tensor.py 64.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
L
li099 已提交
39 40 41
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
42
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
43
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
44 45 46
]


X
xuwei06 已提交
47
def create_tensor(dtype, name=None, persistable=False):
48
    """
W
wangchaochaohu 已提交
49
    Create a variable, which will hold a Tensor with data type dtype.
50 51

    Args:
W
wangchaochaohu 已提交
52 53 54 55
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
56
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
57
            default value is False.
58 59

    Returns:
W
wangchaochaohu 已提交
60
        Variable: The tensor to be created according to dtype.
61 62 63 64

    Examples:
        .. code-block:: python

65
          import paddle.fluid as fluid
66 67
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
68 69 70 71
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
72
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
73 74
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
75 76


77 78
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
79
                     name=None,
80 81 82 83
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
84
	:api_attr: Static Graph
S
swtkiwi 已提交
85

86
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
87 88 89 90 91
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

92 93 94 95 96 97 98
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
99 100 101
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
102
        default_initializer (Initializer, optional): Initializer for the parameter
103 104

    Returns:
105
        The created parameter.
Y
yuyang18 已提交
106 107

    Examples:
108 109
        .. code-block:: python

110 111 112
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
113
    """
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
133
    helper = LayerHelper("create_parameter", **locals())
134
    if attr is None:
X
xuwei06 已提交
135
        attr = ParamAttr(name=name)
136 137
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
138 139 140
                                   default_initializer)


141 142 143 144 145 146 147
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
148
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
149

150 151 152
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
153
                      variable will be filled with it.
154 155
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
156
                           Default: False
157
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
158
                         Default: False
159 160
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
161 162

    Returns:
163
        Variable: The created Variable
F
fengjiayi 已提交
164 165 166 167

    Examples:
        .. code-block:: python

168 169 170
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
171
                                           persistable=True, force_cpu=True, name='new_var')
172
    """
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
190 191
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
192 193 194 195 196
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
197 198 199
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
200

Q
Qiao Longfei 已提交
201 202 203
    return var


204
def cast(x, dtype):
Y
Yu Yang 已提交
205
    """
S
swtkiwi 已提交
206

207
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
208 209
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
210 211

    Args:
212
        x(Tensor): An input N-D Tensor with data type bool, float16,
213 214
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
215
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
216 217

    Returns:
218
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
219 220 221

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
222

223
            import paddle
224

225 226
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
227
    """
228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
232
        return out
233

234 235
    check_variable_and_dtype(
        x, 'x',
236 237
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
238 239 240 241 242 243
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
244 245
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


255
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
256
    """
257
    This OP concatenates the input along the axis.
258 259

    Args:
260 261
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
262 263
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
264
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
265
            as ``axis+R``. Default is 0.
266 267 268
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
269 270

    Returns:
271
        Tensor: A Tensor with the same data type as ``input``.
272 273 274

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
275

276
            import paddle.fluid as fluid
277 278
            import numpy as np

279 280 281 282 283 284
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
285 286 287 288
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
289 290
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
291 292
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
293 294 295 296 297 298 299 300
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
301
    """
302 303

    if in_dygraph_mode():
S
songyouwei 已提交
304 305
        if isinstance(axis, Variable):
            axis = axis.numpy()
306
            axis = axis.item(0)
307
        return core.ops.concat(input, 'axis', axis)
308

309 310 311 312 313 314 315 316 317 318 319
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
320
        input = [input]
321
    check_type(axis, 'axis', (int, Variable), 'concat')
322

323 324 325 326 327
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

328
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
329
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
330 331

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
332 333 334 335
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

336
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
337
                "number of the elements must be 1, but received %s." % len(input)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
357 358 359
    return out


G
Guo Sheng 已提交
360
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
361
    r"""
G
Guo Sheng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
412 413

    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
421 422

    Returns:
G
Guo Sheng 已提交
423 424 425
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            import numpy as np
G
Guo Sheng 已提交
432 433 434 435 436 437 438
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
439
    """
440 441 442 443 444 445 446 447 448 449 450
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

