1339
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1340
        x(Tensor): The Tensor to be checked.
1341 1342

    Returns:
N
Noel 已提交
1343
        Tensor: The tensor storing the output, contains a bool value.
1344 1345 1346 1347 1348

    Examples:

        .. code-block:: python

N
Noel 已提交
1349 1350 1351 1352 1353 1354
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1355
    """
1356 1357
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1358
    helper = LayerHelper("isfinite", **locals())
1359

1360
    out = helper.create_variable_for_type_inference(dtype='bool')
1361 1362
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1363 1364


1365
def range(start, end, step, dtype, name=None):
W
whs 已提交
1366
    """
1367
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1368

1369 1370
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1371

1372 1373
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1374

L
Liufang Sang 已提交
1375
    Parameters:
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1399 1400 1401 1402 1403

    examples:

        .. code-block:: python

1404
            import paddle.fluid as fluid
W
whs 已提交
1405

1406 1407
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1408

1409 1410 1411 1412 1413 1414 1415
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1416

W
whs 已提交
1417
    if not isinstance(start, Variable):
1418
        with device_guard("cpu"):
1419
            start = fill_constant([1], dtype, start, force_cpu=True)
1420 1421
    elif start.dtype != dtype:
        start = cast(start, dtype)
1422

W
whs 已提交
1423
    if not isinstance(end, Variable):
1424
        with device_guard("cpu"):
1425
            end = fill_constant([1], dtype, end, force_cpu=True)
1426 1427
    elif end.dtype != dtype:
        end = cast(end, dtype)
1428

W
whs 已提交
1429
    if not isinstance(step, Variable):
1430
        with device_guard("cpu"):
1431
            step = fill_constant([1], dtype, step, force_cpu=True)
1432 1433
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1434

1435
    if in_dygraph_mode():
J
Jiawei Wang 已提交
1436 1437 1438
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1439

W
wanghuancoder 已提交
1440 1441 1442 1443 1444
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1445 1446 1447
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1448
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1449 1450 1451 1452 1453
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1454
        outputs={'Out': out})
1455
    out.stop_gradient = True
W
whs 已提交
1456
    return out
Z
zhoukunsheng 已提交
1457 1458


1459
def linspace(start, stop, num, dtype=None, name=None):
1460
    r"""
1461
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1462 1463

    Args:
1464 1465 1466 1467
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1468
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1469
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1470
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1471
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1472 1473
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1474 1475

    Returns:
1476
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1477 1478
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1479

Z
zhoukunsheng 已提交
1480
    Examples:
Z
zhoukunsheng 已提交
1481 1482
        .. code-block:: python

1483 1484 1485
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1486 1487

    """
1488 1489
    if dtype is None:
        dtype = 'float32'
1490 1491 1492
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1493 1494
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1495 1496
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1497
    if not isinstance(start, Variable):
1498 1499
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1500
    if not isinstance(stop, Variable):
1501 1502
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1503
    if not isinstance(num, Variable):
1504 1505
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1506
    if in_dygraph_mode():
W
wanghuancoder 已提交
1507 1508
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1509 1510 1511

    helper = LayerHelper("linspace", **locals())

1512 1513 1514
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1515
    if isinstance(start, Variable):
1516 1517
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1518 1519
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1520

1521
    if isinstance(stop, Variable):
1522 1523
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1524 1525 1526 1527 1528 1529
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1530 1531 1532 1533 1534 1535 1536 1537
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1538 1539

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1540 1541 1542

    helper.append_op(
        type='linspace',
1543 1544 1545 1546
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1547
        outputs={'Out': [out]})
1548 1549
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1550
    return out
1551 1552


Z
zhoukunsheng 已提交
1553 1554
def zeros_like(x, out=None):
    """
1555
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1556 1557 1558
    with `x`.

    Args:
1559 1560 1561 1562 1563 1564
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1565 1566

    Returns:
1567 1568 1569
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1570 1571 1572 1573

    Examples:
        .. code-block:: python

1574
          import paddle.fluid as fluid
1575
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1576 1577
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1578 1579
    """

1580 1581
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1582 1583 1584
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1585 1586 1587
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1588
            'zeros_like')
1589

Z
zhoukunsheng 已提交
1590 1591 1592 1593
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1594 1595


1596
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1597
def diag(diagonal):
1598
    r"""
1599 1600 1601
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1602

1603
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1604 1605

    Args:
1606 1607
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1608 1609

    Returns:
1610 1611
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1612 1613 1614 1615 1616 1617 1618

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1619 1620 1621

          import paddle.fluid as fluid
          import numpy as np
1622 1623 1624
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1625 1626

    """
1627 1628 1629
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1642 1643


1644 1645 1646 1647 1648
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1649
    """
1650
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1651 1652 1653

    Args:
        num_rows(int): the number of rows in each batch tensor.
1654 1655
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1656 1657
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1658
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1659 1660 1661 1662
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1663 1664

    Returns:
1665
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1666 1667 1668 1669 1670

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1671 1672
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1673
          #  [0, 1, 0]
1674 1675
          #  [0, 0, 1]]

1676
          data = fluid.layers.eye(2, 3, dtype='int32')
1677
          # [[1, 0, 0]
1678
          #  [0, 1, 0]]
1679 1680

          data = fluid.layers.eye(2, batch_shape=[3])
1681 1682 1683 1684 1685
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1686 1687
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1688 1689 1690 1691 1692
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1693 1694

    if in_dygraph_mode():
W
wanghuancoder 已提交
1695 1696
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1715 1716

    if batch_shape is not None:
1717 1718 1719 1720
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
W
wanghuancoder 已提交
1721 1722
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1723

1724 1725
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1726
        for batch_val in (batch_shape):
1727 1728
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1729 1730 1731 1732 1733 1734

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1735 1736 1737
    return out


Z
zhoukunsheng 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1750
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1761 1762
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1763 1764 1765 1766

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1767 1768 1769 1770
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1771 1772 1773 1774 1775 1776
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1777 1778 1779 1780 1781 1782


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)