tensor.py 64.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195 196 197 198 199

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
200 201
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
202 203 204 205 206
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
207 208 209
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
210

Q
Qiao Longfei 已提交
211 212 213
    return var


214
def cast(x, dtype):
Y
Yu Yang 已提交
215
    """
S
swtkiwi 已提交
216

217
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
218 219
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
220 221

    Args:
222
        x(Tensor): An input N-D Tensor with data type bool, float16,
223 224
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
225
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
226 227

    Returns:
228
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
229 230 231

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
232

233
            import paddle
234

235 236
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
237
    """
238 239 240
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
241
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
242
        return out
243

244 245 246 247
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
248 249
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
250
        'uint8', 'uint16'
251 252 253
    ], 'cast')

    helper = LayerHelper('cast', **locals())
254 255
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
256 257 258 259 260 261 262 263 264
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


265
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
266
    """
267
    This OP concatenates the input along the axis.
268 269

    Args:
270 271
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
272 273
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
274
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
275
            as ``axis+R``. Default is 0.
276 277 278
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
279 280

    Returns:
281
        Tensor: A Tensor with the same data type as ``input``.
282 283 284

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
285

286
            import paddle.fluid as fluid
287 288
            import numpy as np

289 290 291 292 293 294
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
295 296 297 298
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
299 300
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
301 302
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
303 304 305 306 307 308 309 310
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
311
    """
312 313

    if in_dygraph_mode():
S
songyouwei 已提交
314 315
        if isinstance(axis, Variable):
            axis = axis.numpy()
316
            axis = axis.item(0)
W
wanghuancoder 已提交
317
        return _C_ops.concat(input, 'axis', axis)
318

319 320 321 322 323 324 325 326 327 328 329
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
330
        input = [input]
331
    check_type(axis, 'axis', (int, Variable), 'concat')
332

333 334 335 336 337
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

338
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
339
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
340 341

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
342 343 344 345
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

346
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
347
                "number of the elements must be 1, but received %s." % len(input)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
367 368 369
    return out


G
Guo Sheng 已提交
370
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
371
    r"""
G
Guo Sheng 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
422 423

    Args:
G
Guo Sheng 已提交
424 425 426 427 428 429 430
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
431 432

    Returns:
G
Guo Sheng 已提交
433 434 435
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
436 437 438 439

    Examples:
        .. code-block:: python

440
            import paddle.fluid as fluid
441
            import numpy as np
G
Guo Sheng 已提交
442 443 444 445 446 447 448
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
449
    """
450 451 452 453 454 455 456 457 458 459 460
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

461 462 463 464 465
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
466
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
467 468 469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
470
        type='tensor_array_to_tensor',
L
li099 已提交
471 472 473
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
474 475
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
476 477 478
    return out, out_index


479
def sums(input, out=None):
480
    r"""
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
502 503

    Args:
504 505 506 507
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
508 509

    Returns:
510 511
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
512 513

    Examples:
F
fengjiayi 已提交
514
        .. code-block:: python
K
kavyasrinet 已提交
515

516 517 518 519 520 521 522 523 524
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
525

526 527
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
528
    """
529 530 531 532 533 534 535 536 537
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
538 539
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
540 541
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
542 543 544 545
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
546 547 548 549 550
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
551 552 553
    return out


F
fengjiayi 已提交
554
def assign(input, output=None):
555
    """
S
swtkiwi 已提交
556

557
    The OP copies the :attr:`input` to the :attr:`output`.
558

559
    Parameters:
560 561 562 563
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
564
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
565
            be created as :attr:`output`. Default: None.
566 567

    Returns:
568
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
569 570 571

    Examples:
        .. code-block:: python
572

573
          import paddle
574
          import numpy as np
575
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
576 577 578 579
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
580 581 582
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
583
    """
Y
Yu Yang 已提交
584
    helper = LayerHelper('assign', **locals())
585 586
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
587 588
    is_inplace = True if output is not None else False

589 590 591 592
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
593 594 595 596 597 598
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
599
        check_dtype(input.dtype, 'input', [
600 601
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
602
        ], 'assign', '(When the type of input in assign is Variable.)')
603 604 605
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
606
        helper.append_op(
R
robot 已提交
607
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
608 609
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
610 611 612 613 614 615 616 617
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
618 619 620 621
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
622
            value_name = "fp32_values"
623
            values = [float(v) for v in input.flat]
624
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
625
            value_name = "int32_values"
626
            values = [int(v) for v in input.flat]
627 628 629
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
630
        else:
631 632
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
633
                "the data type of 'input' must be bool, float32, int32 or int64, but "
634
                "received %s." % convert_dtype(dtype))
635 636 637
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
638 639 640
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
641 642 643 644 645 646
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
647
                value_name: values
X
xuwei06 已提交
648 649
            })