451 452 453 454 455
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
456
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
457 458 459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
460
        type='tensor_array_to_tensor',
L
li099 已提交
461 462 463
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
464 465
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
466 467 468
    return out, out_index


469
def sums(input, out=None):
470
    r"""
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
492 493

    Args:
494 495 496 497
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
498 499

    Returns:
500 501
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
502 503

    Examples:
F
fengjiayi 已提交
504
        .. code-block:: python
K
kavyasrinet 已提交
505

506 507 508 509 510 511 512 513 514
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
515

516 517
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
518
    """
519 520 521 522 523 524 525 526 527
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
528 529
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
530 531
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
532 533 534 535
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
536 537 538 539 540
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
541 542 543
    return out


F
fengjiayi 已提交
544
def assign(input, output=None):
545
    """
S
swtkiwi 已提交
546

547
    The OP copies the :attr:`input` to the :attr:`output`.
548

549
    Parameters:
550
        input (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
551
            float16, float32, float64, int32 and int64.
552
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
553
            be created as :attr:`output`. Default: None.
554 555

    Returns:
556
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
557 558 559

    Examples:
        .. code-block:: python
560

561
          import paddle
562
          import numpy as np
563
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
564 565 566 567
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
568 569 570
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
571
    """
Y
Yu Yang 已提交
572
    helper = LayerHelper('assign', **locals())
573
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
574 575
    is_inplace = True if output is not None else False

X
xuwei06 已提交
576
    if isinstance(input, Variable):
577 578 579 580
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
581 582 583
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
584
        helper.append_op(
R
robot 已提交
585
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
586 587
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
588 589 590 591
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
592
            value_name = "fp32_values"
593
            values = [float(v) for v in input.flat]
594
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
595
            value_name = "int32_values"
596
            values = [int(v) for v in input.flat]
597 598 599
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
600
        else:
601 602
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
603
                "the data type of 'input' must be bool, float32, int32 or int64, but "
604
                "received %s." % convert_dtype(dtype))
605 606 607
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
608 609 610
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
611 612 613 614 615 616
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
617
                value_name: values
X
xuwei06 已提交
618 619
            })

620 621 622
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
623 624 625
    return output


626
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
627
    """
S
swtkiwi 已提交
628

W
wangchaochaohu 已提交
629
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
630
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
631

T
tianshuo78520a 已提交
632
    The attribute `stop_gradient` of the created Tensor is set to True.
633 634

    Args:
635 636 637
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
638
        dtype(np.dtype|str): Data type of the output Tensor which can
639
            be float16, float32, float64, uint8, int32, int64.
640 641 642 643 644 645
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
646 647
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
648 649

    Returns:
650
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
651

652 653 654
    Examples:
        .. code-block:: python

655
          import paddle.fluid as fluid
656
          # attr shape is a list which doesn't contain  Tensor.
657 658
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
659
          # data1=[[5], [5]] data2=[[5], [5]]
660

661
          # attr shape is a list which contains Tensor.
662
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
663
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
664

665
          # attr shape is a Tensor.
666
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
667
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
668
          
669
          # attr value is a Tensor.
W
wangchaochaohu 已提交
670 671
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
672
    """
673

W
wangchaochaohu 已提交
674
    attrs = {'force_cpu': force_cpu}
675
    dtype = convert_dtype(dtype)
676
    if not isinstance(value, Variable):
677
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
678
            attrs['str_value'] = str(int(value))
679
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
680 681
        else:
            attrs['str_value'] = str(float(value))
682
            attrs['value'] = float(value)
683 684

    if in_dygraph_mode():
685
        shape = utils.convert_shape_to_list(shape)
686 687
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
688 689

        if isinstance(value, Variable):
690
            if dtype in ['uint8', 'int64', 'int32']:
691
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
692
            else:
693
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
694

695 696
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
697 698
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
699 700 701
        out.stop_gradient = True
        return out

702 703 704
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
705 706
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
707 708
        inputs['ValueTensor'] = value

709
    check_shape(shape)
710 711 712 713
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
714
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
715

