tensor.py 65.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231 232
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
246 247 248
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
249
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
250
        return out
251

252 253 254 255
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
256 257
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
258
        'uint8', 'uint16'
259 260 261
    ], 'cast')

    helper = LayerHelper('cast', **locals())
262 263
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


273
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
274
    """
275
    This OP concatenates the input along the axis.
276 277

    Args:
278 279
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
280 281
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
282
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
283
            as ``axis+R``. Default is 0.
284 285 286
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
287 288

    Returns:
289
        Tensor: A Tensor with the same data type as ``input``.
290 291 292

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
293

294
            import paddle.fluid as fluid
295 296
            import numpy as np

297 298 299 300 301 302
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
303 304 305 306
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
307 308
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
309 310
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
311 312 313 314 315 316 317 318
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
319
    """
320 321

    if in_dygraph_mode():
S
songyouwei 已提交
322 323
        if isinstance(axis, Variable):
            axis = axis.numpy()
324
            axis = axis.item(0)
W
wanghuancoder 已提交
325
        return _C_ops.concat(input, 'axis', axis)
326

327 328 329 330 331 332 333 334 335 336 337
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
338
        input = [input]
339
    check_type(axis, 'axis', (int, Variable), 'concat')
340

341 342 343 344 345
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

346
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
347
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
348 349

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
350 351 352 353
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

354
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
355
                "number of the elements must be 1, but received %s." % len(input)
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
375 376 377
    return out


G
Guo Sheng 已提交
378
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
379
    r"""
G
Guo Sheng 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
430 431

    Args:
G
Guo Sheng 已提交
432 433 434 435 436 437 438
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
439 440

    Returns:
G
Guo Sheng 已提交
441 442 443
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
444 445 446 447

    Examples:
        .. code-block:: python

448
            import paddle.fluid as fluid
449
            import numpy as np
G
Guo Sheng 已提交
450 451 452 453 454 455 456
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
457
    """
458 459 460 461 462 463 464 465 466 467 468
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

469 470 471 472 473
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
474
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
475 476 477
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
478
        type='tensor_array_to_tensor',
L
li099 已提交
479 480 481
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
482 483
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
484 485 486
    return out, out_index


487
def sums(input, out=None):
488
    r"""
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
510 511

    Args:
512 513 514 515
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
516 517

    Returns:
518 519
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
520 521

    Examples:
F
fengjiayi 已提交
522
        .. code-block:: python
K
kavyasrinet 已提交
523

524 525 526 527 528 529 530 531 532
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
533

534 535
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
536
    """
537 538 539 540 541 542 543 544 545
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
546 547
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
548 549
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
550 551 552 553
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
554 555 556 557 558
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
559 560 561
    return out


F
fengjiayi 已提交
562
def assign(input, output=None):
563
    """
S
swtkiwi 已提交
564

565
    The OP copies the :attr:`input` to the :attr:`output`.
566

567
    Parameters:
568 569 570 571
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
572
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
573
            be created as :attr:`output`. Default: None.
574 575

    Returns:
576
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
577 578 579

    Examples:
        .. code-block:: python
580

581
          import paddle
582
          import numpy as np
583
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
584 585 586 587
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
588 589 590
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
591
    """
Y
Yu Yang 已提交
592
    helper = LayerHelper('assign', **locals())
593 594
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
595 596
    is_inplace = True if output is not None else False

597 598 599 600
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
601 602 603 604 605 606
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
607
        check_dtype(input.dtype, 'input', [
608 609
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
610
        ], 'assign', '(When the type of input in assign is Variable.)')
611 612 613
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
614
        helper.append_op(
R
robot 已提交
615
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
616 617
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
618 619 620 621 622 623 624 625
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
626 627 628 629
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
630
            value_name = "fp32_values"
631
            values = [float(v) for v in input.flat]
632
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
633
            value_name = "int32_values"
634
            values = [int(v) for v in input.flat]
635 636 637
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
638
        else:
639 640
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
641
                "the data type of 'input' must be bool, float32, int32 or int64, but "
642
                "received %s." % convert_dtype(dtype))
643 644 645
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
646 647 648
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
649 650 651 652 653 654
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
655
                value_name: values
X
xuwei06 已提交
656 657
            })

658 659 660
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
661 662 663
    return output


664
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
665
    """
S
swtkiwi 已提交
666

W
wangchaochaohu 已提交
667
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
668
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
669

T
tianshuo78520a 已提交
670
    The attribute `stop_gradient` of the created Tensor is set to True.
671 672

    Args:
673 674 675
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
676
        dtype(np.dtype|str): Data type of the output Tensor which can
677
            be float16, float32, float64, uint8, int32, int64.
678 679 680 681 682 683
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
684 685
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
686 687