650 651 652
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
653 654 655
    return output


656
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
657
    """
S
swtkiwi 已提交
658

W
wangchaochaohu 已提交
659
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
660
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
661

T
tianshuo78520a 已提交
662
    The attribute `stop_gradient` of the created Tensor is set to True.
663 664

    Args:
665 666 667
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
668
        dtype(np.dtype|str): Data type of the output Tensor which can
669
            be float16, float32, float64, uint8, int32, int64.
670 671 672 673 674 675
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
676 677
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
678 679

    Returns:
680
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
681

682 683 684
    Examples:
        .. code-block:: python

685
          import paddle.fluid as fluid
686
          # attr shape is a list which doesn't contain  Tensor.
687 688
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
689
          # data1=[[5], [5]] data2=[[5], [5]]
690

691
          # attr shape is a list which contains Tensor.
692
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
693
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
694

695
          # attr shape is a Tensor.
696
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
697
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
698
          
699
          # attr value is a Tensor.
W
wangchaochaohu 已提交
700 701
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
702
    """
703

W
wangchaochaohu 已提交
704
    attrs = {'force_cpu': force_cpu}
705
    dtype = convert_dtype(dtype)
706
    if not isinstance(value, Variable):
707
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
708
            attrs['str_value'] = str(int(value))
709
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
710 711
        else:
            attrs['str_value'] = str(float(value))
712
            attrs['value'] = float(value)
713 714

    if in_dygraph_mode():
715
        shape = utils.convert_shape_to_list(shape)
716 717
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
718 719

        if isinstance(value, Variable):
720
            if dtype in ['uint8', 'int64', 'int32']:
721
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
722
            else:
723
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
724

W
wanghuancoder 已提交
725 726 727 728
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
729 730 731
        out.stop_gradient = True
        return out

732 733 734
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
735 736
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
737 738
        inputs['ValueTensor'] = value

739
    check_shape(shape)
740 741 742 743
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
744
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
745

746 747 748 749 750
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
751
    utils.get_shape_tensor_inputs(
752
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
753

Y
Yu Yang 已提交
754
    if out is None:
X
Xin Pan 已提交
755
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
756
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
757 758
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
759
        inputs=inputs,
Y
Yu Yang 已提交
760
        outputs={'Out': [out]},
L
liym27 已提交
761
        attrs=attrs,
M
minqiyang 已提交
762
        stop_gradient=True)
Y
Yu Yang 已提交
763 764 765 766
    out.stop_gradient = True
    return out


767
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
768
@templatedoc()
Y
Yu Yang 已提交
769 770 771 772 773
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
774 775
                                  output_dim_idx=0,
                                  force_cpu=False):
776
    """
T
tianshuo78520a 已提交
777
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
778 779 780 781
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
782 783

    Args:
W
wangchaochaohu 已提交
784 785 786 787 788 789 790 791 792 793 794
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
795
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
796 797

    Returns:
W
wangchaochaohu 已提交
798
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
799 800 801 802 803

    Examples:

        .. code-block:: python

804
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
805
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
806
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
807
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
808

809
    """
Y
Yu Yang 已提交
810
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
811
    out = helper.create_variable_for_type_inference(dtype=dtype)
812 813 814 815 816 817
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
818
        'force_cpu': force_cpu
819 820 821 822 823
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
824 825 826 827
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
828
        attrs=attrs)
Y
Yu Yang 已提交
829 830 831 832
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
833 834
def argmin(x, axis=0):
    """
835 836 837
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
838

S
sneaxiy 已提交
839 840
    **argmin**

841 842
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
843 844

    Args:
845 846 847 848 849
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
850

S
sneaxiy 已提交
851
    Returns:
852
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
853

S
sneaxiy 已提交
854 855
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
856

857
            import paddle.fluid as fluid
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
885
    """
886 887 888
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
889
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
890
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
891 892 893 894 895
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
896
    out.stop_gradient = True
S
sneaxiy 已提交
897 898 899 900 901 902 903
    return out


def argmax(x, axis=0):
    """
    **argmax**

904 905
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
906 907

    Args:
908 909 910 911 912
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
913

S
sneaxiy 已提交
914
    Returns:
915
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
916

S
sneaxiy 已提交
917 918
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
919

920
            import paddle.fluid as fluid
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
948
    """
949 950 951
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
952
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
953
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
954 955 956 957 958
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
959
    out.stop_gradient = True
S
sneaxiy 已提交
960 961 962
    return out


963
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
964
    """
965 966 967
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
968

969 970 971
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
972 973

    Args:
974 975 976 977 978
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
979 980 981
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
982 983 984
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
985 986

    Returns:
987 988 989
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
990 991 992 993