716 717 718 719 720
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
721
    utils.get_shape_tensor_inputs(
722
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
723

Y
Yu Yang 已提交
724
    if out is None:
X
Xin Pan 已提交
725
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
726
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
727 728
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
729
        inputs=inputs,
Y
Yu Yang 已提交
730
        outputs={'Out': [out]},
L
liym27 已提交
731
        attrs=attrs,
M
minqiyang 已提交
732
        stop_gradient=True)
Y
Yu Yang 已提交
733 734 735 736
    out.stop_gradient = True
    return out


737
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
738
@templatedoc()
Y
Yu Yang 已提交
739 740 741 742 743
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
744 745
                                  output_dim_idx=0,
                                  force_cpu=False):
746
    """
T
tianshuo78520a 已提交
747
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
748 749 750 751
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
752 753

    Args:
W
wangchaochaohu 已提交
754 755 756 757 758 759 760 761 762 763 764
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
765
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
766 767

    Returns:
W
wangchaochaohu 已提交
768
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
769 770 771 772 773

    Examples:

        .. code-block:: python

774
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
775
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
776
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
777
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
778

779
    """
Y
Yu Yang 已提交
780
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
781
    out = helper.create_variable_for_type_inference(dtype=dtype)
782 783 784 785 786 787
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
788
        'force_cpu': force_cpu
789 790 791 792 793
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
794 795 796 797
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
798
        attrs=attrs)
Y
Yu Yang 已提交
799 800 801 802
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
803 804
def argmin(x, axis=0):
    """
805 806 807
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
808

S
sneaxiy 已提交
809 810
    **argmin**

811 812
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
813 814

    Args:
815 816 817 818 819
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
820

S
sneaxiy 已提交
821
    Returns:
822
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
823

S
sneaxiy 已提交
824 825
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
826

827
            import paddle.fluid as fluid
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
855
    """
856 857 858
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
859
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
860
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
861 862 863 864 865
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
866
    out.stop_gradient = True
S
sneaxiy 已提交
867 868 869 870 871 872 873
    return out


def argmax(x, axis=0):
    """
    **argmax**

874 875
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
876 877

    Args:
878 879 880 881 882
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
883

S
sneaxiy 已提交
884
    Returns:
885
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
886

S
sneaxiy 已提交
887 888
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
889

890
            import paddle.fluid as fluid
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
918
    """
919 920 921
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
922
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
923
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
924 925 926 927 928
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
929
    out.stop_gradient = True
S
sneaxiy 已提交
930 931 932
    return out


933
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
934
    """
935 936 937
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
938

939 940 941
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
942 943

    Args:
944 945 946 947 948
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
949 950 951
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
952 953 954
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
955 956

    Returns:
957 958 959
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
960 961 962 963

    Examples:
        .. code-block:: python

964
            import paddle.fluid as fluid
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1006
    """
1007 1008 1009
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1010
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1011 1012 1013 1014
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1015 1016 1017 1018
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1019
                 'Indices': ids},
1020 1021
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1022 1023 1024
    return out, ids


Y
Yang Yu 已提交
1025
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1026
    """
1027 1028
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1029

1030
    Parameters:
1031
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1032
        dtype (np.dtype|str): Data type of output Tensor, it supports
1033
            bool, float16, float32, float64, int32 and int64.
1034 1035
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1036
            Default: False.
1037 1038

    Returns:
1039
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1040 1041 1042 1043

    Examples:
        .. code-block:: python

1044
          import paddle.fluid as fluid
1045 1046 1047 1048 1049
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1050 1051 1052 1053
    """
    return fill_constant(value=1.0, **locals())


1054
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1055
    """
1056 1057
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1058

1059
    Parameters:
1060
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1061
        dtype (np.dtype|str): Data type of output Tensor, it supports
1062
            bool, float16, float32, float64, int32 and int64.
1063 1064
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1065
            Default: False.
1066 1067
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1068 1069

    Returns:
1070
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1071 1072 1073 1074