    Returns:
688
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
689

690 691 692
    Examples:
        .. code-block:: python

693
          import paddle.fluid as fluid
694
          # attr shape is a list which doesn't contain  Tensor.
695 696
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
697
          # data1=[[5], [5]] data2=[[5], [5]]
698

699
          # attr shape is a list which contains Tensor.
700
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
701
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
702

703
          # attr shape is a Tensor.
704
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
705
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
706
          
707
          # attr value is a Tensor.
W
wangchaochaohu 已提交
708 709
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
710
    """
711

W
wangchaochaohu 已提交
712
    attrs = {'force_cpu': force_cpu}
713
    dtype = convert_dtype(dtype)
714
    if not isinstance(value, Variable):
715
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
716
            attrs['str_value'] = str(int(value))
717
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
718 719
        else:
            attrs['str_value'] = str(float(value))
720
            attrs['value'] = float(value)
721 722

    if in_dygraph_mode():
723
        shape = utils.convert_shape_to_list(shape)
724 725
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
726 727

        if isinstance(value, Variable):
728
            if dtype in ['uint8', 'int64', 'int32']:
729
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
730
            else:
731
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
732

W
wanghuancoder 已提交
733 734 735 736
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
737 738 739
        out.stop_gradient = True
        return out

740 741 742
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
743 744
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
745 746
        inputs['ValueTensor'] = value

747
    check_shape(shape)
748 749 750 751
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
752
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
753

754 755 756 757 758
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
759
    utils.get_shape_tensor_inputs(
760
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
761

Y
Yu Yang 已提交
762
    if out is None:
X
Xin Pan 已提交
763
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
764
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
765 766
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
767
        inputs=inputs,
Y
Yu Yang 已提交
768
        outputs={'Out': [out]},
L
liym27 已提交
769
        attrs=attrs,
M
minqiyang 已提交
770
        stop_gradient=True)
Y
Yu Yang 已提交
771 772 773 774
    out.stop_gradient = True
    return out


775
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
776
@templatedoc()
Y
Yu Yang 已提交
777 778 779 780 781
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
782 783
                                  output_dim_idx=0,
                                  force_cpu=False):
784
    """
T
tianshuo78520a 已提交
785
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
786 787 788 789
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
790 791

    Args:
W
wangchaochaohu 已提交
792 793 794 795 796 797 798 799 800 801 802
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
803
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
804 805

    Returns:
W
wangchaochaohu 已提交
806
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
807 808 809 810 811

    Examples:

        .. code-block:: python

812
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
813
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
814
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
815
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
816

817
    """
Y
Yu Yang 已提交
818
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
819
    out = helper.create_variable_for_type_inference(dtype=dtype)
820 821 822 823 824 825
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
826
        'force_cpu': force_cpu
827 828 829 830 831
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
832 833 834 835
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
836
        attrs=attrs)
Y
Yu Yang 已提交
837 838 839 840
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
841 842
def argmin(x, axis=0):
    """
843 844 845
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
846

S
sneaxiy 已提交
847 848
    **argmin**

849 850
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
851 852

    Args:
853 854 855 856 857
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
858

S
sneaxiy 已提交
859
    Returns:
860
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
861

S
sneaxiy 已提交
862 863
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
864

865
            import paddle.fluid as fluid
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
893
    """
894 895 896
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
897
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
898
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
899 900 901 902 903
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
904
    out.stop_gradient = True
S
sneaxiy 已提交
905 906 907 908 909 910 911
    return out


def argmax(x, axis=0):
    """
    **argmax**

912 913
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
914 915

    Args:
916 917 918 919 920
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
921

S
sneaxiy 已提交
922
    Returns:
923
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
924

S
sneaxiy 已提交
925 926
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
927

928
            import paddle.fluid as fluid
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
956
    """
957 958 959
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
960
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
961
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
962 963 964 965 966
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
967
    out.stop_gradient = True
S
sneaxiy 已提交
968 969 970
    return out


971
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
972
    """
973 974 975
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
976

977 978 979
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
980 981

    Args:
982 983 984 985 986
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
987 988 989
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
990 991 992
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
993 994

    Returns:
995 996 997
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
998 999 1000 1001

    Examples:
        .. code-block:: python

1002
            import paddle.fluid as fluid
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1044
    """
1045 1046 1047
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1048
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1049 1050 1051 1052
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1053 1054 1055 1056
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1057
                 'Indices': ids},
1058 1059
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1060 1061 1062
    return out, ids


Y
Yang Yu 已提交
1063
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1064
    """
1065 1066
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1067