    Examples:
        .. code-block:: python

994
            import paddle.fluid as fluid
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1036
    """
1037 1038 1039
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1040
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1041 1042 1043 1044
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1045 1046 1047 1048
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1049
                 'Indices': ids},
1050 1051
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1052 1053 1054
    return out, ids


Y
Yang Yu 已提交
1055
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1056
    """
1057 1058
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1059

1060
    Parameters:
1061
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1062
        dtype (np.dtype|str): Data type of output Tensor, it supports
1063
            bool, float16, float32, float64, int32 and int64.
1064 1065
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1066
            Default: False.
1067 1068

    Returns:
1069
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1070 1071 1072 1073

    Examples:
        .. code-block:: python

1074
          import paddle.fluid as fluid
1075 1076 1077 1078 1079
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1080 1081 1082 1083
    """
    return fill_constant(value=1.0, **locals())


1084
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1085
    """
1086 1087
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1088

1089
    Parameters:
1090
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1091
        dtype (np.dtype|str): Data type of output Tensor, it supports
1092
            bool, float16, float32, float64, int32 and int64.
1093 1094
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1095
            Default: False.
1096 1097
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1098 1099

    Returns:
1100
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1101 1102 1103 1104

    Examples:
        .. code-block:: python

1105
          import paddle.fluid as fluid
1106
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1107 1108 1109 1110
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1111 1112
    """
    return fill_constant(value=0.0, **locals())
1113 1114


F
fengjiayi 已提交
1115 1116
def reverse(x, axis):
    """
1117 1118 1119
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1120

1121
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1147
    Parameters:
1148 1149
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1150 1151
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1152 1153
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1154 1155

    Returns:
1156
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1157 1158 1159 1160

    Examples:
        .. code-block:: python

1161
          import paddle.fluid as fluid
1162 1163 1164 1165
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1176
    """
1177 1178 1179
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1180 1181 1182
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1183
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1184 1185
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1186
        inputs={'X': x},
F
fengjiayi 已提交
1187 1188 1189 1190 1191
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1192 1193 1194 1195 1196 1197 1198
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1199 1200 1201
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1217 1218
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1219
        file_path(str): The file path where variables will be saved.
1220
        overwrite(bool): Whether or not cover the given file when it has already
1221 1222
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1223 1224 1225 1226 1227 1228 1229 1230

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1231
            import paddle.fluid as fluid
1232 1233 1234 1235 1236 1237 1238
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1251
    Loads a list of variable from a single file.
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1263 1264 1265 1266 1267 1268 1269


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1270
       x (Tensor): The Tensor to be checked.
1271 1272

    Returns:
S
Steffy-zxf 已提交
1273
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1274 1275 1276 1277
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1278 1279
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1280
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1281
          # [False]
1282

1283
    """
S
Steffy-zxf 已提交
1284
    if in_dygraph_mode():
W
wanghuancoder 已提交
1285
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1286

1287
    check_type(x, 'x', (Variable), 'has_inf')
1288
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1289
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1290 1291 1292 1293 1294 1295 1296 1297 1298
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1299
       x (Tensor): The Tensor to be checked.
1300 1301

    Returns:
S
Steffy-zxf 已提交
1302
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1303 1304 1305 1306
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1307 1308
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1309
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1310
          # [False]
1311

1312
    """
S
Steffy-zxf 已提交
1313
    if in_dygraph_mode():
W
wanghuancoder 已提交
1314
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1315

1316
    check_type(x, 'x', (Variable), 'has_nan')
1317
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1318
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1319 1320 1321 1322 1323 1324
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1325

1326 1327 1328 1329
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1330
        x(Tensor): The Tensor to be checked.
1331 1332

    Returns:
N
Noel 已提交
1333
        Tensor: The tensor storing the output, contains a bool value.
1334 1335 1336 1337 1338

    Examples:

        .. code-block:: python

N
Noel 已提交
1339 1340 1341 1342 1343 1344
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1345
    """
1346 1347
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1348
    helper = LayerHelper("isfinite", **locals())
1349

1350
    out = helper.create_variable_for_type_inference(dtype='bool')
1351 1352
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1353 1354


1355
def range(start, end, step, dtype, name=None):
W
whs 已提交
1356
    """
1357
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1358

1359 1360
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1361

1362 1363
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1364

L
Liufang Sang 已提交
1365
    Parameters:
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1389 1390 1391 1392 1393

    examples:

        .. code-block:: python

1394
            import paddle.fluid as fluid
W
whs 已提交
1395

1396 1397
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1398

1399 1400 1401 1402 1403 1404 1405
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1406

W
whs 已提交
1407
    if not isinstance(start, Variable):
1408
        with device_guard("cpu"):
1409
            start = fill_constant([1], dtype, start, force_cpu=True)
1410 1411
    elif start.dtype != dtype:
        start = cast(start, dtype)
1412