    Examples:
        .. code-block:: python

1075
          import paddle.fluid as fluid
1076
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1077 1078 1079 1080
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1081 1082
    """
    return fill_constant(value=0.0, **locals())
1083 1084


F
fengjiayi 已提交
1085 1086
def reverse(x, axis):
    """
1087 1088 1089
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1090

1091
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1117
    Parameters:
1118 1119
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1120 1121
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1122 1123
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1124 1125

    Returns:
1126
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1127 1128 1129 1130

    Examples:
        .. code-block:: python

1131
          import paddle.fluid as fluid
1132 1133 1134 1135
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1146
    """
1147 1148 1149
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1150 1151 1152
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1154 1155
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1156
        inputs={'X': x},
F
fengjiayi 已提交
1157 1158 1159 1160 1161
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1162 1163 1164 1165 1166 1167 1168
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1169 1170 1171
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1187 1188
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1189
        file_path(str): The file path where variables will be saved.
1190
        overwrite(bool): Whether or not cover the given file when it has already
1191 1192
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1193 1194 1195 1196 1197 1198 1199 1200

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1201
            import paddle.fluid as fluid
1202 1203 1204 1205 1206 1207 1208
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1221
    Loads a list of variable from a single file.
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1233 1234 1235 1236 1237 1238 1239


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1240
       x (Tensor): The Tensor to be checked.
1241 1242

    Returns:
S
Steffy-zxf 已提交
1243
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1244 1245 1246 1247
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1248 1249
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1250
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1251
          # [False]
1252

1253
    """
S
Steffy-zxf 已提交
1254 1255 1256
    if in_dygraph_mode():
        return core.ops.isinf(x)

1257
    check_type(x, 'x', (Variable), 'has_inf')
1258
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1260 1261 1262 1263 1264 1265 1266 1267 1268
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1269
       x (Tensor): The Tensor to be checked.
1270 1271

    Returns:
S
Steffy-zxf 已提交
1272
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1273 1274 1275 1276
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1277 1278
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1279
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1280
          # [False]
1281

1282
    """
S
Steffy-zxf 已提交
1283 1284 1285
    if in_dygraph_mode():
        return core.ops.isnan(x)

1286
    check_type(x, 'x', (Variable), 'has_nan')
1287
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1288
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1289 1290 1291 1292 1293 1294
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1295

1296 1297 1298 1299
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1300
        x(Tensor): The Tensor to be checked.
1301 1302

    Returns:
N
Noel 已提交
1303
        Tensor: The tensor storing the output, contains a bool value.
1304 1305 1306 1307 1308

    Examples:

        .. code-block:: python

N
Noel 已提交
1309 1310 1311 1312 1313 1314
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1315
    """
1316 1317
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1318
    helper = LayerHelper("isfinite", **locals())
1319

1320
    out = helper.create_variable_for_type_inference(dtype='bool')
1321 1322
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1323 1324


1325
def range(start, end, step, dtype, name=None):
W
whs 已提交
1326
    """
1327
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1328

1329 1330
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1331

1332 1333
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1334

L
Liufang Sang 已提交
1335
    Parameters:
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1359 1360 1361 1362 1363

    examples:

        .. code-block:: python

1364
            import paddle.fluid as fluid
W
whs 已提交
1365

1366 1367
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1368

1369 1370 1371 1372 1373 1374 1375
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1376

1377 1378 1379 1380 1381
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1382
    if not isinstance(start, Variable):
1383
        with device_guard("cpu"):
1384
            start = fill_constant([1], dtype, start, force_cpu=True)
1385 1386
    elif start.dtype != dtype:
        start = cast(start, dtype)
1387

W
whs 已提交
1388
    if not isinstance(end, Variable):
1389
        with device_guard("cpu"):
1390
            end = fill_constant([1], dtype, end, force_cpu=True)
1391 1392
    elif end.dtype != dtype:
        end = cast(end, dtype)
1393

W
whs 已提交
1394
    if not isinstance(step, Variable):
1395
        with device_guard("cpu"):
1396
            step = fill_constant([1], dtype, step, force_cpu=True)
1397 1398
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1399