1068
    Parameters:
1069
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1070
        dtype (np.dtype|str): Data type of output Tensor, it supports
1071
            bool, float16, float32, float64, int32 and int64.
1072 1073
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1074
            Default: False.
1075 1076

    Returns:
1077
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1078 1079 1080 1081

    Examples:
        .. code-block:: python

1082
          import paddle.fluid as fluid
1083 1084 1085 1086 1087
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1088 1089 1090 1091
    """
    return fill_constant(value=1.0, **locals())


1092
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1093
    """
1094 1095
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1096

1097
    Parameters:
1098
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1099
        dtype (np.dtype|str): Data type of output Tensor, it supports
1100
            bool, float16, float32, float64, int32 and int64.
1101 1102
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1103
            Default: False.
1104 1105
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1106 1107

    Returns:
1108
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1109 1110 1111 1112

    Examples:
        .. code-block:: python

1113
          import paddle.fluid as fluid
1114
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1115 1116 1117 1118
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1119 1120
    """
    return fill_constant(value=0.0, **locals())
1121 1122


F
fengjiayi 已提交
1123 1124
def reverse(x, axis):
    """
1125 1126 1127
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1128

1129
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1155
    Parameters:
1156 1157
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1158 1159
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1160 1161
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1162 1163

    Returns:
1164
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1165 1166 1167 1168

    Examples:
        .. code-block:: python

1169
          import paddle.fluid as fluid
1170 1171 1172 1173
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1184
    """
1185 1186 1187
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1188 1189 1190
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1191
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1192 1193
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1194
        inputs={'X': x},
F
fengjiayi 已提交
1195 1196 1197 1198 1199
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1200 1201 1202 1203 1204 1205 1206
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1207 1208 1209
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1225 1226
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1227
        file_path(str): The file path where variables will be saved.
1228
        overwrite(bool): Whether or not cover the given file when it has already
1229 1230
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1231 1232 1233 1234 1235 1236 1237 1238

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1239
            import paddle.fluid as fluid
1240 1241 1242 1243 1244 1245 1246
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1259
    Loads a list of variable from a single file.
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1271 1272 1273 1274 1275 1276 1277


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1278
       x (Tensor): The Tensor to be checked.
1279 1280

    Returns:
S
Steffy-zxf 已提交
1281
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1282 1283 1284 1285
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1286 1287
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1288
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1289
          # [False]
1290

1291
    """
S
Steffy-zxf 已提交
1292
    if in_dygraph_mode():
W
wanghuancoder 已提交
1293
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1294

1295
    check_type(x, 'x', (Variable), 'has_inf')
1296
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1297
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1298 1299 1300 1301 1302 1303 1304 1305 1306
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1307
       x (Tensor): The Tensor to be checked.
1308 1309

    Returns:
S
Steffy-zxf 已提交
1310
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1311 1312 1313 1314
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1315 1316
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1317
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1318
          # [False]
1319

1320
    """
S
Steffy-zxf 已提交
1321
    if in_dygraph_mode():
W
wanghuancoder 已提交
1322
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1323

1324
    check_type(x, 'x', (Variable), 'has_nan')
1325
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1326
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1327 1328 1329 1330 1331 1332
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1333

1334 1335 1336 1337
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1338
        x(Tensor): The Tensor to be checked.
1339 1340

    Returns:
N
Noel 已提交
1341
        Tensor: The tensor storing the output, contains a bool value.
1342 1343 1344 1345 1346

    Examples:

        .. code-block:: python

N
Noel 已提交
1347 1348 1349 1350 1351 1352
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1353
    """
1354 1355
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1356
    helper = LayerHelper("isfinite", **locals())
1357

1358
    out = helper.create_variable_for_type_inference(dtype='bool')
1359 1360
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1361 1362


1363
def range(start, end, step, dtype, name=None):
W
whs 已提交
1364
    """
1365
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1366

1367 1368
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1369

1370 1371
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1372

L
Liufang Sang 已提交
1373
    Parameters:
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1397 1398 1399 1400 1401

    examples:

        .. code-block:: python

1402
            import paddle.fluid as fluid
W
whs 已提交
1403

1404 1405
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1406

1407 1408 1409 1410 1411 1412 1413
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1414

W
whs 已提交
1415
    if not isinstance(start, Variable):
1416
        with device_guard("cpu"):
1417
            start = fill_constant([1], dtype, start, force_cpu=True)
1418 1419
    elif start.dtype != dtype:
        start = cast(start, dtype)
1420

W
whs 已提交
1421
    if not isinstance(end, Variable):
1422
        with device_guard("cpu"):
1423
            end = fill_constant([1], dtype, end, force_cpu=True)
1424 1425
    elif end.dtype != dtype:
        end = cast(end, dtype)
1426