W
whs 已提交
1413
    if not isinstance(end, Variable):
1414
        with device_guard("cpu"):
1415
            end = fill_constant([1], dtype, end, force_cpu=True)
1416 1417
    elif end.dtype != dtype:
        end = cast(end, dtype)
1418

W
whs 已提交
1419
    if not isinstance(step, Variable):
1420
        with device_guard("cpu"):
1421
            step = fill_constant([1], dtype, step, force_cpu=True)
1422 1423
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1424

1425
    if in_dygraph_mode():
W
wanghuancoder 已提交
1426
        return _C_ops.range(start, end, step)
W
whs 已提交
1427

W
wanghuancoder 已提交
1428 1429 1430 1431 1432
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1433 1434 1435
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1436
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1437 1438 1439 1440 1441
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1442
        outputs={'Out': out})
1443
    out.stop_gradient = True
W
whs 已提交
1444
    return out
Z
zhoukunsheng 已提交
1445 1446


1447
def linspace(start, stop, num, dtype=None, name=None):
1448
    r"""
1449
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1450 1451

    Args:
1452 1453 1454 1455
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1456
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1457
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1458
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1459
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1460 1461
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1462 1463

    Returns:
1464
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1465 1466
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1467

Z
zhoukunsheng 已提交
1468
    Examples:
Z
zhoukunsheng 已提交
1469 1470
        .. code-block:: python

1471 1472 1473
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1474 1475

    """
1476 1477
    if dtype is None:
        dtype = 'float32'
1478 1479 1480
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1481 1482
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1483 1484
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1485
    if not isinstance(start, Variable):
1486 1487
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1488
    if not isinstance(stop, Variable):
1489 1490
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1491
    if not isinstance(num, Variable):
1492 1493
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1494
    if in_dygraph_mode():
W
wanghuancoder 已提交
1495 1496
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1497 1498 1499

    helper = LayerHelper("linspace", **locals())

1500 1501 1502
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1503
    if isinstance(start, Variable):
1504 1505
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1506 1507
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1508

1509
    if isinstance(stop, Variable):
1510 1511
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1512 1513 1514 1515 1516 1517
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1518 1519 1520 1521 1522 1523 1524 1525
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1526 1527

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1528 1529 1530

    helper.append_op(
        type='linspace',
1531 1532 1533 1534
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1535
        outputs={'Out': [out]})
1536 1537
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1538
    return out
1539 1540


Z
zhoukunsheng 已提交
1541 1542
def zeros_like(x, out=None):
    """
1543
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1544 1545 1546
    with `x`.

    Args:
1547 1548 1549 1550 1551 1552
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1553 1554

    Returns:
1555 1556 1557
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1558 1559 1560 1561

    Examples:
        .. code-block:: python

1562
          import paddle.fluid as fluid
1563
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1564 1565
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1566 1567
    """

1568 1569
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1570 1571 1572
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1573 1574 1575
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1576
            'zeros_like')
1577

Z
zhoukunsheng 已提交
1578 1579 1580 1581
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1582 1583


1584
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1585
def diag(diagonal):
1586
    r"""
1587 1588 1589
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1590

1591
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1592 1593

    Args:
1594 1595
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1596 1597

    Returns:
1598 1599
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1600 1601 1602 1603 1604 1605 1606

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1607 1608 1609

          import paddle.fluid as fluid
          import numpy as np
1610 1611 1612
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1613 1614

    """
1615 1616 1617
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1630 1631


1632 1633 1634 1635 1636
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1637
    """
1638
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1639 1640 1641

    Args:
        num_rows(int): the number of rows in each batch tensor.
1642 1643
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1644 1645
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1646
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1647 1648 1649 1650
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1651 1652

    Returns:
1653
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1654 1655 1656 1657 1658

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1659 1660
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1661
          #  [0, 1, 0]
1662 1663
          #  [0, 0, 1]]

1664
          data = fluid.layers.eye(2, 3, dtype='int32')
1665
          # [[1, 0, 0]
1666
          #  [0, 1, 0]]
1667 1668

          data = fluid.layers.eye(2, batch_shape=[3])
1669 1670 1671 1672 1673
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1674 1675
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1676 1677 1678 1679 1680
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1681 1682

    if in_dygraph_mode():
W
wanghuancoder 已提交
1683 1684
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1703 1704

    if batch_shape is not None:
1705 1706 1707 1708
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
W
wanghuancoder 已提交
1709 1710
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1711

1712 1713
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1714
        for batch_val in (batch_shape):
1715 1716
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1717 1718 1719 1720 1721 1722

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1723 1724 1725
    return out


Z
zhoukunsheng 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1738
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1749 1750
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1751 1752 1753 1754

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1755 1756 1757 1758
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1759 1760 1761 1762 1763 1764
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1765 1766 1767 1768 1769 1770


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)