1400 1401
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1402

1403 1404 1405
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1406
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1407 1408 1409 1410 1411
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1412
        outputs={'Out': out})
1413
    out.stop_gradient = True
W
whs 已提交
1414
    return out
Z
zhoukunsheng 已提交
1415 1416


1417
def linspace(start, stop, num, dtype=None, name=None):
1418
    r"""
1419
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1420 1421

    Args:
1422 1423 1424 1425
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1426
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1427
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1428
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1429
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1430 1431
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1432 1433

    Returns:
1434
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1435 1436
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1437

Z
zhoukunsheng 已提交
1438
    Examples:
Z
zhoukunsheng 已提交
1439 1440
        .. code-block:: python

1441 1442 1443
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1444 1445

    """
1446 1447
    if dtype is None:
        dtype = 'float32'
1448 1449 1450
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1451 1452
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1453 1454
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1455
    if not isinstance(start, Variable):
1456 1457
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1458
    if not isinstance(stop, Variable):
1459 1460
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1461
    if not isinstance(num, Variable):
1462 1463
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1464
    if in_dygraph_mode():
1465 1466
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1467 1468 1469

    helper = LayerHelper("linspace", **locals())

1470 1471 1472
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1473
    if isinstance(start, Variable):
1474 1475
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1476 1477
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1478

1479
    if isinstance(stop, Variable):
1480 1481
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1482 1483 1484 1485 1486 1487
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1488 1489 1490 1491 1492 1493 1494 1495
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1496 1497

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1498 1499 1500

    helper.append_op(
        type='linspace',
1501 1502 1503 1504
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1505
        outputs={'Out': [out]})
1506 1507
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1508
    return out
1509 1510


Z
zhoukunsheng 已提交
1511 1512
def zeros_like(x, out=None):
    """
1513
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1514 1515 1516
    with `x`.

    Args:
1517 1518 1519 1520 1521 1522
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1523 1524

    Returns:
1525 1526 1527
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1528 1529 1530 1531

    Examples:
        .. code-block:: python

1532
          import paddle.fluid as fluid
1533
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1534 1535
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1536 1537
    """

1538 1539
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1540 1541 1542
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1543 1544 1545
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1546
            'zeros_like')
1547

Z
zhoukunsheng 已提交
1548 1549 1550 1551
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1552 1553


1554
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1555
def diag(diagonal):
1556
    r"""
1557 1558 1559
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1560

1561
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1562 1563

    Args:
1564 1565
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1566 1567

    Returns:
1568 1569
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1570 1571 1572 1573 1574 1575 1576

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1577 1578 1579

          import paddle.fluid as fluid
          import numpy as np
1580 1581 1582
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1583 1584

    """
1585 1586 1587
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1600 1601


1602 1603 1604 1605 1606
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1607
    """
1608
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1609 1610 1611

    Args:
        num_rows(int): the number of rows in each batch tensor.
1612 1613
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1614 1615
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1616
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1617 1618 1619 1620
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1621 1622

    Returns:
1623
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1624 1625 1626 1627 1628

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1629 1630
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1631
          #  [0, 1, 0]
1632 1633
          #  [0, 0, 1]]

1634
          data = fluid.layers.eye(2, 3, dtype='int32')
1635
          # [[1, 0, 0]
1636
          #  [0, 1, 0]]
1637 1638

          data = fluid.layers.eye(2, batch_shape=[3])
1639 1640 1641 1642 1643
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1644 1645
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1646 1647 1648 1649 1650
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1673 1674

    if batch_shape is not None:
1675 1676 1677 1678 1679
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1680
            return core.ops.expand(out, None, 'expand_times', expand_times)
1681

1682 1683
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1684
        for batch_val in (batch_shape):
1685 1686
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1687 1688 1689 1690 1691 1692

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1693 1694 1695
    return out


Z
zhoukunsheng 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1708
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1719 1720
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1721 1722 1723 1724

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1725 1726 1727 1728
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1729 1730 1731 1732 1733 1734
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1735 1736 1737 1738 1739 1740


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)