W
whs 已提交
1427
    if not isinstance(step, Variable):
1428
        with device_guard("cpu"):
1429
            step = fill_constant([1], dtype, step, force_cpu=True)
1430 1431
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1432

1433
    if in_dygraph_mode():
W
wanghuancoder 已提交
1434
        return _C_ops.range(start, end, step)
W
whs 已提交
1435

W
wanghuancoder 已提交
1436 1437 1438 1439 1440
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1441 1442 1443
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1444
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1445 1446 1447 1448 1449
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1450
        outputs={'Out': out})
1451
    out.stop_gradient = True
W
whs 已提交
1452
    return out
Z
zhoukunsheng 已提交
1453 1454


1455
def linspace(start, stop, num, dtype=None, name=None):
1456
    r"""
1457
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1458 1459

    Args:
1460 1461 1462 1463
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1464
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1465
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1466
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1467
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1468 1469
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1470 1471

    Returns:
1472
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1473 1474
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1475

Z
zhoukunsheng 已提交
1476
    Examples:
Z
zhoukunsheng 已提交
1477 1478
        .. code-block:: python

1479 1480 1481
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1482 1483

    """
1484 1485
    if dtype is None:
        dtype = 'float32'
1486 1487 1488
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1489 1490
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1491 1492
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1493
    if not isinstance(start, Variable):
1494 1495
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1496
    if not isinstance(stop, Variable):
1497 1498
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1499
    if not isinstance(num, Variable):
1500 1501
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1502
    if in_dygraph_mode():
W
wanghuancoder 已提交
1503 1504
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1505 1506 1507

    helper = LayerHelper("linspace", **locals())

1508 1509 1510
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1511
    if isinstance(start, Variable):
1512 1513
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1514 1515
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1516

1517
    if isinstance(stop, Variable):
1518 1519
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1520 1521 1522 1523 1524 1525
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1526 1527 1528 1529 1530 1531 1532 1533
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1534 1535

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1536 1537 1538

    helper.append_op(
        type='linspace',
1539 1540 1541 1542
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1543
        outputs={'Out': [out]})
1544 1545
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1546
    return out
1547 1548


Z
zhoukunsheng 已提交
1549 1550
def zeros_like(x, out=None):
    """
1551
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1552 1553 1554
    with `x`.

    Args:
1555 1556 1557 1558 1559 1560
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1561 1562

    Returns:
1563 1564 1565
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1566 1567 1568 1569

    Examples:
        .. code-block:: python

1570
          import paddle.fluid as fluid
1571
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1572 1573
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1574 1575
    """

1576 1577
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1578 1579 1580
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1581 1582 1583
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1584
            'zeros_like')
1585

Z
zhoukunsheng 已提交
1586 1587 1588 1589
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1590 1591


1592
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1593
def diag(diagonal):
1594
    r"""
1595 1596 1597
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1598

1599
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1600 1601

    Args:
1602 1603
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1604 1605

    Returns:
1606 1607
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1608 1609 1610 1611 1612 1613 1614

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1615 1616 1617

          import paddle.fluid as fluid
          import numpy as np
1618 1619 1620
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1621 1622

    """
1623 1624 1625
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1638 1639


1640 1641 1642 1643 1644
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1645
    """
1646
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1647 1648 1649

    Args:
        num_rows(int): the number of rows in each batch tensor.
1650 1651
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1652 1653
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1654
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1655 1656 1657 1658
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1659 1660

    Returns:
1661
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1662 1663 1664 1665 1666

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1667 1668
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1669
          #  [0, 1, 0]
1670 1671
          #  [0, 0, 1]]

1672
          data = fluid.layers.eye(2, 3, dtype='int32')
1673
          # [[1, 0, 0]
1674
          #  [0, 1, 0]]
1675 1676

          data = fluid.layers.eye(2, batch_shape=[3])
1677 1678 1679 1680 1681
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1682 1683
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1684 1685 1686 1687 1688
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1689 1690

    if in_dygraph_mode():
W
wanghuancoder 已提交
1691 1692
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1711 1712

    if batch_shape is not None:
1713 1714 1715 1716
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
W
wanghuancoder 已提交
1717 1718
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1719

1720 1721
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1722
        for batch_val in (batch_shape):
1723 1724
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1725 1726 1727 1728 1729 1730

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1731 1732 1733
    return out


Z
zhoukunsheng 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1746
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1757 1758
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1759 1760 1761 1762

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1763 1764 1765 1766
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1767 1768 1769 1770 1771 1772
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1773 1774 1775 1776 1777 1778


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)